Consistent Correspondence

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Previously

Map between two shapes.

Question

What happens if you compose these maps?

What do you expect if you compose
around a cycle?

Cycle consistency

[sahy-kuh l kuh n-sis-tuh n-see]: Composing maps in a cycle yields the identity

Philosophical Point

You should have a good reason if your correspondences are inconsistent.

An Unpleasant Constraint

$$
\phi_{1}\left(\phi_{2}\left(\phi_{3}(x)\right)\right)=\mathrm{Id}
$$

Cycle consistency

Contrasting Viewpoint

https://s3.pixers.pics/pixers/700/FO/39/51/09/46/700_FO39510946_Cd54bgoa83d46f5dbd96440271eadfec.jpg
Additional data should help!

Today

Sampling of methods for consistent correspondence.

- Spanning tree
- Inconsistent cycle detection
- Convex optimization

Holy Grail

Simultaneously optimize all maps in a collection.

Open problem!

Joint Matching: Simplest Formulation

- Input
- N shapes
- \boldsymbol{N}^{2} maps (see last lecture)
- Output
- Cycle-consistent approximation

Spanning Tree: Original Context

Unsurprisingly...

Given: Model graph $G=(S, E)$

Find: Largest consistent spanning tree

"Automatic Three-Dimensional Modeling from Reality" (Huber, 2002)
NP-hard

Heuristic Algorithm

Extract consistent
 spanning tree in
 model graph

(a)

(b)

(d)

Issues

Figure 3.13: Global quality values for several versions of the squirrel model. The model hypothesis is shown in the top row with the corresponding 3D visualization in the bottom row. a) Correct model. b) Correct model with a single view detached; c) Correct model split into equally sized two parts (only one part shown in 3D). d) Model with one error.

- Many spanning trees
- Single incorrect match can destroy the maps

Inconsistent Loop Detection

Used to deal with repeating structures like windows!

Large for inconsistent cycles

$$
\begin{aligned}
& \max \sum_{L} \stackrel{\downarrow}{\rho}_{L} x_{L} \\
& \text { s.t. } x_{L} \geq x_{e} \forall e \in L \\
& x_{L} \leq \sum_{e \in L} x_{e} \\
& x_{L}, x_{e} \in[0,1] \\
& \substack{x_{e}=1 \text { forfalse positive edge } \\
x_{L}=\\
\max \text { of } x_{e} \text { over loop }}
\end{aligned}
$$

Relationship: Consistency vs. Accuracy

```
DOI: 10.1111/j.1467-8659.2011.02022.x
Eurographics Symposium on Geometry Processing 2011
Marographics Symposium on Ge
(Guest Editors)
An Optimization Approach to Improving Collections of Shape Maps
```

```
Iteratively fix triplets
    and reweight
```


1. Introduction

Fuzzy Correspondences

Fuzzy Correspondences: Idea

- Compute Nk x Nk similarity matrix
- Same number of samples per surface
- Align similar shapes
- Compute spectral embedding
- Use as descriptor: Display $e^{-\left|d_{i}-d_{j}\right|^{2}}$

Consistent Segmentation

Joint Segmentation: Motivation

Structural similarity of segmentations

- Extraneous geometric clues

Single shape segmentation [Chen et al. og]

Joint shape segmentation
[Huang et al. 11]

"Joint Shape Segmentation with Linear Programming"

Joint Segmentation: Motivation

Structural similarity of segmentations

- Low saliency

Single shape segmentation [Chen et al. og]

Joint shape segmentation
[Huang et al. 11]

Joint Segmentation: Motivation

(Rigid) invariance of segments

- Articulated structures

Single shape segmentation [Chen et al. o9]

"Joint Shape Segmentation with Linear Programming"

Parameterization

Initial subsets of randomized segmentations

Segmentation Constraint/Score

- Each point covered by one segment

$$
|\operatorname{cover}(p)|=1 \forall p \in W
$$

- Avoid tiny segments

$$
\operatorname{score}(S)=\sum_{s \in S} \operatorname{area}(s) \cdot \text { repetitions }_{s}
$$

Consistency Term

- Defined in terms of mappings
- Oriented
- Partial

Many-to-one correspondences

Partial similarity

Multi-Way Joint Segmentation

- Objective function

$$
\sum_{i=1}^{n} \operatorname{score}\left(S_{i}\right)+\sum_{\left(S_{i}, S_{j}\right) \in \mathcal{E}} \operatorname{consistency}\left(S_{i}, S_{j}\right)
$$

See paper: Linear program relaxation

Can you extract consistent maps in a globally optimal way?

Basic Setup

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 1 & \cdots & 0
\end{array}\right)
$$

Map as a permutation matrix

What is the inverse of a permutation matrix?

Discrete Relaxation

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 1 & \cdots & 0 \\
\chi^{2}
\end{array}\right)_{\text {Sums to 1 }}
$$

Map as a doubly-stochastic matrix

Basic Setting

- Given n objects
 - Each object sampled with m points

Map Collection: Matrix Representation

What is the rank of a
consistent map
collection matrix?

Hint: "Urshape" Factorization

$$
X=\left[\begin{array}{cccc}
I_{m} & X_{12} & \ldots & X_{1 n} \\
X_{12}^{T} & I_{m} & \cdots & \vdots \\
\vdots & \vdots & \ddots & X_{(n-1), n} \\
X_{1 n}^{T} & \vdots & X_{(n-1), n}^{T} & I_{m}
\end{array}\right] \begin{aligned}
& \text { > Diagonal blocks are } \\
& \text { identity matrices } \\
& >\text { off diagonal blocks are } \\
& \text { permutation matrices } \\
& >\text { Symmetric }
\end{aligned}
$$

Rank m, Number of Samples

$$
X_{i j}=X_{j 1}^{\top} X_{i 1} \Longleftrightarrow X=\left(\begin{array}{c}
I_{m} \\
\vdots \\
X_{n 1}^{\top}
\end{array}\right)\left(\begin{array}{lll}
I_{m} & \cdots & X_{n 1}
\end{array}\right)
$$

Many Equivalent Conditions

Definition 2.1 Given a shape collection $\mathcal{S}=\left\{S_{1}, \cdots, S_{n}\right\}$ of

 n shapes where each shape consists of the same number of samples, we say a map collection $\Phi=\left\{\phi_{i j}: S_{i} \rightarrow S_{j} \mid 1 \leq\right.$ $i, j \leq n\}$ of maps between all pairs of shapes is cycle consistent if and only if the following equalities are satisfied:$$
\begin{array}{lrl}
\qquad \phi_{i i}=i d_{S_{i}}, & \quad 1 \leq i \leq n, & (1 \text {-cycle) } \\
\phi_{j i} \circ \phi_{i j}=i d_{S_{i}}, & 1 \leq i<j \leq n, & (2 \text {-cycle) } \\
\phi_{k i} \circ \phi_{j k} \circ \phi_{i j}=i d_{S_{i}}, & 1 \leq i<j<k \leq n, & (3 \text {-cycle })
\end{array}{ }^{\text {where } i d_{S_{i}} \text { denotes the identity self-map on } S_{i} .} \begin{aligned}
&
\end{aligned}
$$

Equivalence for binary map matrix Φ :

1. Φ is cycle-consistent
2. $X=Y_{i}^{\top} Y_{i}$, where $Y_{i}=\left(X_{i 1}, \ldots, X_{i n}\right)$
3. $X \succeq 0$

Approximation by Consistent Maps

$\max _{X}$

$$
\begin{aligned}
\operatorname{ax}_{X} & \sum_{i j \in E}\left\langle X_{i j}^{\mathrm{in}}, X_{i j}\right\rangle \\
\text { s.t. } & X \in\{0,1\}^{n m \times n m} \\
& X \succeq 0 \\
& X_{i i}=I_{m} \\
& X_{i j} \mathbf{1}=\mathbf{1} \\
& X_{i j}^{\top} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Approximation by Consistent Maps

$\max _{X}$

$$
\begin{aligned}
& \sum_{i j \in E}\left\langle X_{i j}^{\mathrm{in}}, X_{i j}\right\rangle \\
& X \in\{0,1\}^{n m \times n m} \\
& X \succeq 0 \\
& X_{i i}=I_{m} \\
& X_{i j} \mathbf{1}=\mathbf{1} \\
& X_{i j}^{\top} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Approximation by Consistent Maps

$\max _{X}$

$$
\begin{aligned}
& \sum_{i j \in E}\left\langle X_{i j}^{\mathrm{in}}, X_{i j}\right\rangle \\
& X \in\{0,1\}^{n m \times n m} \\
& X \succeq 0 \\
& X_{i i}=I_{m} \\
& X_{i j} \mathbf{1}=\mathbf{1} \\
& X_{i j}^{\top} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Approximation by Consistent Maps

$\max _{X}$

$$
\begin{aligned}
& \sum_{i j \in E}\left\langle X_{i j}^{\mathrm{in}}, X_{i j}\right\rangle \\
& X \in\{0,1\}^{n m \times n m} \\
& X \succeq 0 \\
& X_{i i}=I_{m} \\
& X_{i j} \mathbf{1}=\mathbf{1} \\
& X_{i j}^{\top} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Approximation by Consistent Maps

$\max _{X}$

$$
\begin{aligned}
\operatorname{ax}_{X} & \sum_{i j \in E}\left\langle X_{i j}^{\mathrm{in}}, X_{i j}\right\rangle \\
\text { s.t. } & X \in\{0,1\}^{n m \times n m} \\
& X \succeq 0 \\
& X_{i i}=I_{m} \\
& X_{i j} \mathbf{1}=\mathbf{1} \\
& X_{i j}^{\top} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Approximation by Consistent Maps

$\max _{X}$
s.t.

$$
\begin{aligned}
& \sum_{i j \in E}\left\langle X_{i j}^{\mathrm{in}}, X_{i j}\right\rangle \\
& X \in\{0,1\}^{n m \times n m} \\
& X \succeq 0 \\
& X_{i i}=I_{m} \\
& X_{i j} \mathbf{1}=\mathbf{1} \\
& X_{i j}^{\top} \mathbf{1} \mathbf{1}=\mathbf{1}=\mathbf{1}
\end{aligned}
$$

Approximation by Consistent Maps

$\max _{X} \quad \sum_{i j \in E}\left\langle X_{i j}^{\mathrm{in}}, X_{i j}\right\rangle$
s.t. $\quad X \in\{0,1\}^{n m \times n m}$

Nonconvex!

$$
\begin{aligned}
& X_{i j} \mathbf{1}=\mathbf{1} \\
& X_{i j}^{\top} \mathbf{1}
\end{aligned}
$$

Convex Relaxation

$\max _{X}$

$$
\text { s.t. } \quad X \geq 0
$$

$$
\begin{aligned}
& \sum_{i j \in E}\left\langle X_{i j}^{\mathrm{in}}, X_{i j}\right\rangle \\
& X \geq 0 \\
& X \succeq 0 \\
& X_{i i}=I_{m} \\
& X_{i j} \mathbf{1}=\mathbf{1} \\
& X_{i j}^{\top} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Rounding Procedure

$$
\begin{aligned}
\max _{X} & \left\langle X, X_{0}\right\rangle \\
\text { s.t. } & X \geq 0 \\
& X \mathbf{1}=\mathbf{1} \\
& X^{\top} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Linear assignment problem

Recovery Theorem

Can tolerate $\lambda_{2} / 4(n-1)$ incorrect correspondences from each sample on one shape.

λ_{2} is algebraic connectivity; bounded above by two times maximum degree

Recovery Theorem: Complete Graph

Can tolerate $\mathbf{2 5 \%}$ incorrect correspondences from each sample on one shape.

λ_{2} is algebraic connectivity; bounded above by two times maximum degree

Phase Transition

Always recovers / Never recovers

Example Result

Weaker Relaxation

Solving the multi-way matching problem by

 permutation synchronizationDeepti Pachauri, ${ }^{\dagger}$ Risi Kondor ${ }^{\S}$ and Vikas Singh ${ }^{\ddagger \dagger}$ ${ }^{\dagger}$ Dept. of Computer Sciences, University of Wisconsin-Madison ${ }^{\ddagger}$ Dept. of Biostatistics \& Medical Informatics, University of Wisconsin-Madison ${ }^{\S}$ Dept. of Computer Science and Dept. of Statistics, The University of Chicago pachauri@cs.wisc.edu risi@uchicago.edu vsingh@biostat.wisc.edu

Abstract

The problem of matching not just two, but m different sets of objects to each other arises in many contexts, including finding the correspondence between feature points across multiple images in computer vision. At present it is usually solved by matching the sets pairwise, in series. In contrast, we propose a new method, via a relaxation to eigenvector decomposition. The resulting algorithm is both computationally efficient, and, as we demonstrate with theoretical arguments as well as experimental results, much more stable to noise than previous methods.

Introduction

data are noisy, a single error in the sec $\quad \mathbf{m}$
pairwise matches $[12,13,14]$. In contrast, in this paper we describe a new method, Permutation

Eigenvector relaxation of the same problem

Where do the pairwise input maps come from?

Possible Extension with Guarantees

```
Eurographics Symposium on Geometry Processing 2015
Mirela Ben-Chen and Ligang Liu

Tight Relaxation of Quadratic Matching

Itay Kezurer \(^{\dagger} \quad\) Shahar Z. Kovalsky \({ }^{\dagger} \quad\) Ronen Basri \(\quad\) Yaron Lipman
Weizmann Institute of Science


Figure 1: Consistent Collection Matching. Results of the proposed one-stage procedure for finding consistent corresponde between shapes in a collection showing strong variability and non-rigid deformations.

\section*{bstract}
stablishing point correspondences between shapes is extremely challenging as it involves both finding sets of semantically persistent feature points, as well as their combinatorial matching. We focus on the latter and consider the Quadratic Assignment Matching (QAM) model. We suggest a novel convex relaxation for this NP-hard problem hat builds upon a rank-one reformulation of the problem in a higher dimension, followed by relaxation into a semidefinite program (SDP). Our method is shown to be a certain hybrid of the popular spectral and doublytochastic relaxations of QAM and in particular we prove that it is tighter than both.
Experimental evaluation shows that the proposed relaxation is extremely tight: in the majority of our experiments it achieved the certified global optimum solution for the problem, while other relaxations tend to produce sub optimal solutions. This, however, comes at the price of solving an SDP in a higher dimension.

\section*{Approximate Methods}

Consistent Partial Matching of Shape Collections via Sparse Modeling

\author{
L. Cosmo \({ }^{1}\), E. Rodolà \({ }^{2}\), A. Albarelli \({ }^{1}\), F. Mémoli \({ }^{3}\), D. Cremers \({ }^{2}\) \\ \({ }^{1}\) University of Venice, Italy \(\quad{ }^{2}\) TU Munich, Germany \({ }^{3}\) Ohio State University, U.S.
}

\section*{Sequence of quadratic programs; based on metric distortion and WKS descriptor match}


Figure 1: A partial multi-way correspondence obtained with our approach on a heterogeneous collection of shapes. Our method does not require initial pairwise maps as input, as it actively seeks a reliable correspon
space of joint, cycle-consistent matches. Partially-similar as well as outlier shapes are a space of joint, cycle-consistent matches. Partially-similar as well as outlier shapes are
for by adopting a sparse model for the joint correspondence. A subset of all matches is sh

\section*{Abstract}

Recent efforts in the area of joint object matching approach the problem by taking as which are then jointly optimized across the whole collection so that certain accurac satisfied. One natural requirement is cycle-consistency - namely the fact that map ame result regardless of the path taken in the shape collection. In this paper, we btain consistent matches without requiring inizal pairwise solutions to be given as imilar and extra-class shapes we forwlate the problem as a series of quadratic \(p\) constraints, making our technique a natural candidate for analyzing collections wi The particular form of the problem allows us to leverage results and tools from heory. This enables a highly efficient optimization procedure which assures acc solutions in a matter of minutes in collections with hundreds of shapes.
Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphic and Object Modeling-Shape Analysis

\section*{Approximate Methods}

Multiplicative updates
for nonconvex
nonnegative matrix
factorization

\section*{Entropic Metric Alignment for Correspondence Problems}
\begin{tabular}{cccc} 
& Gabriel Peyré & & \\
Justin Solomon* & Vladimir G. Kim & Suvrit Sra \\
MIT & CNRS \& Univ. Paris-Dauphine & Adobe Research & MIT
\end{tabular}

Abstract
Many shape and image processing tools rely on computation of correspondences between geometric domains. Efficient methods that respondences between geometric domains. Eficient methods soft" matches in the presence of diverse geometric \(\begin{aligned} & \text { stably extract "soft" matches in the presence of diverse geometric } \\ & \text { structures have proven to be valuable for shape retrieval and transfer } \\ & \text { ic information. With these applications in mind, }\end{aligned}\) ithm for probabilistic correspondence that opti-
gularized Gromov-Wasserstein (GW) objective. pgularized Gromov-Wasserstein (GW) objective.
evelopments in numerical optimal transportation, mpact, provably convergent, and applicable to ain expressible as a metric measure matrix. We sive experiments illustrating the convergence
f our algorithm to a variety of graphics tasks. f our algorithm to a variety of graphics tasks.
pand entropic GW correspondence to a framepand entropic GW correspondence to a frame
ching problems, incorporating partial distance nce, shape exploration, symmetry detection, and re than two domains. These applications expand ic GW correspondence to major shape analysis
able to distortion and noise.
ov-Wasserstein, matching, entropy
uting methodologies \(\rightarrow\) Shape analysis;
of the geometry processing toolbox is a tool for
of the geometry processing toolbox is a tool for
ondence, the problem of finding which points on ondence, he problem of finding which points on
respond to points on a source. Many variations been considered in the graphics literature, e.g.
. sparse correspondences provided by the user. Regardless, the basic task of geometric correspondence facilitates the transfer of properties and edits from one shape to another
The primary factor that distinguishes correspondence algorithms is the choice of objective functions. Different choices of objective functions express contrasting notions of which correspondences are
"desirable." Classical theorems from differential geometry and most modern algorithms consider local distortion, producing maps that take tangent planes to tangent planes with as little stretch as possible;

\section*{}

Figure 1: Entropic GW can find correspondences between a source surface (left) and a surface with similar structure, a surface with shared semantic structure, a noisy 3D point cloud, an icon, and a
hand drawing. Each fuzzy map was computed using the same code. are violated these algorithms suffer from having to patch together local elastic terms into a single global map.
In this paper, we propose a new correspondence algorithm that minimizes distortion of long- and short-range distances alike. We study an entropically-regularized version of the Gromov-Wasserstein (GW) mapping objective function from [Mémoli 2011] measuring
the distortion of geodesic distances. The optimizer is a probabilistic the distortion of geodesic distances. The optimizer is a probabilistic
matching expressed as a "fuzzy" correspondence matrix in the style matching expressed as a "fuzzy" correspondence matrix in the style
of [Kim et al. 2012; Solomon et al. 2012]; we control sharpness of the correspondence via the weight of an entropic regularizer.
Although [Mémoli 2011] and subsequent work identified the possibility of using GW distances for geometric correspondence, computa tional challenges hampered their practical application. To overcome these challenges, we build upon recent methods for regularized optimal transportation introduced in [Benamou et al. 2015; Solomon et al. 2015]. While optimal transportation is a fundamentally differ-
ent optimization problem from regularized GW computation (linear ent optimization problem from regularized GW computation (linear
versus quadratic matching), the core of our method relies upon solving a sequence of regularized optimal transport problems.
Our remarkably compact algorithm (see Algorithm 1) exhibits global convergence, i.e., it provably reaches a local minimum of the regularized GW objective function regardless of the initial guess. Our algorithm can be applied to any domain expressible as a metric mea sure space (see \(\S 22\). Concretely, only distance matrices are required as input, and hence the method can be applied to many classes of

\section*{Computer Vision Perspective}


\section*{Paired vs. Unpaired Problems}


\section*{Unpaired}


\section*{Adversarial Networks: Problem}



\section*{Mode collapse}

\section*{Cycle-Consistent Adversarial Networks}


Small cycle loss
Large cycle loss

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

\section*{Cycle Consistency Loss}




Input


Van Gogh


\section*{More Than Two Domains?}
(a) Cross-domain models
(b) StarGAN


Choi et al., CVPR 2018

\title{
Consistent Correspondence
}

Justin Solomon
6.8410: Shape Analysis

Spring 2023

\title{
Extra: Angular Synchronization
}

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS```

