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 Dimensionality reduction

 Embedding

 Parameterization

 Manifold learning
…



Given pairwise distances
extract an embedding.

Is it always possible?
Embedding into which space?

What dimensionality?



Ordered pair (M, d) where M is a set and 𝒅:𝑴 ×𝑴 → ℝ satisfies





Isometry [ahy-som-i-tree]:
A map between metric spaces 
that preserves pairwise 
distances.



Can you always embed
a metric space 

isometrically in ℝ𝒏?



Can you always embed 
a finite metric space 
isometrically in ℝ𝒏?



https://chiasme.wordpress.com/2013/10/07/when-does-a-finite-metric-space-embed-isometrically-into-an-euclidean-space/



Proposition. Every finite metric space embeds 
isometrically into ℓ∞(ℝ

𝒏) for some 𝒏.
Extends to infinite-dimensional spaces!





http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf





http://ttic.uchicago.edu/~harry/teaching/pdf/lecture3.pdf
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Isometry [ahy-som-i-tree]:
A map between metric spaces 
that preserves pairwise 
distances.



Given:

Reconstruct:

Alternative notation:



Gram Matrix [gram mey-triks]:
A matrix of inner products





Torgerson, Warren S. (1958). Theory & Methods of Scaling.

Extension: Landmark MDS



https://en.wikipedia.org/wiki/Multidimensional_scaling#/media/File:RecentVotes.svg





where 𝒑 contains squared distances to landmarks.

de Silva and Tenenbaum. (2004). “Sparse Multidimensional Scaling 
Using Landmark Points.” Technical Report, Stanford University, 41.



de Leeuw, J. (1977), “Applications of convex analysis to multidimensional scaling” Recent 
developments in statistics, 133–145.

SMACOF:
Scaling by Majorizing a Complicated Function





Lemma. Define

Then, 

with equality exactly when 𝑋 ∝ 𝑍.

Proof using Cauchy-Schwarz.

See Modern Multidimensional Scaling (Borg, Groenen)





Majorization-Minimization  
(MM) algorithm

Image from “Sparse Modeling for Image and Vision Processing” (Mairal, Bach, and Ponce)





Image from “Data Visualization with Multidimensional Scaling” (Buja et al.)





Cares more about preserving small distances

Classical MDS Sammon

http://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_mds_combined.pdf

Sammon (1969). “A nonlinear 
mapping for data structure 

analysis.” IEEE Transactions on 
Computers 18.
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Extrinsic embedding
All distances equally important

Intrinsic embedding
Locally distances more important



Image:  HEVEA Project/PNAS



Tenenbaum, de Silva, Langford.  
“A Global Geometric Framework for Nonlinear Dimensionality Reduction.” Science (2000).

 Construct neighborhood graph
k-nearest neighbor graph or 𝜺-neighborhood graph

 Compute shortest-path distances
Floyd-Warshall algorithm or Dijkstra

 Classical MDS
Eigenvalue problem



https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm



 Construct neighborhood graph
k-nearest neighbor graph or 𝜺-neighborhood graph

 Compute some shortest-path distances
Dijkstra:  𝑶 𝒌𝒏 𝑵 log 𝑵 , n landmarks, N points

 MDS on landmarks
Smaller 𝒏 × 𝒏 problem

 Closed-form embedding formula
𝜹(𝒙) vector of squared distances from x to landmarks



 Construct neighborhood graph
k-nearest neighbor graph or 𝜺-neighborhood graph

 Analysis step:  Compute weights 𝑾𝒊𝒋

 Embedding step:  Minimum eigenvalue problem







ISOMAP LLE

Global distances Local averaging

k-NN graph distances k-NN graph weighting

Largest eigenvectors Smallest eigenvectors

Dense matrix Sparse matrix

Image from “Incremental Alignment Manifold Learning.”  Han et al.  JCST 26.1 (2011).



Coifman, R.R.; S. Lafon. (2006). “Diffusion maps.” Applied and 
Computational Harmonic Analysis. 21: 5–30. 

 Construct similarity matrix
Example:

 Normalize rows

 Embed from k largest eigenvectors



Images/table from:  Rabinovich et al. “Scalable Locally Injective Mappings.”
Line search:  Smith & Schaefer.  “Bijective Parameterization with Free Boundaries.”

• Key consideration: Injectivity
• Connection to PDE





Huge zoo
of embedding techniques.

Each with different theoretical properties:  Try them all!

But what if the distance matrix is incomplete or noisy?



Dhillon, Sra, Tropp. “Triangle Fixing Algorithms 
for the Metric Nearness Problem.” NIPS 2004.



Alfakih, Khandani, and Wolkowicz.  “Solving Euclidean distance matrix completion 
problems via semidefinite programming.” Comput. Optim. Appl., 12 (1999).



Alfakih, Khandani, and Wolkowicz.  “Solving Euclidean distance matrix completion 
problems via semidefinite programming.” Comput. Optim. Appl., 12 (1999).



 Is my data embeddable?

 Can you compute intrinsic dimensionality?

 Are two metric spaces isometric?

 How similar are two metric spaces?

 What is the average of two metric spaces?

 Can I embed into non-Euclidean spaces?





Typical approaches:

 Parameterize a distance 𝒅(⋅,⋅) directly
Example:  Mahalanobis metric 𝑑 𝑥, 𝑦 ≔ 𝑥 − 𝑦 ⊤𝐴 𝑥 − 𝑦 , 𝐴 ≽ 0

 Use closed-form distances on a kernel space
Example:  Network embedding 𝑥 ↦ 𝜙𝜃(𝑥)



Preserve proximity relationships
Useful for downstream tasks

𝝓𝜽 can be interpreted as a kernel

“Feature vector”



Bound constraints:

Hinge loss:

Triplet loss:

From  “Metric Learning:  A Survey” (Kulis 2013)



Skip-gram architecture:
Predict neighborhood of 
a word



t-distributed stochastic neighbor embedding

1. Compute probabilities on input data xi

Likelihood of choosing j as a neighbor under 
Gaussian prior at i (σ is perplexity, or variance)

2. Symmetrize

2. Optimize for an embedding

Find low-dimensional points yi whose heavy-tailed 
Student t-distribution resembles p.  (Gradient descent!)

[van der Maaten and Hinton 2008]



Heavy tails

https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1

Intuition:
Overcome curse of dimensionality

https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1


https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1

https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1


“How to Use t-SNE Effectively” (Wattenberg et al., 2016)
https://distill.pub/2016/misread-tsne/

https://distill.pub/2016/misread-tsne/


UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (McInnes, Healy)
Comparison:  https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
Nice article: https://pair-code.github.io/understanding-umap/

Embeds a “fuzzy simplicial complex”

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://pair-code.github.io/understanding-umap/
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