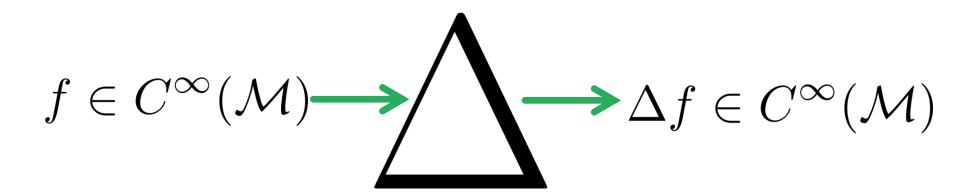
Discrete Laplacian Operators

Justin Solomon

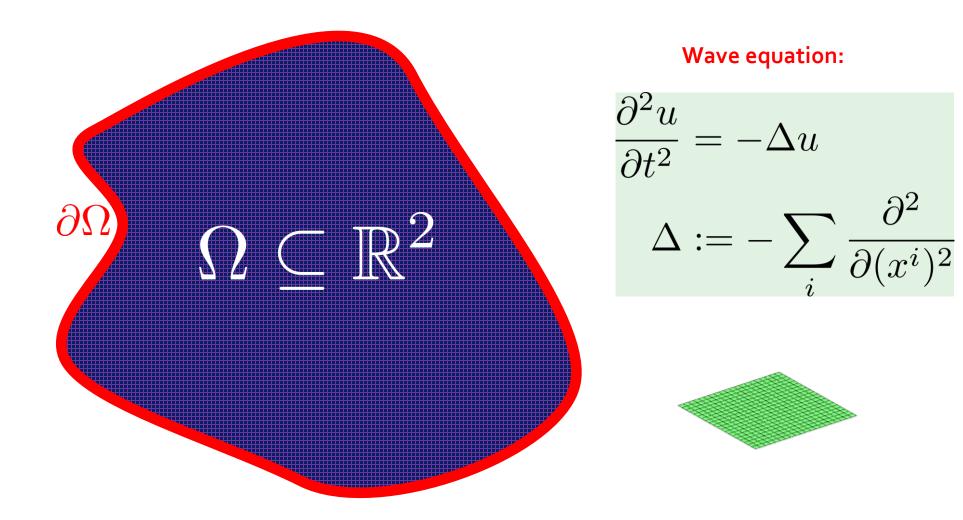
6.838: Shape Analysis Spring 2021

Our Focus

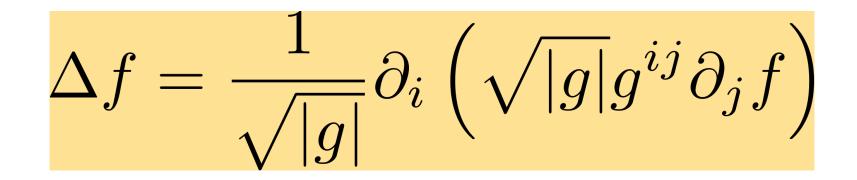


Computational version?

The Laplacian

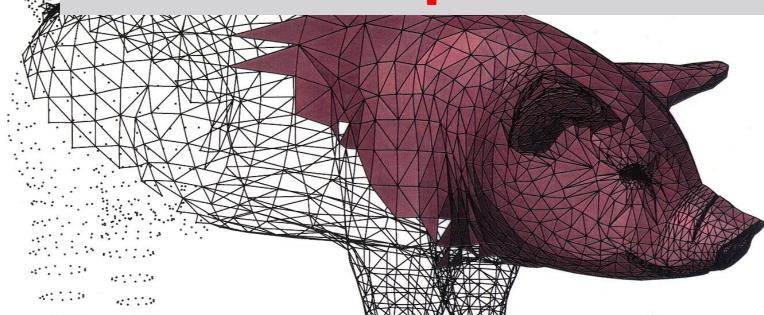


Discretizing the Laplacian



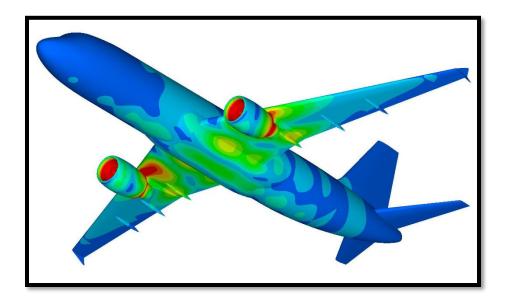
Problem

Laplacian is a *differential* operator!



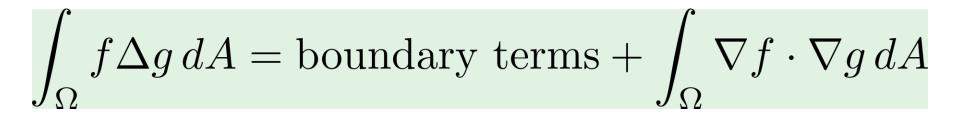
Today's Approach

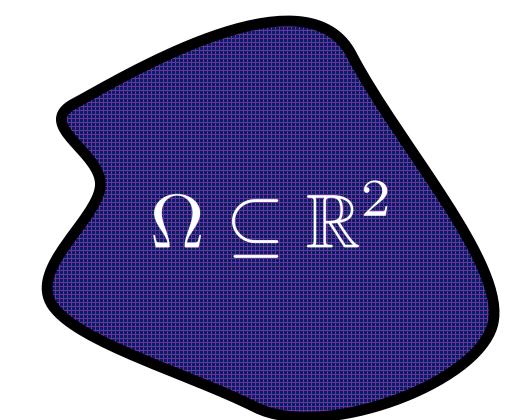
First-order Galerkin Finite element method (FEM)

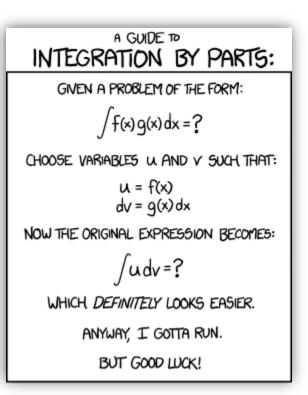


http://www.stressebook.com/wp-content/uploads/2014/08/Airbus_A320_k.jpg

Integration by Parts to the Rescue

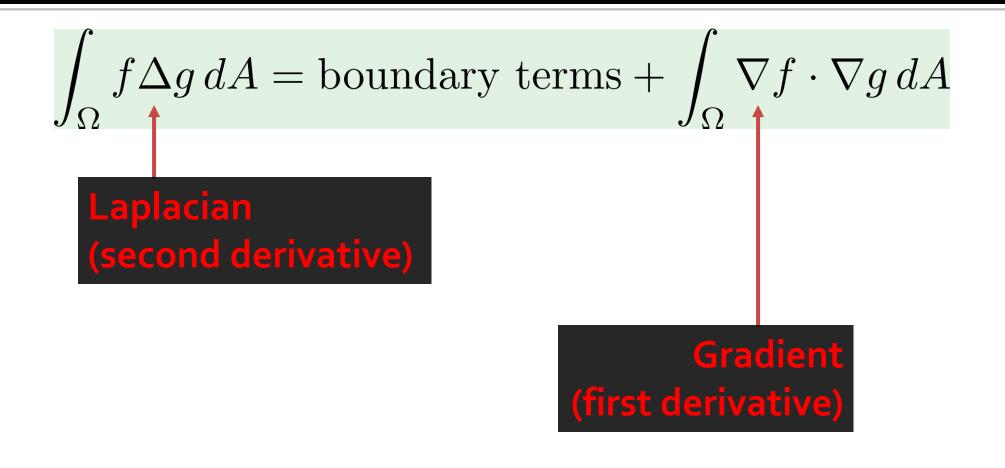




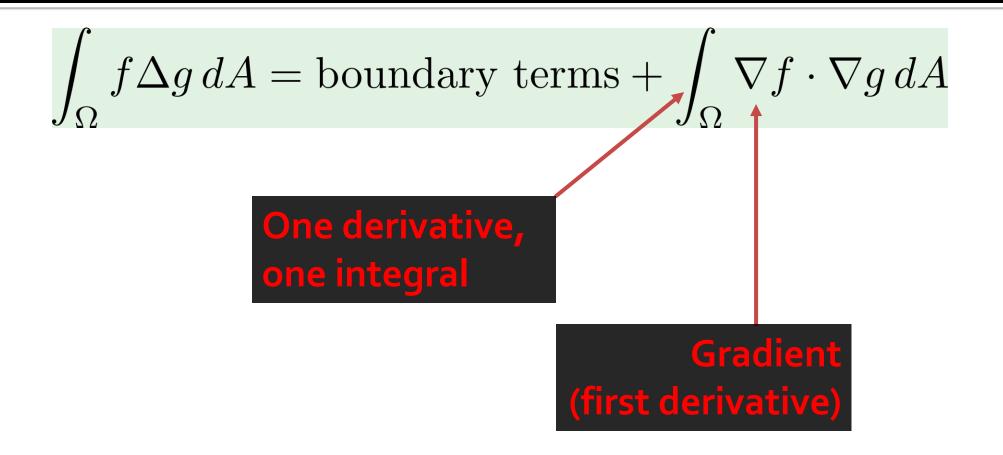


https://xkcd.com/1201/

Slightly Easier?



Slightly Easier?



Intuition: Cancels?

$g = \Delta f \to M \mathbf{w} = L \mathbf{v}$

Overview: Galerkin FEM Approach

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = [\text{boundary terms}] + \int (\nabla \psi \cdot \nabla f) \, dA$$

$$\text{Approximate } f \approx \sum_{k} v^{k} \psi_{k} \text{ and } g \approx \sum_{k} w^{k} \psi_{k}$$

$$\implies \text{Linear system } \sum_{k} w^{k} \langle \psi_{i}, \psi_{\ell} \rangle = \sum_{k} v^{k} \langle \nabla \psi_{k}, \nabla \psi_{\ell} \rangle$$

Mass matrix: $M_{ij} := \langle \psi_i, \psi_j \rangle$ Stiffness matrix: $L_{ij} := \langle \nabla \psi_i, \nabla \psi_j \rangle$ $\Longrightarrow M \mathbf{w} = L \mathbf{v}$

$E_g[f] := \int \left[\frac{1}{2} \|\nabla f(\mathbf{x})\|_2^2 - f(\mathbf{x})g(\mathbf{x})\right] \, dA(\mathbf{x})$

Important to Note

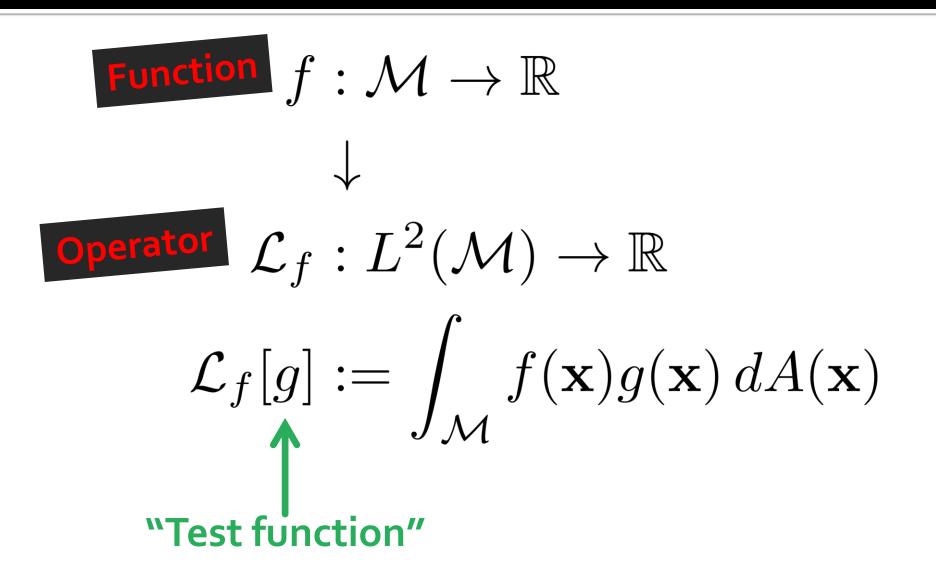
Not the only way

to approximate the Laplacian operator.

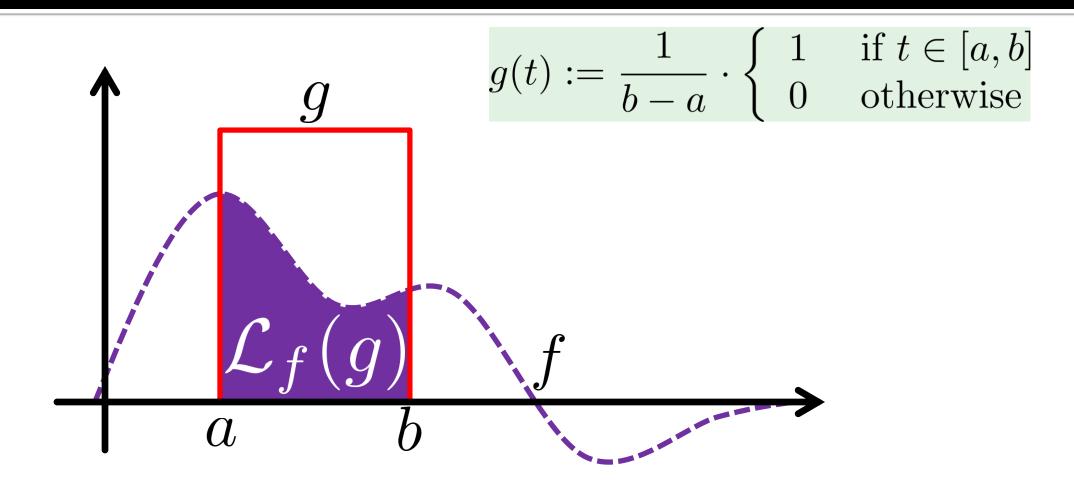
- Divided differences
- Higher-order elements
- Boundary element methods
- Discrete exterior calculus

But this method is worth knowing, so we'll do it in detail!

L² Dual of a Function



Observation



Can recover function from dual

Dual of Laplacian

Space of test functions (no boundary!):

$$\{g \in C^{\infty}(M) : g|_{\partial M} \equiv 0\}$$

$$\mathcal{L}_{\Delta v}[u] = \int_{\mathcal{M}} u(\mathbf{x}) \Delta v(\mathbf{x}) \, dA(\mathbf{x})$$

$$= \int_{\mathcal{M}} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) \, dA(\mathbf{x})$$

$$- \oint_{\partial \mathcal{M}} u(\mathbf{x}) \nabla v(\mathbf{x}) \cdot \hat{\mathbf{n}}(\mathbf{x}) \, d\ell$$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each: **Function space** Test functions

Often the same!

One Derivative is Enough

$$\mathcal{L}_{\Delta v}[u] = \int_{\mathcal{M}} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) \, dA(\mathbf{x}) \\ - \oint_{\partial \mathcal{M}} u(\mathbf{x}) \nabla v(\mathbf{x}) \cdot \hat{\mathbf{n}}(\mathbf{x}) \, d\ell$$

First Order Finite Elements

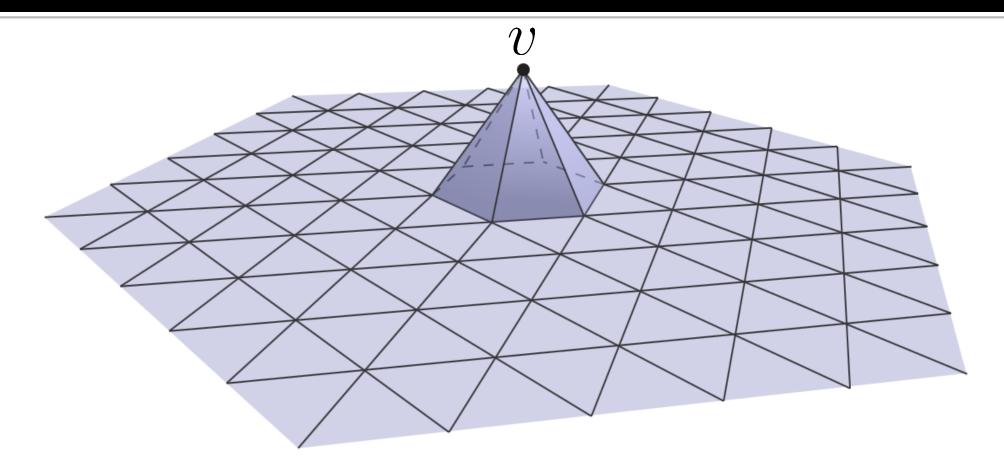
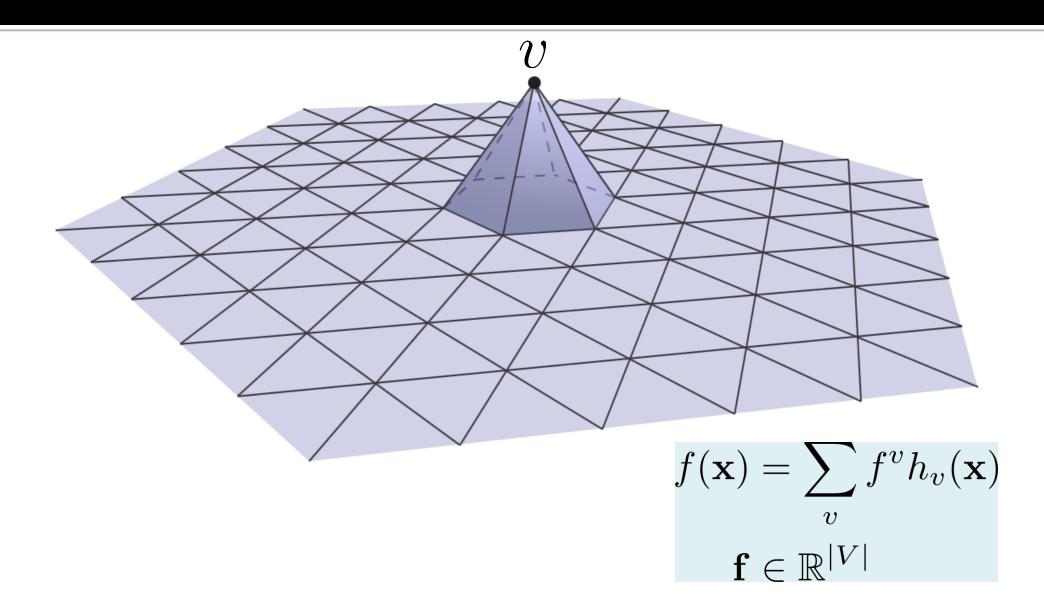
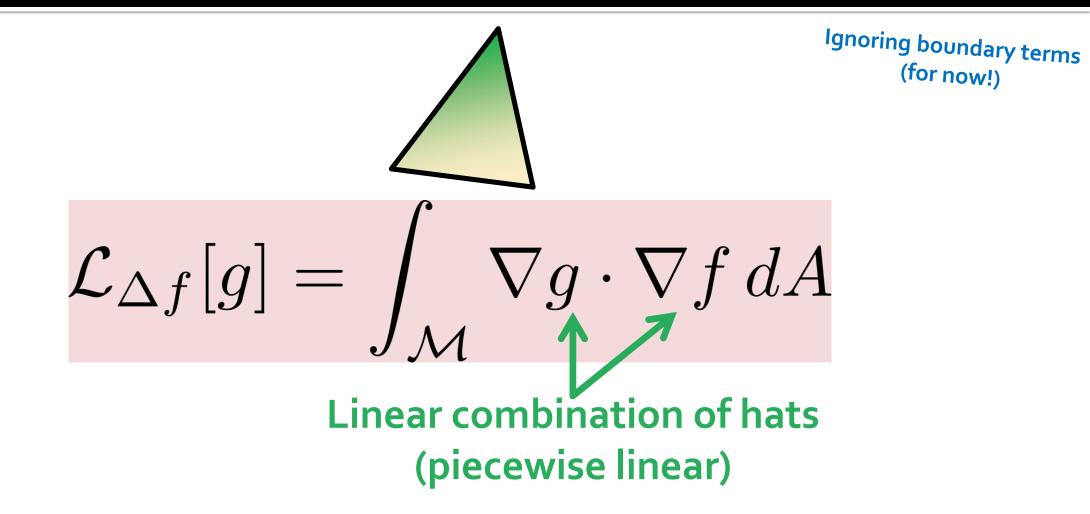


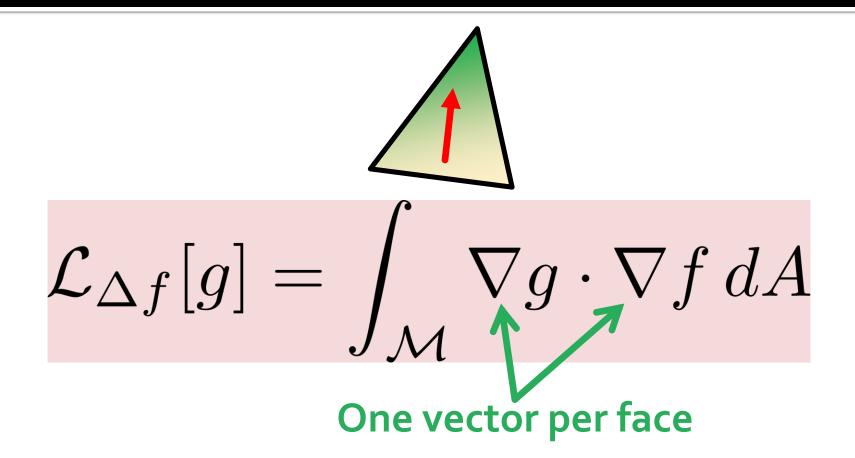
Image courtesy K. Crane, CMU

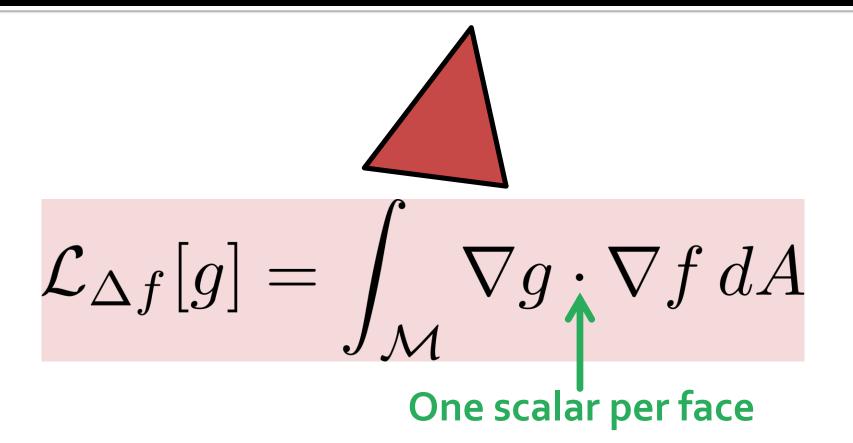
One "hat function" per vertex

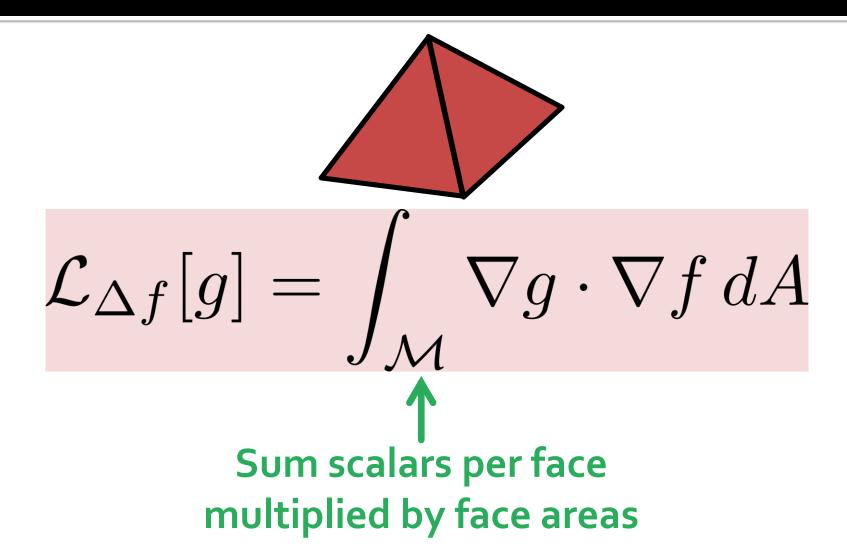
Representing Functions

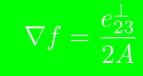




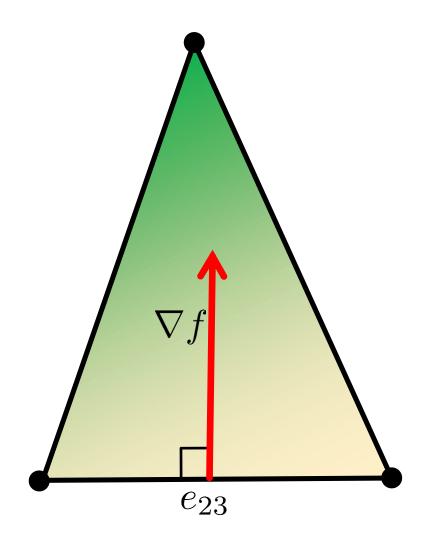


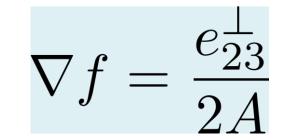


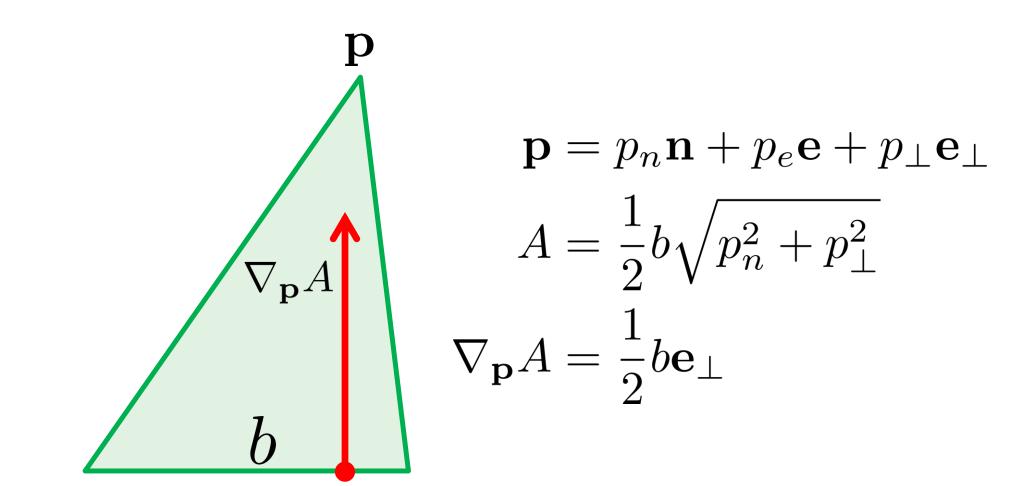


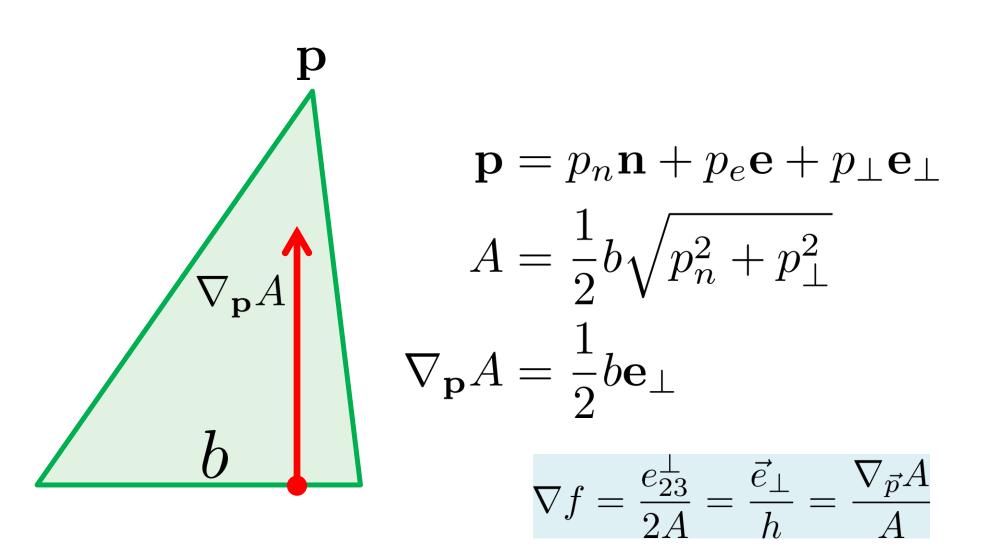


Gradient of a Hat Function



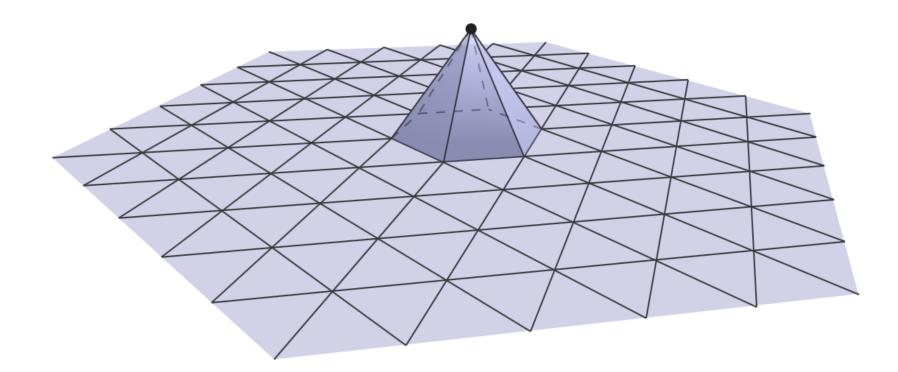






What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = \int_{\mathcal{M}} \nabla g \cdot \nabla f \, dA$$



What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = \int_{\mathcal{M}} \nabla g \cdot \nabla f \, dA$$

$$\nabla f = \frac{e_{23}^{\perp}}{2A}$$

$$\int_{T} \langle \nabla f, \nabla f \rangle \, dA = A \|\nabla f\|_{2}^{2}$$

$$= \frac{A}{h^{2}} = \frac{b}{2h}$$

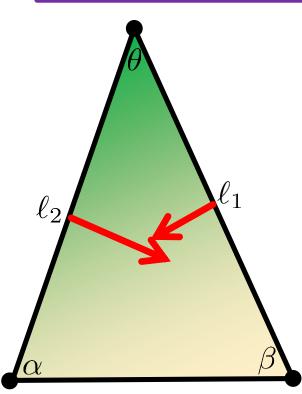
$$= \frac{1}{2} (\cot \alpha + \cot \beta)$$

What We Actually Need

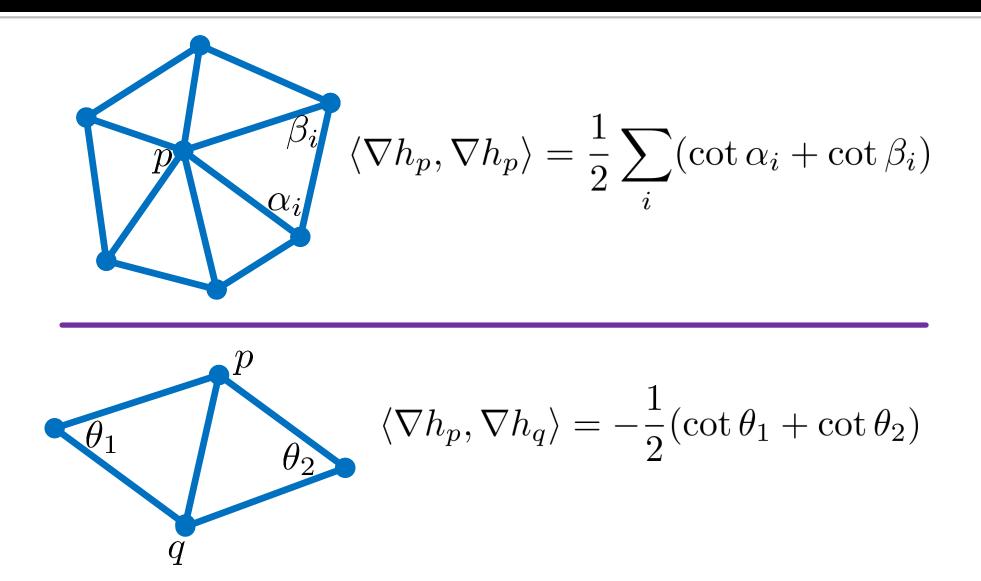
$$\mathcal{L}_{\Delta f}[g] = \int_{\mathcal{M}} \nabla g \cdot \nabla f \, dA$$

Case 2: Different vertices

$$\int_{T} \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle \, dA = A \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle$$
$$= \frac{1}{4A} \langle e_{31}^{\perp}, e_{32}^{\perp} \rangle = -\frac{\ell_{1}\ell_{2}\cos\theta}{4A}$$
$$= -\frac{1}{2h_{1}}\ell_{2}\cos\theta = -\frac{\cos\theta}{2\sin\theta}$$
$$= -\frac{1}{2}\cot\theta$$

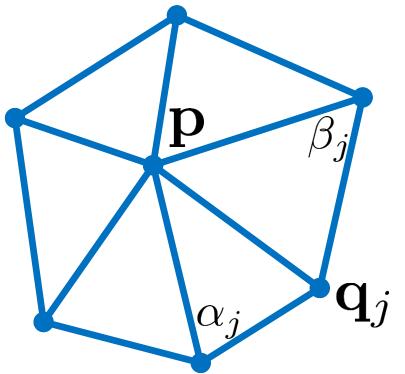


Summing Around a Vertex



Recall: Summing Around a Vertex

$$\nabla_{\mathbf{p}} A = \frac{1}{2} \sum_{j} (\cot \alpha_{j} + \cot \beta_{j}) (\mathbf{p} - \mathbf{q}_{j})$$

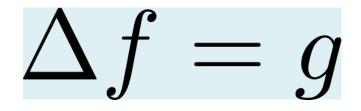


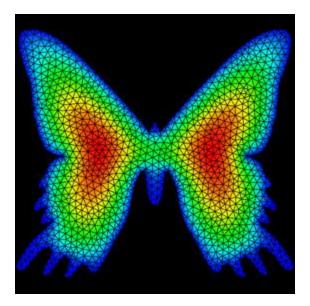
$$\nabla_{\mathbf{p}}A = \frac{1}{2}((\mathbf{p} - \mathbf{r})\cot\alpha + (\mathbf{p} - \mathbf{q})\cot\beta)$$

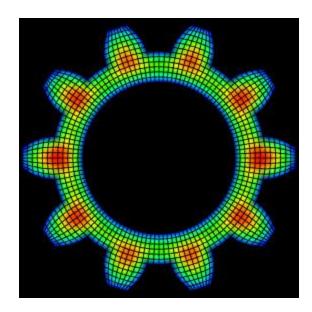
THE COTANGENT LAPLACIAN

 $L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$

Poisson Equation

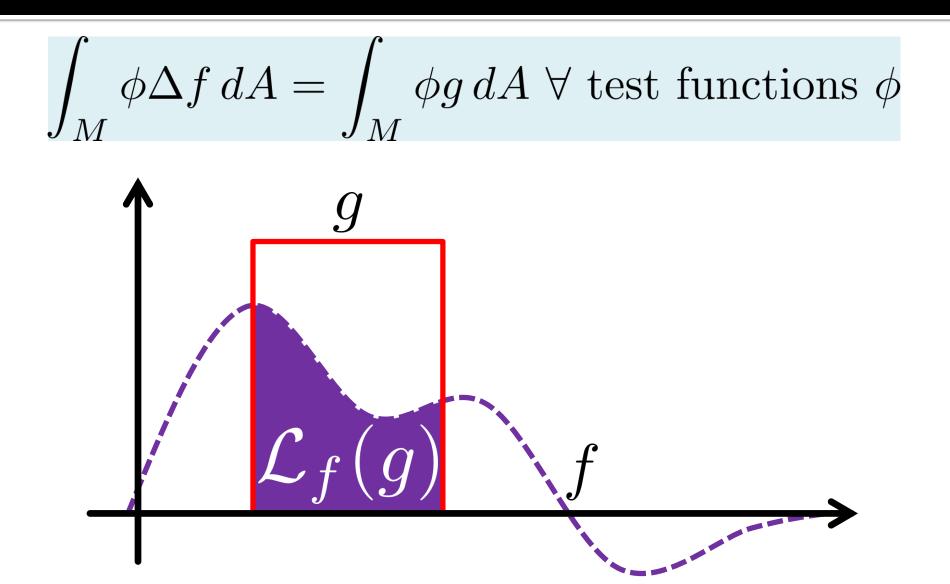






http://nylander.wordpress.com/2006/05/24/finite-element-method-fem-solution-to-poisson%E2%80%99s-equation-on-triangular-mesh/

Weak Solutions



FEM Hat Weak Solutions

$$\int_{\mathcal{M}} h_i \Delta f \, dA = \int_{\mathcal{M}} h_i g \, dA \,\,\forall \text{ hat functions } h_i$$

$$\int_{\mathcal{M}} h_{\ell} \Delta f \, dA = \int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla f \, dA$$
$$= \int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla \sum_{k} v^{k} h_{k} \, dA$$
Approximate $f \approx \sum_{k} v^{k} \psi_{k}$ and $g \approx \sum_{k} w^{k} \psi_{k}$
$$\text{Linear system } \sum_{k} w^{k} \langle \psi_{i}, \psi_{\ell} \rangle = \sum_{k} v^{k} \langle \nabla \psi_{k}, \nabla \psi_{\ell} \rangle$$
$$= \sum_{k} v^{k} \int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla h_{k} \, dA$$
$$= \sum_{k} L_{\ell k} v^{k}$$

 \implies Linear

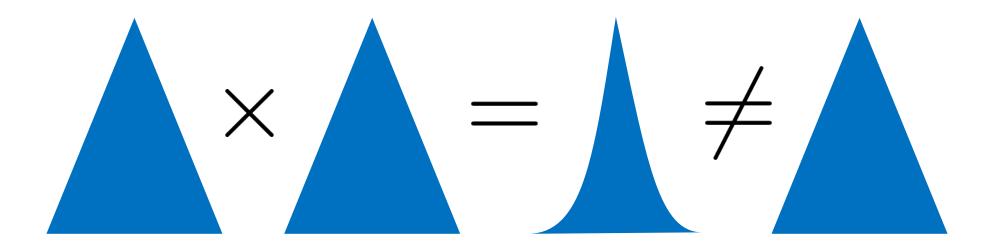
Stacking Integrated Products

$$\begin{pmatrix} \int_{\mathcal{M}} h_1 \Delta f \, dA \\ \int_{\mathcal{M}} h_2 \Delta f \, dA \\ \vdots \\ \int_{\mathcal{M}} h_{|V|} \Delta f \, dA \end{pmatrix} = \begin{pmatrix} \sum_k L_{1k} v^k \\ \sum_k L_{2k} v^k \\ \vdots \\ \sum_k L_{|V|k} v^k \end{pmatrix} = L\mathbf{v}$$

Multiply by Laplacian matrix!

Problematic Right Hand Side

$$\int_{\mathcal{M}} h_{\ell} \Delta f \, dA = \int_{\mathcal{M}} h_{\ell} g \, dA \,\,\forall \text{ hat functions } h_{\ell}$$



Product of hats is quadratic

Some Ways Out

Just do the integral

"Consistent" approach

Approximate some more

The Mass Matrix

$$M_{ij} := \int_{\mathcal{M}} h_i h_j \, dA$$

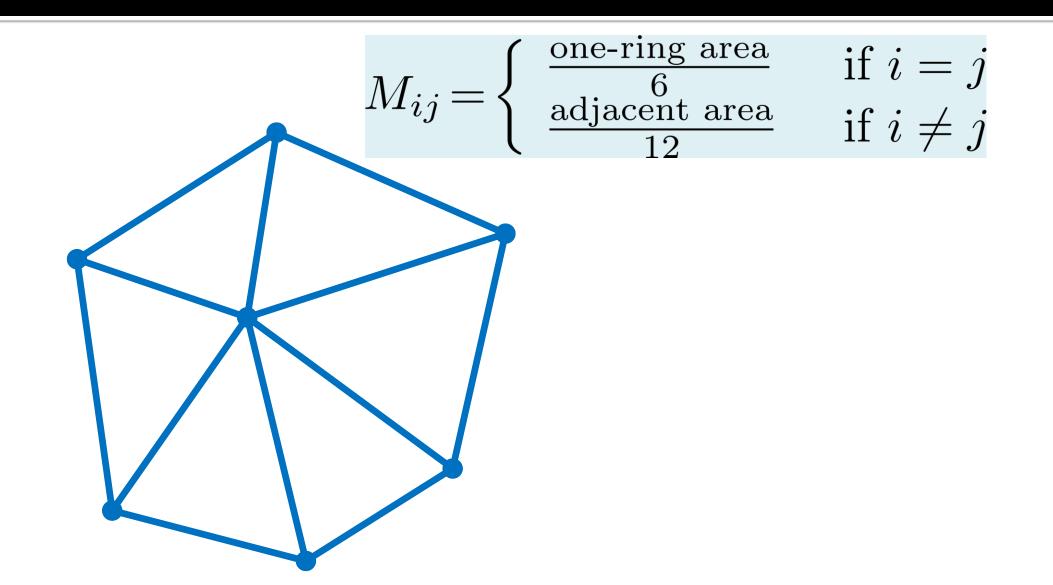
Diagonal elements:
 Norm of h_i

Off-diagonal elements:
 Overlap between h_i and h_j

Consistent Mass Matrix

$$M_{ij}^{\text{triangle}} = \begin{cases} \frac{\text{area}}{6} & \text{if } i = j \\ \frac{\text{area}}{12} & \text{if } i \neq j \end{cases}$$

Non-Diagonal Mass Matrix



Properties of Mass Matrix

Rows sum to one ring area / 3

Involves only vertex and its neighbors

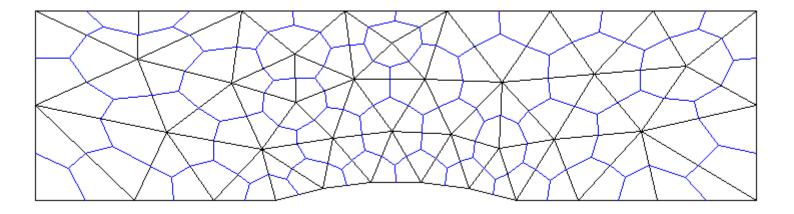
Partitions surface area

Issue: Not diagonal!

Use for Integration

$$\int_{\mathcal{M}} f \, dA = \int_{\mathcal{M}} \left[\sum_{k} v^{k} h_{k}(\mathbf{x}) \cdot 1 \right] \, dA(\mathbf{x})$$
$$= \int_{\mathcal{M}} \left[\sum_{k} v^{k} h_{k}(\mathbf{x}) \cdot \sum_{i} h_{i}(\mathbf{x}) \right] \, dA(\mathbf{x})$$
$$= \sum_{ki} M_{ki} v^{k}$$
$$= \mathbf{1}^{\top} M \mathbf{v}$$

Lumped Mass Matrix



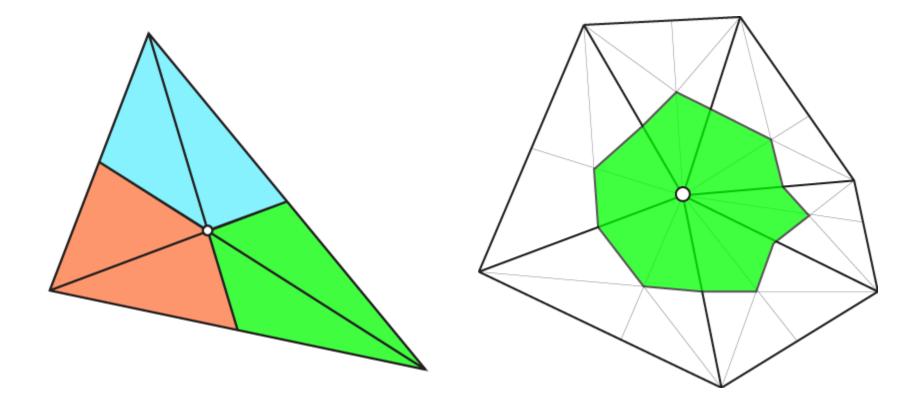
$$\tilde{a}_{ii} := \operatorname{Area}(\operatorname{cell} i)$$

Won't make big difference for smooth functions

http://users.led-inc.eu/~phk/mesh-dualmesh.html

Approximate with diagonal matrix

Simplest: Barycentric Lumped Mass



http://www.alecjacobson.com/weblog/?p=1146

Area/3 to each vertex

Ingredients

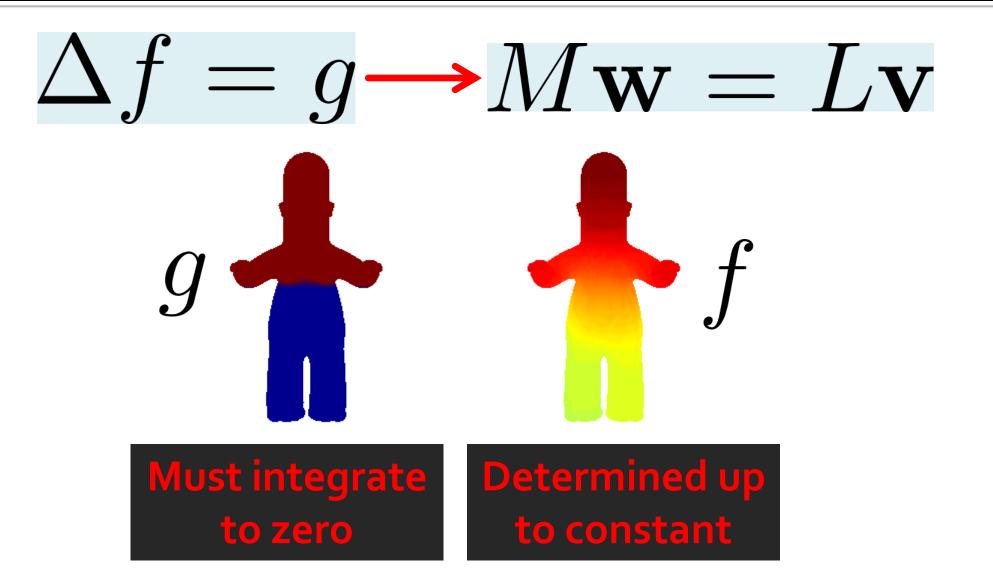
Cotangent Laplacian L

Per-vertex function to integral of its Laplacian against each hat

Mass matrix M

Integrals of pairwise products of hats (or approximation thereof)

Solving the Poisson Equation



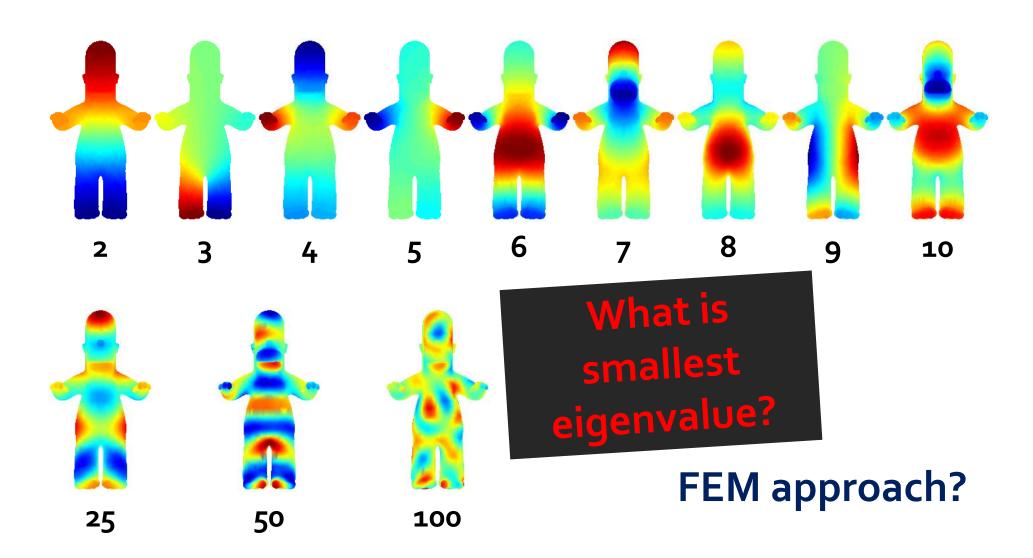
Important Detail: Boundary Conditions

$$\Delta f(x) = g(x) \ \forall x \in \Omega$$
$$f(x) = u(x) \ \forall x \in \Gamma_D$$
$$\nabla f \cdot n = v(x) \ \forall x \in \Gamma_N$$

$$\int_{\Omega} \nabla f \cdot \nabla \phi = \int_{\Gamma_N} v(x)\phi(x) \, d\Gamma - \int_{\Omega} f(x)\phi(x) \, d\Omega$$
$$f(x) = u(x) \, \forall x \in \Gamma_D$$

Weak form

Eigenhomers

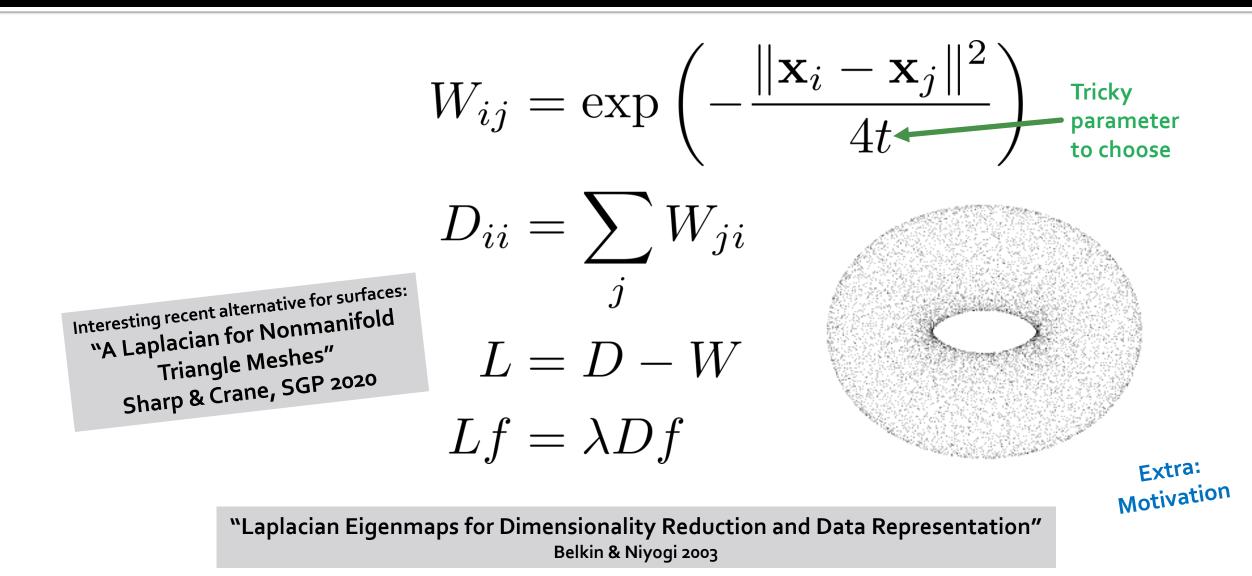


Higher-Order Elements



https://www.femtable.org/

Point Cloud Laplace: Easiest Option



Discrete Laplacian Operators

Justin Solomon

6.838: Shape Analysis Spring 2021

Extra: Point Cloud Laplacian

Justin Solomon

6.838: Shape Analysis Spring 2021

