
Homework 5: Manifold Optimization and Optimal Transport
Due May 13, 2021

This is the fifth homework assignment for 6.838. Check the course
website for additional materials and the late policy. You may work
on assignments in groups, but every student must submit their own
write up; please note your collaborators, if any, on your write up.
Submit your code as 6838-hw5-<yourkerberos>.zip and writeup as
6838-hw5-<yourkerberos>.pdf, where <yourkerberos> is replaced with
your MIT Kerberos ID.

Problem 1 (Karcher Means on the Sphere (20 points)). Computing averages is a simple and com-
mon operation in Euclidean space. The Karcher mean generalizes averages to manifolds. In this
problem you will compute Karcher means on the 2D sphere S2 = {x ∈ R3 : ‖x‖ = 1}.

The Karcher Mean on S2 of points zi ∈ S2 is defined as the following

x∗ = argmin
x∈S2

∑
i

d(x, zi)
2

(1)

where d(x, y) = cos−1(x · y) is the distance between two points on S2.

(a) Compute the Euclidean gradient and Euclidean Hessian of the objective in (??).

(b) Let ΠTp : R3 → TpS2 be the projection of a vector onto TpS2, the tangent space of S2 at p ∈ S2.
The Riemannian gradient of f is then ∇R f = ΠTp(∇ f )T. Note that by convention gradients
are row vectors but the transpose makes ∇R f a column vector. The Riemannian Hessian is
then HR f = ΠTp∇(∇R f ). Compute the Riemannian gradient and the Riemannian Hessian
of the objective in (??).

(c) Implement the Riemannian gradient and Riemannian Hessian in ‘SphereKarcherMeans’.
(Note: In Matlab, you can use ‘checkgradient’ and ‘checkhessian’ to verify your answer.
‘checkhessian’ can be unstable, so you may have to try a few times.)

(d) Riemannian Trust Regions (RTR) is a second order method for manifold optimization which
makes use of the Riemannian Hessian. Steepest descent is a first order method and does not
use the Hessian. Solve the Karcher Means problem using ‘steepestdescent’ and ‘trustregions’.
On average, which is faster and by how much? Is the effort of computing a Hessian in this
case worth it?

Problem 2 (Rotation Synchronization (20 points)). Consider the following generative model. We
have N nodes, and to each node i is associated a ground truth rotation matrix Ri ∈ SO(3). For
each pair (i, j), we observe a relative rotation corrupted by Gaussian noise:

Oij = Rij + σεij = R⊤
i Rj + σεij, (2)

where the entries of εij are i.i.d standard Gaussian for each (i, j).
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(a) Given observations Oij, formulate the maximum likelihood estimation problem for estimates
of the rotations R̂i ∈ SO(3), the manifold of rotations.

(b) Compute the Euclidean gradient and Hessian of your objective function in (a).

(c) Implement your manifold optimization problem in RotationSynchronization using MANOPT.
Use GenerateObservations to get input data. Plot the least squares error of your estimated
R̂ij = R̂⊤

i R̂j against the true relative rotations Rij over various values of σ. How does the
method perform? Does it seem to be finding global optima, or is the result dependent on
initialization.

Note: in MATLAB, you do not need to calculate the Riemannian gradient or Hessian by hand.
MANOPT will do it for you. In Julia, you will need to compute at least the Riemannian gradi-
ent.

(d) Show that your problem in (a) can be transformed into a semidefinite program of the follow-
ing form, with an additional rank constraint:

maximize 〈O, R̂〉
subject to [R̂]ii = I3×3 ∀i

R̂ ≽ 0,

(SDP)

where [R̂]ij denotes the (i, j)th 3× 3 block of the matrix R̂ ∈ R3N×3N , and O is the block matrix
of observations, such that [O]ij = Oij.

(e) Suppose that (??) has a solution R̂∗ of rank 3 with each block having positive determinant.
Explain how to extract estimated rotations R̂i from R̂∗. Explain why the determinant assump-
tion is reasonable if the noise σ is small.

Problem 3 (Burer-Monteiro (20 points)). Suppose we instead look for solutions R̂ to (??) with
rank R̂ = r, where r ≥ 3. This is equivalent to the following optimization problem (known as the
Burer-Monteiro problem):

maximize tr Y⊤RY

subject to [Y]i[Y]⊤i = I3×3 ∀i,
(BM)

where Y ∈ R3N×r and [Y]i denotes the ith 3 × r block of Y.

(a) The Stiefel manifold Vk(R
d), where k ≤ d, is the manifold of matrices Y ∈ Rd×k with orthonor-

mal columns. Explain how you can make a small change to your code from 2(c) to implement
problem (??).

(b) Copy your code from 2(c) into a new file RotationSynchronizationBM{.m,.jl} and modify
it to implement the Burer-Monteiro method. For various choices of error standard deviation σ
and target rank r ≥ 3, plot histograms of the rank of the solution Y. Hint: you can compute the
(numerical) rank of Y using SVD. Under what conditions do you recover a rank-3 solution?

(c) Plot the estimation error as in 2(c). How does the Burer-Monteiro method compare to plain
optimization over rotations?
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(d) Extra Credit (10 points): We say a critical point Y∗ of the nonconvex problem (??) is rank-
deficient if rank Y∗ < r. Suppose Y∗ is a rank-deficient local maximum of the quadratic objec-
tive function in (??) on the constraint manifold. Show that (Y∗)⊤Y∗ is a global optimum of
(??).

Hint: write down the primal-dual optimality conditions for (??) and the critical point condi-
tions for (??) and compare.

Problem 4 (Optimal Transport (40 points)). In this problem you will implement the Sinkhorn
method for approximating the “earth mover’s distance” (EMD) between two probability distribu-
tions on a triangle mesh, a.k.a. optimal transport distance.

(a) Suppose we are given a pairwise squared distance matrix C ∈ Rn×n. Cij measures the dis-
tance between bins i and j of a histogram with n bins. For example, Cij = ‖xi − yj‖2

2 for given
point sets x1, . . . , xn and y1, . . . , yn. The EMD between histograms p and q is defined as

W(p, q) =

!
""""#

""""$

minT∈Rn×n ∑n
i=1 ∑n

j=1 TijCij

subject to Tij ≥ 0, ∀i, j ∈ {1, . . . , n}
∑j Tij = pi, ∀i ∈ {1, . . . , n}
∑i Tij = qj, ∀j ∈ {1, . . . , n}.

(3)

Explain what W(p, q) measures about the difference between p and q. Compare it to other
discrepancy measures between probability distributions such as the Kullback-Leibler diver-
gence.

(b) EMD is difficult to compute when n is large. An alternative is the entropy-regularized EMD
introduced by Marco Cuturi in Sinkhorn Distances: Lightspeed Computation of Optimal
Transport Distances. The Sinkhorn distance between p and q is given by

Wα(p, q) =

!
""""#

""""$

minT∈Rn×n ∑n
i=1 ∑n

j=1 TijCij + α
%

∑ij Tij ln Tij − 1
&

subject to Tij ≥ 0, ∀i, j ∈ {1, . . . , n}
∑j Tij = pi, ∀i ∈ {1, . . . , n}
∑i Tij = qj, ∀j ∈ {1, . . . , n}.

(4)

Define a matrix Kα in terms of C and α so that the objective for computing Wα(p, q) can be
written as α · KL(T‖Kα), where the KL divergence between A, B ∈ Rn×n

+ is

KL(A‖B) = ∑
ij

Aij ln
Aij

Bij

(c) Show that the optimal matrix T in the minimization for Wα can be written as T = diag(v)Kαdiag(w)
for some v, w ∈ Rn.

Hint: Use Lagrange multipliers; it may be useful to argue that the Tij ≥ 0 constraint is no
longer necessary after entropic regularization.

3



(d) So far, we have assumed that we have a pairwise squared distance matrix C. Let’s specialized
to a triangle mesh, and define Cij = d(xi, xj)

2 where xi and xj are vertices of the mesh and d
denotes geodesic distance. Computing the full pairwise squared geodesic distance matrix C
is very expensive. In Convolutional Wasserstein Distances: Efficient Optimal Transporta-
tion on Geometric Domains, Solomon et al. propose an alternative solution.

The heat kernel Ht(x, y) gives the amount of heat diffusion between x, y ∈ M after time t > 0.
In particular Ht(x, y) solves ∂t ft = ∆ ft with initial condition f0 through the map

ft(x) =
!

M
f0(y)Ht(x, y)dy. (5)

We have provided an implementation of heat diffusion in the function heatDiffusion which
you will use in the final part of this problem.

Varadhan’s formula states that the distance on the manifold d(x, y) can be recovered by trans-
ferring heat from x to y over a short time interval:

d(x, y)2 = lim
t→0

[−2t lnHt(x, y)]. (6)

Argue that Kα can be approximated as Hα/2.

(e) The Sinkhorn algorithm for computing Wα proceeds as follows:

1 Initialize T0 ≡ Hα/2.

2 For i = 1, 2, 3, . . .

i. If i is odd, compute

T(i) ≡
'

arg minT∈Rn×n KL(T‖T(i−1))

subject to ∑j Tij = pi ∀i ∈ {1, . . . , n}.
(7)

ii. If i is even, compute

T(i) ≡
'

arg minT∈Rn×n KL(T‖T(i−1))

subject to ∑i Tij = qj ∀j ∈ {1, . . . , n}.
(8)

Show that each T(i) can be written T(i) = diag(v(i))Hα/2diag(w(i)) for some vectors v(i), w(i) ∈
Rn. Write the steps of the Sinkhorn algorithm in terms of these vectors. Your algorithm
should involve only matrix-vector multiplication and per-element operations on vectors (mul-
tiplication/division).

(f) Implement the Sinkhorn algorithm in emd{.m,.jl} including reasonable stopping criteria.
Try several probability distributions on multiple meshes. The example in the starter code
should compute geodesic distances from point 1 to all other points on the mesh assuming
you have coded everything correctly.
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