Correspondence Problems

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Surface Correspondence Problems

Which points on one object correspond to points on another?

Typical Distinction from Registration

Seek shared structure instead of alignment

Applications

Applications

Ovsjanikov et al. 2012

Segmentation transfer

Applications

Solomon et al. 2016

Applications

Image from "Shape Interpolations: Blendshape Math for Meshes" (https://graphicalanomaly.wordpress.com/)

Blendshape modeling

Applications

Image from "Freesurfer" (Wikipedia)

Statistical shape analysis

Applications

"Earliest Record of Platychoerops, A New Species From Mouras Quarry, Mont de Berru, France" Boyer, Costeur, and Lipman 2012
Paleontology

Mapping problem

Given two (or more) shapes
 Find a map f, satisfying the following properties:

\author{

- Fast to compute
 - Bijective
 (if we expect global correspondence)
 - Low-distortion
 - Preserves important features
}

Geometric Quality of Mappings

What do we need the map for?
Shape interpolation and texture transfer require highly accurate maps

Target Texture (projection)

Locally and globally accurate map

Globally accurate, locally distorted map

Geometric Quality of Mappings

How can we evaluate map quality?
Given a ground truth map, compute the cumulative error graph

Geometric Quality of Mappings

How can we evaluate map quality?
Given a ground truth map, compute the cumulative error graph

Geometric Quality of Mappings

How can we evaluate map quality?
Given a ground truth map, compute the cumulative error graph

Geometric Quality of Mappings

How can we evaluate map quality?
Measure conformal distortion (angle preservation)

Geometric Quality of Mappings

How can we evaluate map quality?
Measure conformal distortion (angle preservation)

Today's Plan

Sampling of surface mapping

 algorithms and models.Graphics/vision bias!

Example: Consistent Remeshing (Co-Parameterization)

Kraevoy 2004

Example: Mesh Embedding

G. Peyré, mesh processing course slides

Linear Solve for Embedding

$$
\begin{aligned}
\min _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{|V|}} & \sum_{(i, j) \in E} w_{i j}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2} \\
\text { s.t. } & \mathbf{x}_{v} \text { fixed } \forall v \in V_{0}
\end{aligned}
$$

- $w_{i j} \equiv 1$: Tutte embedding
- $w_{i j}$ from mesh: Harmonic embedding

Assumption: w symmetric.

Tutte Embedding Theorem

$$
\begin{aligned}
\min _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{|V|}} & \sum_{(i, j) \in E} w_{i j}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2} \\
\text { s.t. } & \mathbf{x}_{v} \text { fixed } \forall v \in V_{0}
\end{aligned}
$$

Tutte embedding bijective if \boldsymbol{w} nonnegative and boundary mapped to a convex polygon.

"How to draw a graph" (Proc. London Mathematical Society; Tutte, 1963)

Tradeoff: Consistent Remeshing

- Pros:
- Easy
- Bijective
- Cons:
- Need manual landmarks
- Hard to minimize distortion

base domain

Praun et al. 2001

Automatic Landmarks

- Simple algorithm:
- Set landmarks
- Measure energy
- Repeat
- Possible metrics
- Conformality
- Area preservation
- Stretch
E.g. small conformal distortion, large area distortion:

Recent Coparameterization in Graphics

[^0]
FreeSurfer: Spherical Coparameterization

Digression:
 Related Problem

```
Mapping specifically
    into the plane
```


Image from "Scalable Locally Injective Mappings" (Rabinovich et al., 2017)

Parameterization

Local Distortion Measure

Tutte distortion:

$\min _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{|V|}} \sum_{(i, j) \in E} w_{i j}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}$
s.t. \mathbf{x}_{v} fixed $\forall v \in V_{0}$

Distortion $:=\sum_{t \in T} A_{t} \mathcal{D}\left(J_{t}\right)$
Triangle distortion measure

How do you measure distortion of a triangle?

Typical Distortion Measures

Table from "Scalable Locally Injective Mappings" (Rabinovich et al., 2017)

End-to-End Coparameterization

Distortion-Minimizing Injective Maps Between Surfaces
PATRICK SCHMIDT, RWTH Aachen University
JANIS BORN, RWTH Aachen University
MARCEL CAMPEN, Osnabrück University
LEIF KOBBELT, RWTH Aachen University

\mathcal{B} on \mathcal{A}

Fig. 1. Left: input meshes \mathcal{A} and \mathcal{B} of disk topology. Center and right: these meshes are continuously mapped onto each other via an intermediate flat domain (top) by composing two planar parametrizations. The map is constrained by just two landmarks (thumb and pinky). Center: both parametrizations
are optimized for isometric distortion; the composed map, however, has high distortion (visualized in red on top). Right: our method directly optimizes the distortion of the composed map in an end-to-end manner, naturally aligning similarly curved regions as they map to each other with lower isometric distortion.

The problem of discrete surface parametrization, i.e. mapping a mesh to a planar domain, has been investigated extensively. We address the more general problem of mapping between surfaces. In particular, we provide a formulation that yields a map between two disk-topology meshes, which
is continuous and injective by construction and which locally minimizes is continuous and injective by construction and which locally minimizes composition of two maps via a simple intermediate doman such as the composition of two maps via a simple intermediate domain such as the if both individual maps are of minimal distortion, there is potentially high both individual maps are of minimal distortion, there is potentially high
distortion in the composed map. In contrast to many previous works, we distortion in the composed map. In contrast to many previous works, we
minimize distortion in an end-to-end manner, directly optimizing the quality minimize distortion in an end-to-end manner, directly optimizing the quality
of the composed map. This setting poses additional challenges due to the discrete nature of both the source and the target domain. We propose formulation that, despite the combinatorial aspects of the problem, allows for a purely continuous optimization. Further, our approach addresses the non-smooth nature of discrete distortion measures in this context which hinders straightforward application of off-the-shelf optimization techniques.

1 INTRODUCTION

Maps between surfaces are an important tool in Geometry Process ing. They are required to transfer information (such as attributes, features, texture) between objects, to co-process multiple objects (such as shape collections, animation frames), to interpolate betwee ects (e.g. for template fitting). We here consider the case of discrete surfaces (triangle meshes) that are of disk topology.
A special case is mapping between a surface and the plane, i.e. the A special case is mapphg between a surface and the plane, i.e. the problem of discrete surface parametrization. There is vast literature on ther The by contrast, has received less treatment-it is significantly harder to handle due to the aspect of combinatorial complexity incurred by both source and target domain being discrete. In the planar para

Related: Overlaid Triangulations

Inter-Surface Maps via Constant-Curvature Metrics
PATRICK SCHMIDT, RWTH Aachen University
MARCEL CAMPEN, Osnabrück University
JANIS BORN, RWTH Aachen University
LEIF KOBBELT, RWTH Aachen University

Fig. 1. Visualization of inter-surface maps for pairs of surfaces of varying genus, optimized for low distortion while guaranteeing bijectivity. We represent an optimize such maps flexibly and compactly via discrete constant-curvature metrics of spherical (genus 0), flat (genus 1), or hyperbolic (genus $2+$) type.

We propose a novel approach to represent maps between two discrete surFaces of the same genus and to minimize intrinsic mapping distortion. Our maps are well-defined at every surface point and are guaranteed to be continous bijections (surface homeomorphisms). As a key feature of our approach, fly the images of vertices need to be represented explicitly, since the images efinition is via unique geodesics in metrics of constant Gaussian curvaure. Our method is built upon the fact that such metrics exist on surfaces f arbitrary topology, without the need for any cuts or cones (as asserted by the uniformization theorem). Depending on the surfaces' genus, these netrics exhibit one of the three classical geometries: Euclidean, spherical or yyperbolic. Our formulation handles constructions in all three geometries n a unified way. In addition, by considering not only the vertex images but Iso the discrete metric as degrees of freedom, our formulation enables us simultaneously optimize the images of these vertices and images of all her points.

CS Concepts: - Computing methodologies \rightarrow Computer graphics; Mesh models; Mesh geometry models; Shape modeling.

Aditional Key Words and Phrases: cross-parametrization, surface para-

1 INTRODUCTION

Maps between surfaces have a variety of uses in Computer Graphic and Geometry Processing. Classical applications include the transfer of various types of information between surfaces, such as textures, geometric detail, deformations, or tessellations. The parametrization or registration of exemplars over a common base model is another application scenario. Such inter-surface maps are furthermore of increasing importance for advanced shape processing tasks, in the context of co-processing of shape collections, or the analysis of frame sequences of time-varying or animated shapes
In these various fields, inter-surface maps are used as fundamental building blocks of complex methods. Being able to reliably compute, optimize, and provide such maps is therefore of significant practical interest. Properties of maps that commonly are relevant in such applications are bijectivity, continuity, and low distortion.
We present a novel approach to represent inter-surface maps with guaranteed bijectivity and continuity (i.e., surface homeomorphisms) and a method to optimize such maps for low distortion in a direct manner. Our approach is general in that it supports discrete

EUROGRAPHICS 2023 / K. Myszkowski and M. Nießner Guest Editors)

Surface Maps via Adaptive Triangulations

P. Schmidt ${ }^{1}$ (D)
D. Pieper ${ }^{1}$ (C)
L. Kobbelt ${ }^{1}$ (])
${ }^{1}$ RWTH Aachen University, Germany

gure 1: Bijective map between genus-0 models, visualized via texture transfer. The map is represented by an approximating (rather tha (act) common triangulation, which remains in bijective correspondence to the input surfaces via spherical parametrizations. In a discreteontinuous optimization, we treat both the connectivity and the geometric embeddings of the triangulation as degrees of freedom. This allows ptimizing genus-0 sunace homeomorphisms at adaptive resolutions, independently of the input mesh complexity, which can be simpler, faster, and more robust than existing overlay-based methods.

bstract

We present a new method to compute continuous and bijective maps (surface homeomorphisms) between two or more genus- 0 triangle meshes. In contrast to previous approaches, we decouple the resolution at which a map is represented from the resolubijective corresposce We single objective function that simultoneously controls maping distortion, triangulation quality, ad apprimation erwor A discrete-continuous optimization algorithm performs both energy-based remeshing as well as slobal second-order optimization

Back to Correspondence: New Idea

Not all calculations have to be at the triangle level!

Long-distance interactions can stabilize geometric computations.

Gromov-Hausdorff Distance

Distance between metric spaces X, Y

$$
d_{\mathrm{GH}}(X, Y):=\inf _{\phi: X \rightarrow Y} \sup _{x, x^{\prime} \in X}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(\phi(x), \phi\left(x^{\prime}\right)\right)\right|
$$

Recalls
 Classical Multidimensional Scaling

1. Double centering: $B:=-\frac{1}{2} J D J$ Centering matrix $J:=I-\frac{1}{n} \mathbf{1 1}{ }^{\top}$
2. Find m largest eigenvalues/eigenvectors
3. $X=E_{m} \Lambda_{m}^{1 / 2}$

Torgerson, Warren S. (1958). Theory \& Methods of Scaling.

Generalized MDS

Problem: Quadratic Assignment

$\min _{T} \quad\left\langle M_{0} T, T M_{1}\right\rangle$
s.t. $T \in\{0,1\}^{n \times n}$
$T \mathbf{1}=p_{0}$
$T^{\top} \mathbf{1}=p_{1}$
Nonconver quadratic program! NP-hard!

What's Wrong?

- Hard to optimize - Multiple optima

Tradeoff: GMDS

- Pros:
- Good distance for non-isometric metric spaces
- Cons:
- Non-convex
- HUGE search space (i.e. permutations)

GMDS in Practice

- Heuristics to explore the permutations
- Solve at a very coarse scale and interpolate
- Coarse-to-fine
- Partial matching

GMDS in Practice

- Heuristics to explore the permutations
- Solve at a very coarse scale and interpolate
- Coarse-to-fine
- Partial matching

GMDS in Practice

- Heuristics to explore the permutations
- Solve at a very coarse scale and interpolate
- Coarse-to-fine
- Partial matching

Find correspondence $\bar{\varphi}^{*}, \psi^{*}$ minimizing distortion between current parts u^{*}, v^{*}

- Select parts u^{*}, v^{*} minimizing the distortion with current correspondence φ^{*}, ψ^{*} subject to $\lambda\left(u^{*}, v^{*}\right) \leq \lambda_{0}$

Returning to Desirable Properties

Given two (or more) shapes

Find a map f, satisfying the following properties:

-Fast to compute
 =Bijective

(if we expect global correspondence)

- Low-distortion
(unless local
optimum is bad)
- Preserves important features

Recent idea:

Gromov-Wasserstein Distance

[Mémoli 2007]

$\operatorname{GW}_{2}^{2}\left(\left(\mu_{0}, d_{0}\right),(\mu, d)\right):=$

$$
\min _{\gamma \in \mathcal{M}\left(\mu_{0}, \mu\right)} \iint_{\Sigma_{0} \times \Sigma}\left[d_{0}\left(x, x^{\prime}\right)-d\left(y, y^{\prime}\right)\right]^{2} d \gamma(x, y) d \gamma\left(x^{\prime}, y^{\prime}\right)
$$

Entropic Regularization

Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport" (NIPS 2013)

Gromov-Wasserstein Plus Entropy

Entropic Metric Alignment for Correspondence Problems

Justin Solomon*
MIT

Gabriel Peyré
CNRS \& Univ. Paris-Dauphine

Vladimir G. Kim Adobe Research

Suvrit Sra
MIT

Abstract

Many shape and image processing tools rely on computation of correspondences between geometric domains. Efficient methods that respondences between geometric domains. Efficient methods that stably extract "soft" matches in the presence of diverse geometric structures have proven to be valuable for shape retrieval and transfer of labels or semantic information. With these applications in mind, we present an algorithm for probabilistic correspondence that optimizes an entropy-regularized Gromov-Wasserstein (GW) objective Built upon recent developments in numerical optimal transportation, our algorithm is compact, provably convergent, and applicable to any geome domaine experiments illustrating the matrix. We pand applicability of our algorithm to variety of convergence and applicability of our algorithm to a variety of graphics tasks Furthermore, we expand entropic GW correspondence to a framework for other matching problems, incorporating partial distance matrices, user guidance, shape exploration, symmetry detection, and joint analysis gis GW the scope of entropic GW correspondence to major shape analysis problems and are stable to distortion and noise.

Keywords: Gromov-Wasserstein, matching, entropy
Concepts: •Computing methodologies \rightarrow Shape analysis;

1 Introduction

A basic component of the geometry processing toolbox is a tool for mapping or correspondence, the problem of finding which points on a target domain correspond to points on a source. Many variations of this problem have been considered in the graphics literature, e.g

Figure 1: Entropic GW can find correspo surface (left) and a surface with similar shared semantic structure a noisy hand drawing. Each fuzzy map was comp
are violated these algorithms suffer from local elastic terms into a single global ma

In this paper, we propose a new corre minimizes distortion of long- and short-1 study an entropically-regularized version (GW) mapping objective function from the distortion of geodesic distances. The matching expressed as a "fuzzy" correspo of [Kim et al. 2012; Solomon et al. 2012 the correspondence via the weight of an e
Although [Mémoli 2011] and subsequent bility of using GW distances for geometric tional challenges hampered their practica these challenges, we build upon recent n timal transportation introduced in [Ben et al. 2015]. While optimal transportatio ent ontimization problem from reqularized GW comnutation (linear
function Gromov-Wasserstein $\left(\boldsymbol{\mu}_{0}, \mathbf{D}_{0}, \boldsymbol{\mu}, \mathbf{D}, \alpha, \eta\right)$ // Computes a local minimizer $\boldsymbol{\Gamma}$ of (6)
$\boldsymbol{\Gamma} \leftarrow \operatorname{ONES}\left(n_{0} \times n\right)$
for $i=1,2,3$,
$\mathbf{K} \leftarrow \exp \left(\mathbf{D}_{0} \llbracket \boldsymbol{\mu}_{0} \rrbracket \boldsymbol{\Gamma} \llbracket \boldsymbol{\mu} \rrbracket \mathbf{D}^{\top} / \alpha\right)$
$\boldsymbol{\Gamma} \leftarrow \operatorname{Sin} K H O R N-P R O J E C T I O N\left(\mathbf{K}^{\wedge \eta} \otimes \boldsymbol{\Gamma}^{\wedge(1-\eta)} ; \boldsymbol{\mu}_{0}, \boldsymbol{\mu}\right)$
return Γ
function Sinkhorn-Projection(K; $\boldsymbol{\mu}_{0}, \boldsymbol{\mu}$
$/ /$ Finds $\boldsymbol{\Gamma}$ minimizing $\mathrm{KL}(\boldsymbol{\Gamma} \mid \mathbf{K})$ subject to $\boldsymbol{\Gamma} \in \overline{\mathcal{M}}\left(\boldsymbol{\mu}_{0}, \boldsymbol{\mu}\right)$
$\mathbf{v}, \mathbf{w} \leftarrow \mathbf{1}$
for $j=1,2,3$,
$\mathbf{v} \leftarrow \mathbf{1} \oslash \mathbf{K}(\mathbf{w} \otimes \boldsymbol{\mu})$
$\mathbf{w} \leftarrow \mathbf{1} \oslash \mathbf{K}^{\top}\left(\mathbf{v} \otimes \boldsymbol{\mu}_{0}\right)$
return $\llbracket v \rrbracket K \llbracket w \rrbracket$
Algorithm 1: Iteration for finding regularized Gromov-Wasserste
distances. denote elementwise multiplication and division

Convex Relaxation

Tight Relaxation of Quadratic Matching

Itay Kezurer ${ }^{\dagger}$

Shahar Z. Kovalsky ${ }^{\dagger}$
Ronen Basri
Yaron Lipman
Weizmann Institute of Science

$$
\begin{array}{|ll}
\max _{Y} & \operatorname{tr}(W Y) \\
\text { s.t. } & Y \succeq[X][X]^{T} \\
& X \in \operatorname{conv} \Pi_{n}^{k} \\
& \operatorname{tr} Y=k \\
& Y \geq 0 \\
& \sum_{\text {qrst }} Y_{\text {qrst }}=k^{2}
\end{array}
$$

Figure 1: Consistent Collection Matching. Results of the proposed one-stage procedure for finding consistent corre between shapes in a collection showing strong variability and non-rigid deformations.

Abstract

Establishing point correspondences between shapes is extremely challenging as it involves both finding se semantically persistent feature points, as well as their combinatorial matching. We focus on the latter and con the Quadratic Assignment Matching (QAM) model. We suggest a novel convex relaxation for this NP-hard pro that builds upon a rank-one reformulation of the problem in a higher dimension, followed by relaxation ir semidefinite program (SDP). Our method is shown to be a certain hybrid of the popular spectral and dou stochastic relaxations of QAM and in particular we prove that it is tighter than both.
Experimental evaluation shows that the proposed relaxation is extremely tight: in the majority of our experin it achieved the certified global optimum solution for the problem, while other relaxations tend to produce optimal solutions. This, however, comes at the price of solving an SDP in a higher dimension.
$Y_{q r s t} \leq\left\{\begin{array}{l}0 \\ 0 \\ \min \end{array}\right.$
$\min \left\{X_{q r}, X_{s t}\right\}$
if $q=s, r \neq t$
if $r=t, q \neq s$

Continuum

Weak assumptions

Low-distortion

Strong assumptions

Isometry

Heat Kernel Map

$\operatorname{HKM}_{p}(x, t):=k_{t}(p, x)$
Theorem: Only have to match one point!
One Point Isometric Matching with the Heat Kernel

Tradeoff: Heat Kernel Map

- Pros:
- Tiny search space

- Some extension to partial matching
- Cons:
- (Extremely) sensitive to deviation from isometry

Continuum

Observation About Mapping

Angle and area preserving
Angle preserving
isometries \subseteq conformal maps Hard! Easier

$O\left(n^{3}\right)$ Algorithm for Perfect Isometry

Algorithm for Perfect Isometries

Observation

Hard

Hard work is per-surface, not per-map

Möbius Transformations

$$
\frac{a z+b}{c z+d}
$$

Bijective conformal maps of the extended complex plane

Mid-Edge Uniformization

Cannot scale triangles to flatten

Möbius Voting

1. Map surfaces to complex plane
2. Select three points
3. Map plane to itself matching these points
4. Vote for pairings using distortion metric to weight
5. Return to 2

Möbius Voting for Surface Correspondence

Voting Algorithm

```
Input: points \(\Sigma_{1}=\left\{z_{k}\right\}\) and \(\Sigma_{2}=\left\{w_{\ell}\right\}\)
    number of iterations \(I\)
    minimal subset size \(K\)
Output: correspondence matrix \(C=\left(C_{k, \ell}\right)\).
/* Möbius voting
while number of iterations \(<I\) do
    Random \(z_{1}, z_{2}, z_{3} \in \Sigma_{1}\).
    Random \(w_{1}, w_{2}, w_{3} \in \Sigma_{2}\).
    Find the Möbius transformations \(m_{1}, m_{2}\) s.t.
        \(m_{1}\left(z_{j}\right)=y_{j}, m_{2}\left(w_{j}\right)=y_{j}, j=1,2,3\).
    Apply \(m_{1}\) on \(\Sigma_{1}\) to get \(\bar{z}_{k}=m_{1}\left(z_{k}\right)\).
    Apply \(m_{2}\) on \(\Sigma_{2}\) to get \(\bar{w}_{\ell}=m_{2}\left(w_{\ell}\right)\).
    Find mutually nearest-neighbors \(\left(\bar{z}_{k}, \bar{w}_{\ell}\right)\) to formulate
    candidate correspondence \(c\).
    if number of mutually closest pairs \(\geq K\) then
        Calculate the deformation energy \(\mathbf{E}(c)\)
        /* Vote in correspondence matrix
            */
        foreach \(\left(\bar{z}_{k}, \bar{w}_{\ell}\right)\) mutually nearest-neighbors do
            \(C_{k, \ell} \leftarrow C_{k, \ell}+\frac{1}{\varepsilon+\mathbf{E}(c) / n}\).
        end
    end
end
```


Tradeoff: Möbius Voting

- Pros:
- Efficient
- Voting procedure handles some non-isometry
- Cons:
- Does not provide smooth/continuous map
- Does not optimize global distortion
- Only for genus o

Blended Intrinsic Maps

Different conformal maps distorted in different places.
Blended Intrinsic Maps

Use for Dense Mapping

Blending Weights for m_{1}, m_{2}, and m_{3}

Distortion of the Blended Map

Combine good parts of different maps!

Blended Intrinsic Maps

Blended Intrinsic Maps

- Algorithm:
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Blended Intrinsic Maps

- Algorithm:
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Blended Intrinsic Maps

- Algorithm:
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Map similarity matrix

Blended Intrinsic Maps

- Algorithm:
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Blended Intrinsic Maps

- Algorithm:
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Blended Intrinsic Maps

- Algorithm:
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Some Examples

Evaluation

Tradeoff: Blended Intrinsic Maps

- Pros:
- Can handle non-isometric shapes
- Efficient
- Cons:
- Lots of area distortion for some shapes
- Genus o manifold surfaces

Subtlety: Representation

Functional Maps

Points on M_{0} to points on M

Functional Maps

Functions on M to functions on M_{0}

Mathematical Sidebar

Functional Maps

[Ovsjanikov et al. 2012]

Functional map:
Matrix taking Laplace-Beltrami (Fourier) coefficients on M to coefficients on M_{0}

Example Maps

Functional Maps

- Simple Algorithm
- Compute some geometric functions to be preserved: A, B
- Solve in least-squares sense for C: B = C A
- Additional Considerations
- Favor commutativity
- Favor orthonormality (if shapes are isometric)
- Efficiently getting point-to-point correspondences

Tradeoff: Functional Maps

- Pros:
- Condensed representation
- Linear
- Alternative perspective on mapping
- Many recent papers with variations
- Cons:
- Hard to handle non-isometry

Some progress in last few years!

Other Operators for Commutativity

- Compose with inverse map for identity [Eynard et al. 2016]
- Laplacian of displaced mesh [Corman et al. 2017]
- Diagonal operator from descriptor [Nogneng and Ovsjanikov 2017]
- Infinitesimal displacement rate of change of Laplacian [Corman and Ovsjanikov 2018]
- Kernel matrix [Wang et al. 2018]
- Operators built from matched curves [Gehre et al. 2018]
- Pointwise products of functions [Nogneng et al. 2018]
- Subdivision hierarchies [Shoham et al. 2019]
- Resolvent of Laplacian operator [Ren et al. 2019]

Coupled Quasi-Harmonic Basis

$$
\begin{aligned}
\min _{\Phi, \Psi} & \text { off }\left(\Phi^{\top} W_{X} \Phi\right)+\operatorname{off}\left(\Psi^{\top} W_{Y} \Psi\right)+\mu\left\|F^{\top} \Phi-G^{\top} \Psi\right\|_{\text {Fro }}^{2} \\
\text { s.t. } & \Phi^{\top} D_{X} \Phi=I \\
& \Psi^{\top} D_{Y} \Psi=I
\end{aligned}
$$

Leverage Symmetry

- Symmetry generators are self-maps
- Can quotient functional spaces by symmetries

Map Upsampling

ZоomOut: Spectral Upsampling for Efficient Shape Correspondence

SIMONE MELZI*, University of Verona
JING REN*, KAUST
EMANUELE RODOLÀ, Sapienza University of Rome ABHISHEK SHARMA, LIX, École Polytechnique

PETER WONKA, KAUST

MAKS OVSJANIKOV, LIX, École Polytechnique
We present a simple and efficient method for refining maps or correspondences by iterative upsampling in the spectral domain that can be implemented in a few lines of code. Our main observation is that high quality maps can be obtained even if the input correspondences are noisy or are encoded by a small number of coefficients in a spectral basis. We show how this approach can be used in conjunction with existing initialization techniques across a range of application scenarios, including symmetry detection, map refinement across complete shapes, non-rigid partial shape matching and function transfer. In each application we demonstrate an improvement with respect to both the quality of the results and the computational speed compared to the best competing methods, with up to two orders of magnitude speed-up in some applications. We also demonstrate that our method is both robust to noisy input and is scalable with respect to shape complexity. Finally, we present a theoretical justification for our approach, shedding light on structural properties of functional maps.
CCS Concepts: • Computing methodologies \rightarrow Shape analysis.
Additional Key Words and Phrases: Shape Matching, Spectral Methods, Functional Maps

ACM Reference Format

Simone Melzi, Jing Ren, Emanuele Rodolà, Abhishek Sharma, Peter Wonka, and Maks Ovsjanikov. 2019. ZoomOut: Spectral Upsampling for Efficient

Fig. 1. Given a small functional map, here of size 2×2 which corresponds to a very noisy point-to-point correspondence (middle right) our method can efficiently recover both a high resolution functional and an accurate dense point-to-point map (right), both visualized via texture transfer from the source shape (left)
spaces [Biasotti et al. 2016; Jain and Zhang 2006; M Ovsjanikov et al. 2012]. Despite significant recent their wide practical applicability, however, spectra both be computationally expensive and unstable w dimensionality of the spectral embedding. On the reduced dimensionality results in very approximate medium and high-frequency details and leading to s facts in applications.
In this paper, we show that a higher resolution ma ered from a lower resolution one through a remarka efficient iterative spectral up-sampling technique, wh the following two basic steps:
(1) Given $k=k_{0}$ and an initial C_{0} of size $k_{0} \times k_{0}$
(2) Compute $\arg \min _{\Pi}\left\|\Pi \Phi_{\mathcal{N}}^{k} \mathrm{C}_{k}^{T}-\Phi_{\mathcal{M}}^{k}\right\|_{F}^{2}$.
(3) Set $k=k+1$ and compute $\mathrm{C}_{k}=\left(\Phi_{\mathcal{M}}^{k}\right)^{+} \Pi \Phi_{\mathcal{N}}^{k}$
(4) Repeat the previous two steps until $k=k_{\text {max }}$.

Example applications

Shape Differences

$$
D=\left(H^{M}\right)^{-1} F^{\top} H^{N} F
$$

Inner Products

[Rustamov et al. 2013]

$$
\begin{aligned}
\langle f, g\rangle_{A} & :=\int_{M} f(x) g(x) d A \\
\langle f, g\rangle_{C} & :=\int_{M}[\nabla f(x) \cdot \nabla g(x)] d A
\end{aligned}
$$

Object of study:

Inner product matrix

$$
M_{i j}:=\left\langle\psi_{i}, \psi_{j}\right\rangle
$$

Shape Differences

[Rustamov et al. 2013]

Trick:
Compare surfaces by comparing inner product matrices.
$\langle f, g\rangle_{F}^{M}:=\left\langle F_{\phi}[f], F_{\phi}[g]\right\rangle^{M_{0}} \quad D=\left(H^{M}\right)^{-1} F^{\top} H^{N} F$
Functional map pulls back products

Continuous Question

Given

area-based and conformal inner product matrices,

can you compute

lengths and angles?

Discrete Question

[Corman et al. 2017]

Precisely

what do shape
differences determine
on meshes?

Extension to Extrinsic Shape

Throw in the offset surface.

Encodes mean curvature!

Proposition 4. Suppose a mesh M satisfies the criteria in Propositions 1 and 2. Given the topology of M, the area-based and conformal product matrices $A(\mu)$ and $C(\nu ; \mu)$ of M, and the area-based and conformal product matrices $A_{t}\left(\mu_{t}\right)$ and $C\left(\nu_{t} ; \mu_{t}\right)$ of M_{t}, the geometry of M can (almost always) be reconstructed up to rigid motion.

Useful Survey

Computing and Processing Correspondences with Functional Maps

SIGGRAPH 2017 Course Notes
Organizers \& Lecturers:
Maks Ovsjanikov, Etienne Corman, Michael Bronstein,
Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas,
Frederic Chazal, Alex Bronstein

Deep Functional Maps

Figure 3. FMNet architecture. Input point-wise descriptors (SHOT [38] in this paper) from a pair of shapes are passed through an identical sequence of operations (with shared weights), resulting in refined descriptors \mathbf{F}, \mathbf{G}. These, in turn, are projected onto the Laplacian eigenbases $\boldsymbol{\Phi}, \boldsymbol{\Psi}$ to produce the spectral representations $\hat{\mathbf{F}}, \hat{\mathbf{G}}$. The functional map (FM) and soft correspondence (Softcor) layers, implementing Equations (3) and (6) respectively, are not parametric and are used to set up the geometrically structured loss ℓ_{F} (5).

Correspondence Problems

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Extra: Reversible Harmonic Maps

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Reversible Harmonic Maps

Reversible Harmonic Maps between Discrete Surfaces

DANIELLE EZUZ, Technion - Israel Institute of Technology JUSTIN SOLOMON, Massachusetts Institute of Technology MIRELA BEN-CHEN, Technion - Israel Institute of Technology

Information transfer between triangle meshes is of great importance in computer graphics and geometry processing. To facilitate this process, a smooth and accurate map is typically required between the two meshes. While such maps can sometimes be computed between nearly-isometric meshes, the more general case of meshes with diverse geometries remains challenging We propose a novel approach for direct map computation between triangle meshes without mapping to an intermediate domain, which optimizes for the harmonicity and reversibility of the forward and backward maps. Our method is general both in the information it can receive as input, e.g. point landmarks, a dense map or a functional map, and in the diversity of the geometries to which it can be applied. We demonstrate that our maps exhibit lower conformal distortion than the state-of-the-art, while succeeding in correctly mapping key features of the input shapes.
CCS Concepts: - Computing methodologies \rightarrow Shape analysis;
ACM Reference Format:
Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. 2019. Reversible Harmonic Maps between Discrete Surfaces. ACM Trans. Graph. 1, 1, Article 1 (January 2019), 13 pages. https://doi.org/10.1145/3202660

INTRODUCTION

Mapping 3D shapes to one another is a basic task in computer graphics and geometry processing. Correspondence is needed, for example, to transfer artist-generated assets such as texture and pose from one mesh to another [Sumner and Popović 2004], to compute in-between shapes using shape interpolation [Heeren et al pute in-between shapes using shape interpolation [Heeren et al
2012. Von-Tycowicz et al 2015] and to carry out statistical shane
domain (e.g. [Aigerman and Lipman 2016]). While such methods minimize distortion of the maps into the intermediate domain, the distortion of the composed map can be large. bated when the input shapes have significan features, such as four-legged animals with di a cat and a giraffe. In this case, the isometric map is expected to be large, and thus minin the two maps into an intermediate domain minimizing the distortion of the compositio

We propose a novel approach for comp versible map between surfaces that are not without requiring an intermediate domain.

Example of a method for dense correspondence.

 tic information by starting from some user guidance given in the form of sparse landmark constraints or a functional correspondence. Our main contribution is the formulation of an optimization problem whose objective is to minimize the geodesic Dirichlet energy of the forward and backward maps, while maximizing their reversibility. We compute an approximate solution to this problem using a high-dimensional Euclidean embedding and an optimization technique known as half-quadratic splitting [Geman and Yang 1995]. We demonstrate that our maps have considerably lower local distortion than those from state-of-the-art methods for the difficult case of non-isometric deformations. We further show that our maps are semantically accurate by measuring their adherence to self-symmetries of the input shapes, their agreement with ground-
Approach

Input: a sparse set of landmarks (p_{i}, q_{i})

- Initialize the map by mapping geodesic cells of each landmark p_{i} to the corresponding landmark q_{i}

Approach

Input: a sparse set of landmarks (p_{i}, q_{i})

- Initialize the map by mapping geodesic cells of each landmark p_{i} to the corresponding landmark q_{i}
- Optimize the map with respect to an energy that promotes smoothness and bijectivity

Approach

Measures smoothness of a map:

$$
E\left(\phi_{12}\right)=\frac{1}{2} \int_{M_{1}}\left|d \phi_{12}\right|^{2}
$$

A map is harmonic if it is a critical point of the Dirichlet energy

Approach

$$
E_{D}\left(\phi_{12}\right)=
$$

$$
w_{u v} d_{M_{2}}^{2}\left(\phi_{12}(u), \phi_{12}(v)\right)
$$

Discrete Precise Maps

Stochastic matrices with barycentric coordinates at each row:

Discrete Precise Maps

Discretization of Dirichlet Energy

If we replace the geodesic distances by Euclidean distances, the discrete Dirichlet energy is:

$$
E_{D}^{\text {Euc }}\left(P_{12}\right)=\left\|P_{12} V_{2}\right\|_{W_{1}}^{2}=\operatorname{Trace}\left(\left(P_{12} V_{2}\right)^{\top} W_{1} P_{12} V_{2}\right)
$$

W_{1} is a matrix with $-w_{i j}$ at entry i, j, and the sum of the weights on the diagonal

Discrete Dirichlet Energy

We use a high dimensional embedding where Euclidean distances approximate geodesic distances (MDS)

$$
X_{2} \in \mathbb{R}^{n_{2} \times 8}
$$

Then, the discrete Dirichlet energy is approximated by:

$$
E_{D}\left(P_{12}\right)=\left\|P_{12} X_{2}\right\|_{W_{1}}^{2}
$$

Minimizing the Dirichlet Energy

A map that maps all vertices to a single point is harmonic Minimizing the harmonic energy "shrinks" the map:

Initial map (Id)

optimize E_{D}

Reversibility

- We add a reversibility term to prevent the map from shrinking

Reversibility

Continuous setting:

$$
E_{R}\left(T_{12}, T_{21}\right)=\sum_{v \in V_{1}} d_{M_{2}}\left(v, T_{21}\left(T_{12}(v)\right)\right)+\sum_{v \in V_{2}} d_{M_{1}}\left(v, T_{12}\left(T_{21}(v)\right)\right)
$$

The term $E_{R}\left(T_{12}, T_{21}\right)$ promotes injectivity and surjectivity

Reversibility

Discrete setting:

$$
E_{R}\left(P_{12}, P_{21}\right)=\left\|P_{21} P_{12} X_{2}-X_{2}\right\|_{M_{2}}^{2}+\left\|P_{12} P_{21} X_{1}-X_{1}\right\|_{M_{1}}^{2}
$$

Again we use X_{1}, X_{2} the high dimensional embedding of each shape to approximate geodesic distances

Total Energy

We combine the Dirichlet energy and the reversibility term:

$$
E\left(P_{12}, P_{21}\right)=\alpha E_{D}\left(P_{12}\right)+\alpha E_{D}\left(P_{21}\right)+(1-\alpha) E_{R}\left(P_{12}, P_{21}\right)
$$

The parameter α controls the trade off between the terms

Optimization

All the terms are quadratic, but P_{12}, P_{21} are constrained to the feasible set of precise maps

$$
E\left(P_{12}, P_{21}\right)=\alpha E_{D}\left(P_{12}\right)+\alpha E_{D}\left(P_{21}\right)+(1-\alpha) E_{R}\left(P_{12}, P_{21}\right)
$$

Optimization

We know how to optimize functions of the form:

$$
\arg \min _{\mathrm{P}_{12} \in S}\left\|P_{12} A-B\right\|^{2}
$$

S is the feasible set of precise maps

Optimization

$$
P_{12}^{*}=\arg \min _{P_{12} \in S}\left\|P_{12} A-B\right\|_{M_{1}}^{2}
$$

If we constrain to vertex-to-vertex maps (subset of feasible set): P_{12} is a binary stochastic matrix

Optimization

$$
P_{12}^{*}=\arg \min _{P_{12} \in S}\left\|P_{12} A-B\right\|_{M_{1}}^{2}
$$

If P_{12} is any precise map:

Optimization

$$
P_{12}^{*}=\arg \min _{P_{12} \in S}\left\|P_{12} A-B\right\|_{M_{1}}^{2}
$$

If P_{12} is any precise map:

Seems expensive

$$
\begin{array}{l|l}
\text { :ise map: } \\
\min _{f \in F_{2}} \min _{b \geq 0, \Sigma b=1}\left\|\left(\begin{array}{ll}
b^{\top} & \text { Rows of } f \\
\square
\end{array}\right)-\left(\begin{array}{l}
\\
\\
\end{array}\right)\right\|
\end{array}
$$

- Optimize barycentric coordinates by projecting the $i_{t h}$ row to a triangle in $\mathbb{R}^{k_{2}}$ (geometric algorithm)
- Parallelizable!

Optimization

Our energies are not of this form exactly:

$$
\begin{gathered}
E_{D}\left(P_{12}\right)=\operatorname{Tr}\left(\left(P_{12} X_{2}\right)^{\top} W_{1} P_{12} X_{2}\right) \\
E_{R}\left(\mathrm{P}_{12}, P_{21}\right)=\|P_{21} \underbrace{P_{12} X_{2}}-X_{2}\|_{M_{2}}^{2}+\left\|P_{12} P_{21} X_{1}-X_{1}\right\|_{M_{1}}^{2}
\end{gathered}
$$

We use "half quadratic splitting" such that our energy is of the desired form

Optimization

Introduce new variables

- X_{12} should approximate $P_{12} X_{2}$, so we add a term $\left\|P_{12} X_{2}-X_{12}\right\|^{2}$
- X_{21} should approximate $P_{21} X_{1}$, so we add a term $\left\|P_{21} X_{1}-X_{21}\right\|^{2}$

We replace $P_{12} X_{2}$ by X_{12} wherever it bothers our optimization

Optimization

We rewrite our energies with the new variables:

$$
\begin{gathered}
E_{D}\left(X_{12}\right)=\operatorname{Tr}\left(X_{12}^{\top} W_{1} X_{12}\right) \\
E_{R}\left(X_{12}, X_{21}, \mathrm{P}_{12}, P_{21}\right)=\left\|P_{21} X_{12}-X_{2}\right\|_{M_{2}}^{2}+\left\|P_{12} X_{21}-X_{1}\right\|_{M_{1}}^{2} \\
E_{Q}\left(X_{12}, P_{12}\right)=\left\|P_{12} X_{2}-X_{12}\right\|_{M_{1}}^{2}
\end{gathered}
$$

Optimization

We optimize the energy:

$$
\begin{aligned}
E\left(X_{12}, X_{21}, \mathrm{P}_{12}, P_{21}\right)= & \alpha E_{D}\left(X_{12}\right)+\alpha E_{D}\left(X_{21}\right)+ & & \text { Dirichlet } \\
& +(1-\alpha) E_{R}\left(X_{12}, X_{21}, \mathrm{P}_{12}, P_{21}\right)+ & & \text { Reversibility } \\
& +\beta E_{Q}\left(X_{12}, P_{12}\right)+\beta E_{Q}\left(X_{21}, P_{21}\right) & & \text { Penalty }
\end{aligned}
$$

by alternatingly optimizing for each variable

- Optimize P_{12} or P_{21} using projection
- Optimize X_{12} or X_{21} by solving a linear system

Results

Target

Hyperbolic Orbifolds

Weighted Averages

Ours

Results

Target

Hyperbolic Orbifolds

Weighted
Averages

Ours

Extra: Reversible Harmonic Maps

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

[^0]: "Orbifold Tutte Embeddings" (Aigerman and Lipman, SIGGRAPH Asia 2015)

