The Laplacian Operator

Justin Solomon

6.838: Shape Analysis Spring 2021

Lots of (sloppy) math!

Famous Motivation

CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

> "La Physique ne nous donne pas seulement l'occasion de résoudre des problèmes . . . , elle nous fait presentir la solution." H. POINCARÉ.

Before I explain the title and introduce the theme of the lecture I should like to state that my presentation will be more in the nature of a leisurely excursion than of an organized tour. It will not be my purpose to reach a specified destination at a scheduled time. Rather I should like to allow myself on many occasions the luxury of stopping and looking around. So much effort is being spent on streamlining mathematics and in rendering it more efficient, that a solitary transgression against the trend could perhaps be forgiven.

An Experiment

Unreasonable to Ask?

http://www.takamine.com/templates/default/images/gclassical.png http://firsttimeprogrammer.blogspot.com/2015/05/spectrogram-representation-of-b-note.html

Spoiler Alert

Rough Intuition

http://pngimg.com/upload/hammer_PNG3886.png

Spectral Geometry

What can you learn about its shape from vibration frequencies and oscillation patterns?

$$\Delta f = \lambda f$$

Make "vibration modes" more precise

Progressively more complicated domains

- Line segments
- Regions in \mathbb{R}^n
- Graphs
- Surfaces/manifolds

Coming up: Discretization, applications

Vector Spaces and Linear Operators

 $L[\mathbf{x} + \mathbf{y}] = L[\mathbf{x}] + L[\mathbf{y}]$ $L[c\mathbf{x}] = cL[\mathbf{x}]$ $L[\mathbf{x}] = A\mathbf{x}$

Review: In Finite Dimensions

Recall: Spectral Theorems in \mathbb{C}^n

Theorem. Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian. Then, A has an orthogonal basis of neigenvectors. If A is positive definite, the corresponding eigenvalues are nonnegative.

Our Progression

Line segments

- Regions in \mathbb{R}^n

Graphs

Surfaces/manifolds

1D spring network

Wave Equation

Minus Second Derivative Operator

"Dirichlet boundary conditions"

$$\{f(\cdot) \in C^{\infty}([a,b]) : f(0) = f(\ell) = 0\}$$

Interpretation as positive (semi-)definite operator.

 $\mathbf{u}^{\top} L \mathbf{u} \ge 0$ $\langle u, \mathcal{L} u \rangle \ge 0$

Eigenfunctions of Second Derivative Operator

"Dirichlet boundary conditions"

$$f(\cdot) \in C^{\infty}([a,b]) : f(0) = f(\ell) = 0$$
$$\mathcal{L}[\cdot] : u \mapsto -\frac{\partial^2 u}{\partial x^2}$$

Eigenfunctions:
$$\phi_k(x) = \sqrt{\frac{2}{\ell}} \sin\left(\frac{\pi kx}{\ell}\right), \quad \lambda_k = \left(\frac{\pi k}{\ell}\right)^2$$

 $\mathbf{u}''(t) = -kL\mathbf{u}(t)$ $\frac{\partial^2 u}{\partial t^2} = -c^2 \mathcal{L}[u]$

Can you hear the length of an interval?

$$\phi_k(x) = \sqrt{\frac{2}{\ell}} \sin\left(\frac{\pi kx}{\ell}\right), \quad \lambda_k = \left(\frac{\pi k}{\ell}\right)^2$$

$$\lambda_k = \left(\frac{\pi k}{\ell}\right)^2$$

Yes!

Our Progression

Line segments

• Regions in \mathbb{R}^n

Graphs

Surfaces/manifolds

Planar Region

Wave equation:

 $\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= -\Delta u\\ \Delta &:= -\sum_i \frac{\partial^2}{\partial (x^i)^2} \end{aligned}$

Typical Notation

http://www.gamasutra.com/db_area/images/feature/4164/figy.png, https://en.wikipedia.org/wiki/Gradient

Intrinsic Operator

Images made by E. Vouga

Coordinate-independent

$g(\mathbf{x}) = f(R\mathbf{x} + \mathbf{t})$

Dirichlet Energy

$$E[u] := \frac{1}{2} \int_{\Omega} \|\nabla u(\mathbf{x})\|_2^2 \, dA(\mathbf{x})$$

$\min_{u(\mathbf{x}):\Omega\to\mathbb{R}} E[u]$

s.t. $u|_{\partial\Omega}$ prescribed

Harmonic Functions

Images made by E. Vouga

Application

lutions to Laplace's equation are called harmonic functions, we call the new construction harmonic coordinates. We show that harmonic coordinates possess several properties that make them more attractive than mean value coordinates when used to define two and three

dimensional deformations.

As described in Ju et. al. [Ju et a barycentric coordinates stem from t interpolating functions. Gouraud s where colors c_1, c_2, c_3 assigned to the terpolated across the triangle according w

Positivity, Self-Adjointness

$$\{f(\cdot) \in C^{\infty}(\Omega) : f|_{\partial \Omega} \equiv 0\}$$

$$\mathcal{L}[f] := \Delta f$$

$$\langle f, g \rangle := \int_{\Omega} f(\mathbf{x}) g(\mathbf{x}) \, dA(\mathbf{x})$$

1. Positive: $\langle f, \mathcal{L}[f] \rangle \geq 0$

2. Self-adjoint:
$$\langle f, \mathcal{L}[g]
angle = \langle \mathcal{L}[f], g
angle$$

$egin{aligned} \langle f, \mathcal{L}[f] angle \geq 0 \ \langle f, \mathcal{L}[g] angle = \langle \mathcal{L}[f], g angle \end{aligned}$

Laplacian Eigenfunctions

$$\min_{u} \frac{1}{2} \int_{\Omega} \|\nabla u(\mathbf{x})\|_{2}^{2} d\mathbf{x}$$

s.t.
$$\int_{\Omega} u(\mathbf{x})^{2} d\mathbf{x} = 1$$

Theorem (Weyl's Law). Let $N(\lambda)$ be the number of Dirichlet eigenvalues of the Laplacian Δ for a domain $\Omega \subseteq \mathbb{R}^d$ less than or equal to λ . Then,

$$\lim_{\lambda o \infty} rac{N(\lambda)}{\lambda^{d/2}} = (2\pi)^{-d} \omega_d \mathrm{vol}(\Omega),$$

where ω_d is the volume of the unit ball in \mathbb{R}^d .

Critical points on the "unit sphere"

http://www.math.udel.edu/~driscoll/research/gww1-4.gif

Small eigenvalue: Small Dirichlet Energy

Aside: Common Misconception

$$\min_{f} E[f] \text{ s.t. } f(p) = \text{const.}$$

Point constraints are ill-advised

Our Progression

Line segments

- Regions in \mathbb{R}^n

Graphs

Surfaces/manifolds

Basic Setup

Function:

One value per vertex

What is the Dirichlet energy of a function on a graph?

Differencing Operator

Orient edges arbitrarily

Dirichlet Energy on a Graph

$$\begin{array}{c}
\mathbf{v} \\
\mathbf$$

$$E[\mathbf{f}] := \|D\mathbf{f}\|_2^2 = \sum_{(v,w)\in E} (f^v - f^w)^2$$

(Unweighted) Graph Laplacian

$$E[\mathbf{f}] = \|D\mathbf{f}\|_2^2 = \mathbf{f}^\top (D^\top D)\mathbf{f} := \mathbf{f}^\top L\mathbf{f}$$
$$L_{vw} = A - \overline{D} = \begin{cases} 1 & \text{if } v \sim w \\ -\text{degree}(v) & \text{if } v = w \end{cases}$$

U

otherwise

Labeled graph **Degree matrix** Adjacency matrix Laplacian matrix $0 \ 1 \ 0$ 0 0 $0 \ -1 \ 3 \ -1$ -13 0 0 -10 0 n __1

SymmetricPositive semidefinite

https://en.wikipedia.org/wiki/Laplacian_matrix

What is the smallest eigenvalue of the graph Laplacian?

Second-Smallest Eigenvector

Fiedler vector ("algebraic connectivity")

Mean Value Property

$$L_{vw} = A - D = \begin{cases} 1 & \text{if } v \sim w \\ -\text{degree}(v) & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$$

$$(L\mathbf{x})^v = 0$$
Value at *v* is average of neighboring values

For More Information...

Graph Laplacian encodes lots of information!

Example: Kirchoff's Theorem Number of spanning trees equals

$$t(G) = \frac{1}{|V|} \prod_{k=2}^{|V|} \lambda_k$$

Hear the Shape of a Graph?

Our Progression

Line segments

- Regions in \mathbb{R}^n

Graphs

Surfaces/manifolds

http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map points to real numbers

Boodd: Differential of a Map

Definition (Differential). Suppose $\varphi : \mathcal{M} \to \mathcal{N}$ is a map from a submanifold $\mathcal{M} \subseteq \mathbb{R}^k$ into a submanifold $\mathcal{N} \subseteq \mathbb{R}^\ell$. Then, the differential $d\varphi_{\mathbf{p}} : T_{\mathbf{p}}\mathcal{M} \to T_{\varphi(\mathbf{p})}\mathcal{N}$ of φ at a point $\mathbf{p} \in \mathcal{M}$ is given by

 $d\varphi_{\mathbf{p}}(\mathbf{v}):=(\varphi\circ\gamma)'(0),$

where $\gamma: (-\varepsilon, \varepsilon) \to \mathcal{M}$ is any curve with $\gamma(0) = \mathbf{p}$ and $\gamma'(0) = \mathbf{v} \in T_{\mathbf{p}}\mathcal{M}$.

Image from Wikipedia

Gradient Vector Field

Proposition For each $\mathbf{p} \in \mathcal{M}$, there exists a unique vector $\nabla f(\mathbf{p}) \in T_{\mathbf{p}}\mathcal{M}$ so that $df_{\mathbf{p}}(\mathbf{v}) = \mathbf{v} \cdot \nabla f(\mathbf{p})$ for all $\mathbf{v} \in T_{\mathbf{p}}\mathcal{M}$.

$df_{\mathbf{p}}(\mathbf{v}) = \mathbf{v} \cdot \nabla f(\mathbf{p})$

Dirichlet Energy

Decreasing E

$$E[f] := \int_S \|\nabla f\|_2^2 \, dA$$

Images made by E. Vouga

From Inner Product to Operator

 $\langle f,g\rangle_{\Delta} := \int_{S} \nabla f(x) \cdot \nabla g(x) \, dA$

"Motivated" by finite-dimensional linear algebra.

Laplace-Beltrami operator

What is Divergence?

$$\mathbf{v}: \mathcal{M} \to \mathbb{R}^3 \text{ where } \mathbf{v}(\mathbf{p}) \in T_{\mathbf{p}}\mathcal{M}$$
$$d\mathbf{v}_{\mathbf{p}}: T_{\mathbf{p}}\mathcal{M} \to \mathbb{R}^3$$
$$\{\mathbf{e}_1, \mathbf{e}_2\} \subset T_{\mathbf{p}}\mathcal{M} \text{ orthonormal basis}$$

$$(\nabla \cdot \mathbf{v})_{\mathbf{p}} := \sum_{i=1}^{2} \langle \mathbf{e}_i, d\mathbf{v}(\mathbf{e}_i) \rangle_{\mathbf{p}}$$

Things we should check (but probably won't):

• Independent of choice of basis

•
$$\Delta = -\nabla \cdot \nabla$$

Extra lecture segment: Motivation for this formula

Flux Density: Backward Definition

$$\nabla \cdot \mathbf{v}(\mathbf{p}) := \lim_{r \to 0} \frac{\oint_{\partial B_r(\mathbf{p})} \mathbf{v} \cdot \mathbf{n}_{\text{tangent}} \, d\ell}{\operatorname{vol}(B_r(\mathbf{p}))}$$

Sanity Check: Local Version

$$f: \mathcal{M} \to \mathbb{R}$$

Pullback: $\sigma^* f := f \circ \sigma : U \to \mathbb{R}$

Laplace-Beltrami coincides with Laplacian on \mathbb{R}^2 when σ takes x, y axes to orthonormal vectors.

Eigenfunctions

Vibration modes of surface (not volume!)

Chladni Plates

https://www.youtube.com/watch?v=CGiiSlMFFlI

Practical Application

https://www.youtube.com/watch?v=3uMZzVvnSiU

Nodal Domains

Theorem (Courant). The *n*-th eigenfunction of the Dirichlet boundary value problem has at most *n* nodal domains.

Additional Connection to Physics

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation

Spherical Harmonics

https://en.wikipedia.org/wiki/Spherical_harmonics

Weyl's Law

$$N(\lambda) := \# \text{ eigenfunctions } \leq \lambda$$
$$\omega_d := \text{volume of unit ball in } \mathbb{R}^d$$
$$\lim_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{d/2}} = (2\pi)^{-d} \omega_d \text{vol}(\Omega)$$
$$\text{Corollary: } \text{vol}(\Omega) = (2\pi)^d \lim_{R \to \infty} \frac{N(R)}{R^{d/2}}$$
For surfaces: $\lambda_n \sim \frac{4\pi}{\text{vol}(\Omega)} n$

Laplacian of xyz function

The Laplacian Operator

Justin Solomon

6.838: Shape Analysis Spring 2021

Extra: Divergence Justin Solomon

6.838: Shape Analysis Spring 2021

