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Rough Intuition: Spectral Geometry

http://pngimg.com/upload/hammer_PNG3886.png

You can learn a lot
about a shape by
hitting it (lightly)
with a hammer!



Rough Definition

What can you learn about its shape from
vibration frequencies and

oscillation patterns?
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THE COTANGENT LAPLACIAN
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Our Next Topic

Discrete Laplacian operators:

What are they good for?

Useful properties of the Laplacian
Applications in graphics/shape analysis
Applications in machine learning

A quick survey:
A popular field!
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One Object, Many Interpretations
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0 otherwise

Labeled graph Degree matrix Adjacency matrix Laplacian matrix
(2 00000 /010010\ /2 -1 0 0 -1 0)
o 03 00 00 1 01 010 -1 3 -1 0 -1 0
090 0 02000 01 010 0o -1 2 -1 0 0
.. 0 00 3 00 0 01 011 0o 0 -1 3 -1 -1
ee 0000 30 11010 -1 -1 0 -1 3 0
\o0 0 0 001//\ooo100/ \'o o o0 -1 0o 1/

https://en.wikipedia.org/wiki/Laplacian_matrix

Deviation from neighbors



One Object, Many Interpretations
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Dirichlet energy: Measures smoothness



One Object, Many Interpretations

http://alice.loria.fr/publications/papers/2008/ManifoldHarmonics//photo/dragon_mhb.png

Vibration modes



Key Observation (in discrete case)
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After (More) Trigonometry

e D s s when v = w
1 )= t(2, — 02— 12
Lyw = é 9 M(—F/L)(T'()_l(I?Q v )_ 6’2) when v ~ w
. 0 otherwise

Image/formula in “Functional Characterization of Instrinsic and Extrinsic Geometry,” TOG 2017 (Corman et al.)

Laplacian only depends on edge lengths



Isometry ...

[ahy-som-i-tree]:
Bending without stretching.
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Lots of Interpretations




Intrinsic Techniques
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http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/

Isometry invariant



Isometry Invariance: Hope
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Isometry Invariance: Reality

\\Rigidityu

Few shapes can deform isometrically



Isometry Invariance: Reality

Few shapes can deform isometrically



Rigidity Properties

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/gmod

Graphical Models
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Graphical Models

Discrete heat kernel determines discrete Riemannian metric
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if and only if dy and d differ by a scaling.

crete heat kernel and the discrete Riemannian metric (unique up to a scaling) are mutually

Keywords: determined by each other. Given a Euclidean polyhedral surface, its Riemannian metric is

Discrete heat kernel
Discrete Riemannian metric
Laplace-Beltrami operator
Legendre duality principle
Discrete curvature flow
approach.

represented as edge lengths, satisfying triangle inequalities on all faces. The Laplace-
Beltrami operator is formulated using the cotangent formula, where the edge weight is
defined as the sum of the cotangent of angles against the edge. We prove that the edge
lengths can be determined by the edge weights unique up to a scaling using the variational

The constructive proof leads to a computational algorithm that finds the unique metric
on a triangle mesh from a discrete Laplace-Beltrami operator matrix.

Published by Elsevier Inc.

1. Introduction

Laplace-Beltrami operator plays a fundamental role in
Riemannian geometry [26]. Discrete Laplace-Beltrami
operators on triangulated surface meshes span the entire
spectrum of geometry processing applications, including

1.1. Motivation

The Laplace-Beltrami operator on a Riemannian mani-
fold plays an fundamental role in Riemannian geometry.
The spectrum of its eigenvalues encodes the Riemannian
metric information, the nodal lines of its eigenfunctions re-

PROPOSITION 1.

Functional Characterization of Intrinsic and Extrinsic Geometry

ETIENNE CORMAN*

LIX, Ecole Polytechnique

JUSTIN SOLOMON*

Massachusetts Institute of Technology
MIRELA BEN-CHEN

Technion — Israel Institute of Technology
LEONIDAS GUIBAS

Stanford University

MAKS OVSJANIKOV

LIX, Ecole Polytechnique

We propose a novel way to capture and characterize distortion between pairs

of shapes by extending the recently proposed framework of shape differ-

ences built on functional maps. We modify the original definition of shape
differences slightly and prove that, after this change, the discrete metric is
fully encoded in two shape difference operators and can be recovered by
solving two linear systems of equations. Then, we introduce an extension of
the shape difference operators using offset surfaces to capture extrinsic or
embedding-dependent distortion, complementing the purely intrinsic nature
of the original shape differences. Finally, we demonstrate that a set of four
operators is complete, capturing intrinsic and extrinsic structure and fully
encoding a shape up to rigid motion in both discrete and continuous settings.

We highlight the usefulness of our constructions by showing the complemen-

tary nature of our extrinsic shape differences in capturing distortion ignored
by previous approaches. We additionally provide examples where we recover
local shape structure from the shape difference operators, suggesting shape
editing and analysis tools based on manipulating shape differences.

along the surface, whereas extrinsic quantities are those that must
be defined using surface normal vectors and/or an embedding into
space. A crowning result of classical differential geometry describes
local geometry in terms of two quantities: the first and second fun-
damental forms, which capture the intrinsic Gaussian and extrinsic
mean curvatures, respectively [Bonnet 1867].

Considerable research in geometry processing has been dedicated
to measuring intrinsic and extrinsic curvature in an attempt to repli-
cate this attractive characterization of shape. From a practical stand-
point, however, this task remains challenging for potentially noisy or
irregular meshes considered in geometry processing. After all, sur-
face curvature is a second-derivative quantity whose approximation
on a piecewise-linear mesh requires discretization and mollification
to deal with noise. Measurement of curvature aside, algorithms for
recovering geometry from discrete curvatures remain difficult to
formulate for many discretizations.

In_this paper. we formulate an alternative characterization of

_
Suppose M has a boundary or at least one
interior vertex with odd valence. Then, A(u) uniquely determines
i, recoverable via a linear solve.

ed for analysis, comparison, and synthesis
tting. Several desiderata inform our design; a
representing shape should

ish intrinsic and extrinsic geometry,
rties in a multiscale fashion to distinguish

PROPOSITION 2. Assume that the mesh M is manifold without}dc@i! from large-scale structure,
boundary. Then, for almost all choices of areas p, the map C(£%; 1)
uniquely determines £, which is recoverable via a linear solve.

theory of shape,
to tessellation,

ible on continuous surfaces and on triangle
, and
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But calculations
on a volume are
expensive!

(changing!)

Figure 1: Deformations of a glove (left) and a solid
hand (right) are an illustration of the difference be-
tween boundary and volume isometries.

Image from: Raviv et al. “Volumetric Heat Kernel Signatures.” 3DOR 2010.

Not the same.



Why Study the Laplacian?

Encodes intrinsic geometry

Edge lengths on triangle mesh, Riemannian metric on manifold

Multi-scale

Filter based on frequency

Geometry through linear algebra

Linear/eigenvalue problems, sparse positive definite matrices

Connection to physics

Heat equation, wave equation, vibration, ...



Our Next Topic

Discrete Laplacian operators:

What are they good for?

Useful properties of the Laplacian
Applications in graphics/shape analysis
Applications in machine learning

A quick survey:
A popular field!



Example Task: Shape Descriptors (Features)




Descriptor Tasks

Characterize local geometry
Feature/anomaly detection

Describe point’s role on surface
Symmetry detection, correspondence



Descriptors We've Seen Before

| 1
K := ki1ko = det 1l H = 5(/{1 + Ko) = itr]I

Gaussian and mean curvature



Desirable Properties

Distinguishing

Provides useful information about a point

Stable

Numerically and geometrically

Intrinsic

No dependence on embedding

SOmetimeS
undesirable!



Intrinsic Descriptors

Invariant under

Rigid motion

Bending without stretching



Intrinsic Descriptor

Theorema Egregium

(“Totally Awesome
Theorem"”):

Gaussian curvature
Is Intrinsic.

K = Kl1ko = det II

http://www.sciencedirect.com/science/article/pii/S0010448510001983
G . t



End of the Story?

K = K1RKk?2

Second derivative quantity



End of the Story?

Non-unique



Desirable Properties

Incorporates neighborhood
information in an intrinsic fashion

Stable under small deformation



Global Point Signature

1 1 1

GPS(p) := (—\/—A—lcbl(p),——cbz(p),——(bs(p),---)

“Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation”
Rustamov, SGP 2007



Global Point Signature

| T se : 55
2 3 4 5 6 7 8 9 10
GPS(p) = (—\%chl(p),—\/L)\—ﬁz(p),—\/%g(bs(p),---)

If surface does not self-intersect, neither
does the GPS embedding.

Proof: Laplacian eigenfunctions span L%(X); if GPS(p)=GPS(qg), then all functions
on X would be equal at p and g.



Global Point Signature

g 80 A . 3
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2 3 4 5 6 7 8 9 10
GPS(p) =~ 1(+). ~ = alp). = n(p). - )

GPS is isometry-invariant.

Proof: Comes from the Laplacian.



Physics Applications of the Laplacian

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation



Physics Applications of the Laplacian

Wave equation



Solutions in the LB Basis

ou
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Heat equation
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n=>0

o /EUO(x).qﬁn(x) dA = (ug, dn)



Heat Kernel Signature (HKS)

O

ko(,7) = Y €N ()’

n=0
Continuous function of t € [0, )

How much heat
diffuses from x to
itself in time t?



Heat Kernel Signature (HKS)

“A concise and provably informative multi-scale signature based on heat diffusion”
Sun, Ovsjanikov, and Guibas; SGP 2009



Heat Kernel Signature (HKS)

O

ko(,7) = Y €N ()’

n=>0
Good properties:

Isometry-invariant

Multiscale

Not subject to switching

Easy to compute

Related to curvature at small scales



Heat Kernel Signature (HKS)

O

ko(,7) = Y €N ()’

n=0

Bad properties:
Issues remain with repeated

eigenvalues
Theoretical guarantees require
(near-)isometry



Wave Kernel Signature (WKS)

WKS(FE,z) = lim —/ Ve (x, )| dt = Zcf)n *fe(\

T T—oo I’

Initial energy
distribution

Average probability over
time that particle is at x.

“The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis”
Aubry, Schlickewei, and Cremers; ICCV Workshops 2012



Wave Kernel Signature (WKS)

WKS(FE,z) = lim —/ Ve (x, )| dt = Zcf)n *fe(\

T — o0 T

vision.in tum.de/_média/spezial/b dddddddddddddddddddddd



Wave Kernel Signature (WKS)

WKS(FE,z) = lim —/ Ve (x, )| dt = Zcf)n *fe(An)?

T — o0 T

Good properties:
[Similar to HKS]
Localized in frequency
Stable under some non-isometric
deformation
Some multi-scale properties



Wave Kernel Signature (WKS)

WKS(FE,z) = lim —/ Ve (x, )| dt = Zcf)n *fe(\

T — o0 T

Bad properties:
[Similar to HKS]

Can filter out large-scale features



Many Others

Lots of spectral descriptors in
terms of Laplacian
eigenstructure.



Combination with Machine Learning

p(z) =) f(A)dr(x)

Learn frather than defining it

Fig. 3. Correspondences computed on TOSCA shapes using the spectral
matching algorithm [30]. Shown are the matches with geodesic distance distortion
below 10 percent of the shape diameter, from left to right: HKS (34 matches), WKS
(30 matches), and trained descriptor (54 matches).

Learning Spectral Descriptors for Deformable Shape Correspondence
Litman and Bronstein; PAMI 2014



Even More Generic Version

HodgeNet: Learning Spectral Geometry on Triangle Meshes

DMITRIY SMIRNOV and JUSTIN SOLOMON, Massachusetts Institute of Technology, USA

A N ) \

\‘;I;\
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dense meshes both at train and test time.

Constrained by the limitations of learning toolkits engineered for other
applications, such as those in image processing, many mesh-based learning
algorithms employ data flows that would be atypical from the perspective
of conventional geometry processing. As an alternative, we present a tech-
nique for learning from meshes built from standard geometry processing
modules and operations. We show that low-order eigenvalue/eigenvector
computation from operators parameterized using discrete exterior calcu-
lus is amenable to efficient approximate backpropagation, yielding spectral
per-element or per-mesh features with similar formulas to classical descrip-
tors like the heat/wave kernel signatures. Our model uses few parameters,
generalizes to high-resolution meshes, and exhibits performance and time
complexity on par with past work.

CCS Concepts: » Computing methodologies — Shape analysis; Mesh
geometry models; Neural networks.

Additional Key Words and Phrases: Machine learning, meshes, operators

ACM Reference Format:

Dmitriy Smirnov and Justin Solomon. 2021. HodgeNet: Learning Spectral
Geometry on Triangle Meshes. ACM Trans. Graph. 40, 4, Article 166 (Au-
gust 2021), 11 pages. https://doi.org/10.1145/3450626.3459797

a’\

Fig. 1. Mesh segmentation results on the full-resolution MIT animation dataset. Each mesh in the dataset contains 20,000 faces (10,000 vertices). We show an
example ground truth segmentation in the bottom-left. In contrast to previous works, which downsample each mesh by more than 10X, we efficiently process

Numerous technical challenges preclude modern learning meth-
ods from being adopted for meshes. Deep learning—arguably the
most popular recent learning methodology—relies on regularity of
the data and differentiability of the objective function for efficiency.
For example, convolutional neural network (CNN) training is built
on high-throughput processing of images through convolution and
per-pixel computations to obtain gradients with respect to network
weights, required for stochastic gradient descent.

Meshes, a primary means of representing geometry in graphics,
defy the considerations above. They come as sparse, irregular net-
works of vertices varying in number; the same piece of geometry
easily can be represented by multiple meshes and at multiple reso-
lutions/densities. Advances in graph neural networks (GNNs) have
as a byproduct helped advance mesh processing, but typical graphs
in geometry processing are fundamentally different from those in
network science—vertices have low valence, are related through
long chains of edges, can be connected in many roughly-equivalent
ways, and can be deformed through rigid motions and isometries.

The end result is that mesh-based learning architectures often

1 . 1 ., L1 1 -




Application: Feature Extraction

ey
}}

Maxima of k,(x,x) over x for large t.

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion
Sun, Ovsjanikov, and Guibas; SGP 2009

Feature points



Preview: Correspondence

http://graphics.stanford.edu/projects/Igl/papers/ommg-opimhk-10/ommg-opimhk-10.pdf
http://www.cs.princeton.edu/~funk/sig11.pdf
http://gfx.cs.princeton.edu/pubs/Lipman_2009_MVF/mobius.pdf



Descriptor Matching

Simply match closest points in
descriptor space.



Heat Kernel Map

0.3
t

.= kt(pa SC)

How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010



Heat Kernel Map

Heat K 1 Map kM (p, x)
\\

t

p(xv t) ‘= kt(pv .CC)
Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel /f/l//l/

Ovsjanikov et al. 2010




Descriptor Matching Problem
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Self-Map: Symmetry

Intrinsic symmetries
become extrinsic in
GPS space!

Global Intrinsic Symmetries of Shapes
Ovsjanikov, Sun, and Guibas 2008

“Discrete intrinsic” symmetries



All Over the Place

Laplacians appear everywhere
In shape analysis and
geometry processing.



Biharmonic Distances

— gql|2, Where Ag, = 4,

“Biharmonic distance”
Lipman, Rustamov & Funkhouser, 2010



Geodesic Distances

“Geodesics in heat”
Crane, Weischedel, and Wardetzky; TOG 2013



Alternative to Eikonal Equation

Algorithm 1 The Heat Method

I. Integrate the heat flow @« = Aw for time ¢.
[1. Evaluate the vector field X = —Vu/|Vul.
III. Solve the Poisson equation A¢ = V - X.

Crane, Weischedel, and Wardetzky. “Geodesics in Heat.” TOG, 2013.



Implicit Fairing: Mean Curvature Flow

AN <l ~ ”:7—- " J ~ 43‘;:: —
%_' el ;’S ~ I et

“Implicit fairing of irreqgular meshes using diffusion and curvature flow”
Desbrunetal., 1999



Useful Technique

0
a—{ = —Af (heat equation)
0 f . L.
— M Frie L f after discretization in space
— M fT; Jo = L fp after time discretization
1

Choice: Evaluate attimeT

Unconditionally stable, but not necessarily accurate for large T!

(Semi-)Implicit time stepping



Parameterization: Harmonic Map

(a) Original mesh tile (b) Harmonic embedding
Recall:
Mean value principle

“Multiresolution analysis of arbitrary meshes”
Eck et al., 1995 (and many others!)



Shape retrieval from

Laplacian eigenvalues
“Shape DNA" [Reuter et al., 2006]

Quadrangulation

Nodal domains [Dong et al., 2006]

Surface deformation

“"As-rigid-as-possible” [Sorkine & Alexa, 2007]

\\\\\\\\\
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Semi-Supervised Learning

“Semi-supervised learning using Gaussian fields and harmonic functions”
Zhu, Ghahramani, & Lafferty 2003



Semi-Supervised Technique

Given: ¢ labeled points (x1,41),...,(ze,ye);y; € {0,1}
u unlabeled points xp1,...,Tpr;l < u

min 53w (£) = £()?

s.t. f(k) fixed Vk < /

Dirichlet energy > Linear system of equations (Poisson) =4 -2 0 2 4

O =N w s oo

| |
N -



Related Method

Step 1:
Build k-NN graph

Step 2:
Compute p smallest Laplacian eigenvectors

Step 3:
Solve semi-supervised problem in subspace

“Using Manifold Structure for Partially Labelled Classification”
Belkin and Niyogi; NIPS 2002



Recent Related Method

Post-processing for Individual Fairness

Felix Petersen” Debarghya Mukherjee”
University of Konstanz University of Michigan
felix.petersen@uni.kn mdeb@umich.edu
Yuekai Sun Mikhail Yurochkin
University of Michigan IBM Research, MIT-IBM Watson Al Lab
yuekai@umich.edu mikhail.yurochkin@ibm.com
Abstract

Post-processing in algorithmic fairness is a versatile approach for correcting bias
in ML systems that are already used in production. The main appeal of post-
processing is that it avoids expensive retraining. In this work, we propose general
post-processing algorithms for individual fairness (IF). We consider a setting
where the learner only has access to the predictions of the original model and a
similarity graph between individuals guiding the desired fairness constraints. We
cast the IF post-processing problem as a graph smoothing problem corresponding to
graph Laplacian regularization that preserves the desired “treat similar individuals
similarly” interpretation. Our theoretical results demonstrate the connection of
the new objective function to a local relaxation of the original individual fairness.
Empirically, our post-processing algorithms correct individual biases in large-scale
NLP models such as BERT, while preserving accuracy.

1 Introduction

There are many instances of algorithmic bias in machine learning (ML) models [1]-[4], which has
led to the development of methods for quantifying and correcting algorithmic bias. To quantify
algorithmic bias, researchers have proposed numerous mathematical definitions of algorithmic
fairness. Broadly speaking, these definitions fall into two categories: group fairness [5] and individual
fairness [6]. The former formalizes the idea that ML system should treat certain groups of individuals
similarly, e.g., requiring the average loan approval rate for applicants of different ethnicities be similar
[7]. The latter asks for similar treatment of similar individuals, e.g., same outcome for applicants
with resumes that differ only in names [8]. Researchers have also developed many ways of correcting

B aloarithivis liae Thaoa Ffatrmace smtartrarmtioame reoaadlsr €411 cmta theans ~atammriac:s mea mencacotmey thae B




Buyer Beware: Ill-Posed in Limit?

Semi-Supervised Learning with the Graph Laplacian:
The Limit of Infinite Unlabelled Data

Higher-order

Boaz Nadler Nathan Srebro
Dept. of Computer Science and Applied Mathematics Toyota Technological Institute
Weizmann Institute of Science Chicago, IL 60637 o pe rato rs
Rehovot, Israel 76100 nati@uchicago.edu

boaz.nadler@weizmann.ac.1i1l

Common Misconception

Xueyuan Zhou
Dept. of Computer Science min E[f] s.t. f(p) = const.
University of Chicago A
Chicago, IL 60637

zhouxy@cs.uchicago.edu

Abstract

Point constraints are ill-advised

.

We study the behavior of the popular Laplacian Regularization method for Semi-
Supervised Learning at the regime of a fixed number of labeled points but a large



Manifold Regularization

¢
1
Regularized learning: arg m1 n - Z F(@), u:) + YN fI7

I

Loss functlon Regularizer

D|r|chlet energy

17112 = / )P e~ FTLS

“Manifold Regularization:

A Geometric Framework for Learning from Labeled and Unlabeled Examples”
Belkin, Niyogi, and Sindhwani; JMLR 2006



Examples of Manifold Regularization

Laplacian-regularized least squares (LapRLS)

14
1
arg min - Z(f(:vz-) —4i)* + 7| fII7 + Other|f]
feH L —
LapIaC|an support vector machine (LapSVM)
14
1
argmin - » max(0, 1 —y; f(2;)) + 7| f[|7 + Other[f]
feH L —
Nttt S e, Tty 3




Diffusion Maps

Embedding from first k eigenvalues/vectors:

\Ijt(x) = (Aﬁwl (37)7 /\g?ﬁg(l’), )00 ¢ )\21/%(3’5))

Roughly:
|P,(x) — P,;(y)| is probability that x, y diffuse to the same point in time t.
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“Diffusion Maps”

Coifman and Lafon; Applied and Computational Harmonic Analysis, 2006

Image from http://cpscsss.quywolf.org/Slides/CPSCrs5%20-%20Topic%2010%20-%20Diffusion%20Maps.pdf (nice slides!)



http://cpsc445.guywolf.org/Slides/CPSC445%20-%20Topic%2010%20-%20Diffusion%20Maps.pdf

Graph Convolutional Networks

Spectral Networks and Deep Locally Connected
Networks on Graphs

Joan Bruna Wojciech Zaremba
New York University New York University
brunacims.nyu.edu woj.zarembal@gmail.com
Arthur Szlam Yann LeCun
The City College of New York New York University
aszlam@ccny.cuny.edu yann@cs.nyu.edu
Abstract

Convolutional Neural Networks are extremely efficient architectures in image and
audio recognition tasks, thanks to their ability to exploit the local translational
invariance of signal classes over their domain. In this paper we consider possi-
ble generalizations of CNNs to signals defined on more general domains without
the action of a translation group. In particular, we propose two constructions,
one based upon a hierarchical clustering of the domain, and another based on the
spectrum of the graph Laplacian. We show through experiments that for low-
dimensional graphs it is possible to learn convolutional layers with a number of
parameters independent of the input size, resulting in efficient deep architectures.

1 Introduction

Convolutional Neural Networks (CNNs) have been extremely succesful in machine learning prob-
lems where the coordinates of the underlying data representation have a grid structure (in 1, 2 and 3
dimensions), and the data to be studied in those coordinates has translational equivariance/invariance
with respect to this grid. Speech [11], images [14, 20, 22] or video [23, 18] are prominent examples
that fall into this category.

Convolution theorem for functions on R":
frg=F1F Gl

fr—1

-
xk—l—l,j:h V E kaV Lki
1=1

V contains eigenvectors of graph Laplacian



Useful Survey

Geometric deep learning:
going beyond Euclidean data

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst

Many scientific fields study data with an underlying struc-
ture that is a non-Euclidean space. Some examples include
social networks in computational social sciences, sensor net-
works in communications, functional networks in brain imag-
ing, regulatory networks in genetics, and meshed surfaces
in computer graphics. In many applications, such geometric
data are large and complex (in the case of social networks,
on the scale of billions), and are natural targets for machine
learning techniques. In particular, we would like to use deep
neural networks, which have recently proven to be powerful
tools for a broad range of problems from computer vision,
natural language processing, and audio analysis. However,
these tools have been most successful on data with an un-
derlying Euclidean or grid-like structure, and in cases where
the invariances of these structures are built into networks used
to model them.

Geometric deep learning is an umbrella term for emerging
techniques attempting to generalize (structured) deep neural

models to non-Euclidean domains such as graphs and man-
1faolde

The niirpoce of thice naner 1c to overview different

the data such as stationarity and compositionality through
local statistics, which are present in natural images, video, and
speech [14], [15]. These statistical properties have been related
to physics [16] and formalized in specific classes of convo-
lutional neural networks (CNNs) [17], [18], [19]. In image
analysis applications, one can consider images as functions
on the Euclidean space (plane), sampled on a grid. In this
setting, stationarity is owed to shift-invariance, locality is due
to the local connectivity, and compositionality stems from
the multi-resolution structure of the grid. These properties
are exploited by convolutional architectures [20], which are
built of alternating convolutional and downsampling (pooling)
layers. The use of convolutions has a two-fold effect. First,
it allows extracting local features that are shared across the
image domain and greatly reduces the number of parameters
in the network with respect to generic deep architectures
(and thus also the risk of overfitting), without sacrificing the
expressive capacity of the network. Second, the convolutional

architecture itself imposes some priors about the data, which
rl
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