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What is a curve?



Defining “Curve”

7v:R — R? R2

— R

A function?






Different from Calculus




Graphs of Smooth Functions




Geometry of a Curve

A curveis a

set of points

with certain properties.

It is not a function.



Geometric Definition

)

Set of points that locally looks like a line.



Differential Geometry Definition




Formal Statement

Definition 3.1 (Differentiable curve in R"). A differentiable curve in IR" is a set of points C C R"
with the property that for every p € C there exists an open neighborhood U C R" containing p and a
smooth function 7yp : (a,b) — CnNU, so that

CNU={7p(t):t€(ab)}

and 'y;,(t) # 0 forall t € (a,b). The function vyp is known as a local parameterization of C at p.

Tp : (a,b) = CNU



Parameterized Curve

Now this is OK!

\

~v(t) : (a,b) = R"

(#) £ 0 Vi € (a,b)

R?’L




Some Vocabulary

Trace of parameterized curve

() -t € (a,b)} € R”

Component functions

() = (2(),y(t), 2(1))



Change of Parameter

tHwoé(t)

Geometric measurements should be

Invariant
to changes of parameter.




Dependence of Velocity

Y(t) == v(o(t))

Effect on velocity and acceleration?






Arc Length

b
/ Iy (8)]]2 dt

Independent of parameter!



/a Iy (8)]]2 dt



Parameterization by Arc Length

t=¢osS(t) fonctions
Y(s) =0 ¢(s)
Constant-speed parameterization



Moving Frame in 2D




Philosophical Point

Differential geometry “should” be
coordinate-invariant.

Referring to x and y is a hack!

(but sometimes convenient...)



How do you
describe a curve
without coordinates?



Turtles All The Way Down

i (11\;%))) B (_f<s> K%S)) (1‘52%)

Signed curvature K is rate of
change of turning angle 6.

T(s) = cosf(s)e + sinf(s)er __________________ AT
K(s) = 60'(s) T

Use coordinates from the curve to
express its shape!






Radius of Curvature

\S
K\{S

https://www.quora.com/What-is-the-base-difference-between-radius-of-curvature-and-radius-of-gyration



Fundamental theorem of the
local theory of plane curves:

K(s) distinguishes a planar
curve up to rigid motion.



Fundamental theorem of the
local theory of plane curves:

K(s) distinguishes a planar
curve up to rigid motion.



T(s) := (cosf(s),sinb(s))
— k(s) :=0'(s)

Image from DDG course notes by E. Grinspun

Provides intuition for curvature



Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sgo6-courseo1.pdf



b
Wivy| = %/@ k(s)ds € 7

W]y]is an integer, and smoothly deforming y does not
affect Wy

+1 -1 +2 0 Image from: Grinspun and Secord, "The
- - Geometry of Plane Curves” (SIGGRAPH 2006)




Frenet Frame: Curves in R3

0 K(S) 0 T(s)
= | —k(s) 0 7($) N(s)
0 —7(s) O B(s)

Binormal: T X N
Curvature: In-plane motion
Torsion: Out-of-plane motion

D)

R — ey
- p—
e s s s
T

e e s S







Fundamental theorem of the
local theory of space curves:

Curvature and torsion
distinguish a 3D curve up to
rigid motion.



Aside: Generalized Frenet Frame

v(s) : R —- R"

() (O al) WA
d e20s) [ | —xi(s) ez(s)
ds : - . .

. . O n—l(S) .

\en(s)/ \ ~Xn—1(s) r ] \eul(s)/

Suspicion: Application to time series analysis? ML?

C.Jordan, 1874

Gram-Schmidt on first n derivatives
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Frenet Frame: Curves in R4

i (11\;%))) B (_f<s> K%S)) (1‘52%)

Signed curvature K is rate of
change of turning angle 6.

T(s) = cosf(s)e + sinf(s)er __________________ AT
K(s) = 60'(s) T

Use coordinates from the curve to
express its shape!



b
Wivy| = %/@ k(s)ds € 7

W]y]is an integer, and smoothly deforming y does not
affect Wy

+1 -1 +2 0 Image from: Grinspun and Secord, "The
- - Geometry of Plane Curves” (SIGGRAPH 2006)




Frenet Frame: Curves in R3

0 K(S) 0 T(s)
= | —k(s) 0 7($) N(s)
0 —7(s) O B(s)

Binormal: T X N
Curvature: In-plane motion
Torsion: Out-of-plane motion

D)

R — ey
- p—
e s s s
T

e e s S




What do these
calculations look like
In software?



Old-School Approach

F(0,1,1)
F(0,0,1) o

£(0,0,0) = f(0) F(1,1,1) = f(1)

Piecewise smooth approximations



What is the arc length of a
cubic Bezier curve?

/ Iy (8)]]2 dt



What is the arc length of a
cubic Bezier curve?

/ Iy (8)]]2 dt

ot known in dosed o




Closed-form
expressions rarely exist.
When they do exist, they
usually are messy.



Only Approximations Anyway

{Bézier curves} C {v:R — R>}



Simpler Approximation

Piecewise linear: Poly-line



Big Problem

Boring differential structure



Finite Difference Approach

1

F'(@) ~ 5 [f(o+h) = f(@)

THEOREM: As Ah — 0, [insert statement].



Reality Check
TH EOREMatement].



Two Key Considerations

Convergence to
continuous theory

Discrete behavior



Examine discrete theories
of differentiable curves.



Examine discrete theories
of differentiable curves.



Pocall,

Signed Curvature on Plane Curves

T(s) = (cosf(s),sinf(s))

v(s) M Gauss map:

Map from curve to its normals.



Turning Numbers




Discrete Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sgo6-courseo1.pdf



Discrete Gauss Map




Discrete Gauss Map




Key Observation




What's Going On?
0 = /ﬁ:ds
§

Integrated curvature



What’'s Going On?

0
9://<;d8 K~
T U1 + 5

Voronoi region

by

Total change in curvature



Interesting Distinction

K1 7 K2
K1 K2

0 0

Same integrated curvature



Interesting Distinction

K1 7 K2

Same integrated curvature



What’'s Going On?
[ R
3§

Total change in curvature



Discrete Turning Angle Theorem




First Variation Formula

kN

decreases
length the
fastest.







For Small 6

Same behavior in the limit



No Free Lunch

Choose one:

Discrete curvature with
turning angle theorem

Discrete curvature from

gradient of arc length




Remaining Question

Does discrete curvature

converge in limit?
Ges!

Under some a&fam/azf/b/(.f/



Remaining Question

Does discrete curvature
converge in limit?

Questions: ¢&6’/

Type of convergence? Under some a&fam/azf/b/(.f/
Sampling?
Class of curves?



Discrete Differential Geometry

Different discrete
behavior

Same convergence



Curves in 3D?

Math:Rules.
Xﬁy

The Chen - Lee Attractor The Thomas Attractor

https://www.behance.net/gallery/7618879/Strange-Attractors
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Application

NMR scanner Kinked alpha helix

Structure Determination of Membrane Proteins Using Discrete Frenet Frame and Solid State NMR Restraints
Achuthan and Quine
Discrete Mathematics and its Applications, ed. M. Sethumadhavan (2006)



Potential Discretization

11— P
TJ _ p]"‘ p]
IPj+1 — Pjll2
Bj = Tj—l X Tj Tk = R(Bk,gk)Tk_l
Nj = Bj X Tj Bk—l—l = R(Tk, Cbk)Bk
Discrete Frenet frame “Bond and torsion angles”

(derivatives converge to Kk
and T, resp.)

Discrete frame introduced in:
The resultant electric moment of complex molecules
Eyring, Physical Review, 39(4):746—748, 1932.



Transfer Matrix

Discrete construction that works for fractal curves
and converges in continuum limit.

Discrete Frenet Frame, Inflection Point Solitons, and Curve Visualization
with Applications to Folded Proteins
Hu, Lundgren, and Niemi
Physical Review E 83 (2011)



Issue
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Segments Not Always Enough

Discrete Elastic Rods
Bergou, Wardetzky, Robinson, Audoly, and Grinspun
SIGGRAPH 2008

http://www.cs.columbia.edu/cg/rods/



Simulation Goal




Adapted Framed Curve

Normal part encodes twist



Bending Energy

1
Frena(I) := 5 / K ds
T

Penalize turning the steering wheel

kN =T’
— (T, . T)T —+ (T, . ml)ml -+ (T, . mg)mg
— (T, y ml)ml —+ (T, . mg)mg

= W1IMq + WwoIny



Bending Energy

1
Ebend(I‘) = 5 / a(w% —Hu%) ds
I'

Penalize turning the steering wheel

kN =T’
— (T, . T)T —+ (T, . ml)ml -+ (T, . mg)mg
— (T, y ml)ml —+ (T, . mg)mg

= W1IMq + WwoIny



Twisting Energy

1
Etwist (F) L= 5 ﬁmz ds

I’

Punish non-tangent change in material frame
) /
m .= 111¢ - INl9
dt

—1m - m'Q €——___Swapping m; and m,
does not affect E;, ;¢!

(m; - mo) — my - ms



Bishop Frame: The Hipster Framed Curve

THERE IS MORE THAN ONE WAY TO FRAME A CURVE
RICHARD L. BISHOP

The Frenet frame of a 3-times continuously differentiable (that is, C3*) non-
degenerate curve in euclidean space has long been the standard vehicle for analysing
properties of the curve invariant under euclidean motions. For arbitrary moving
frames, that is, orthonormal basis fields, we can express the derivatives of the frame
with respect to the curve parameter in terms of the frame itself, and due to ortho-
normality the coefficient matrix is always skew-symmetric. Thus it generally has three
nonzero entries. The Frenet frame gains part of its special significance from the fact
that one ﬁf the three derivatives is always zero. Another feature of the Frenet frame
od to the curve: the members are either tangent to o

to the curve. It is the purpose of this paper to show that there are other frames
which have these same advantages and to compare them with the Frenet frame

. Relatively parallel fields. We say that a normal vector field M along a cu
atively parallel if its derivative is tangential. Such a field turns only whate'”
int is necessary for it to remain nﬂrmal so it is as close to being parallel

ble without losing noggali : e perpendicular to it, a
parallel normal ARl ILLLy meme) fields occur classicall




Bishop Frame

T =QxT
u =0 xu
vV =Q xv

(2 := kB (“curvature binormal”)

Most relaxed frame



Bishop Frame

T =QxT
u =Q xu u -v=0
vV = Q X Vv

(2 := kB (“curvature binormal”)

Most relaxed frame



Curve-Angle Representation

mi; —ucosf +vsin@

mo — —usinf + vcos6

Etwist(F) .= %/F,B(HI)Q ds

Degrees of freedom for elastic energy:
* Shape of curve
* Twist angle



Discrete Kirchoff Rods

Upper index: dual \

Lower index: primal



Discrete Kirchoff Rods

T .= .
le’][2

Tangent unambiguous on edge



Discrete Kirchoff Rods

Turning angle
1
K, - — 2 tan E

Yet another curvature!

Integrated curvature



Discrete Kirchoff Rods

¢i (+B) 2e'~! x e
kB); := — . . .
K; ;= 2tan — T e o lefls + e - e
Orthogonal to osculating plane,
norm K;

Darboux vector



Bending Energy
2

Convert to pointwise and integrate



Discrete Parallel Transport

P(T 1) =T
P(T ' xTY)=T"1'xT"
Map tangent to tangent
Preserve binormal A
Orthogonal
117: _ P,L-(ui_l)

vi=T" x u’



Discrete Material Frame

u’ cosf’ + v'sin 6°

5
u

m;, = —u' sinf’ + v’ cos "




Discrete Twisting Energy

Note 0, can be arbitrary



\omit{physics}
Worth mac//}(///



Extension and Speedup

Discrete Viscous Threads

Miklos Bergou Basile Audoly Etienne Vouga Max Wardetzky Eitan Grinspun
Columbia University UPMC Univ. Paris 06 & CNRS Columbia University Universitidt Gottingen Columbia University
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http://www.cs.columbia.edu/cg/threads/



Extension and Speedup

Discrete Viscous Threads

Miklos Bergou Basile Audoly Etienne Vouga Max Wardetzky Eitan Grinspun
Columbia University UPMC Uniy. Paris 06 & CNRS Columbia University Universitidt Gottingen Columbia University

pmtetIn M s

S

http://www.cs.columbia.edu/cg/threads/



One curve,
three curvatures.

v v
¥ 281N — 2tan —
2 2



Easy theoretical object,
hard to use.



Proper frames and DOFs
go a long way.
m’ = u’ cos " + v'sin 6"

m, = —u sinf’ + v’ cos b’
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http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg
http://www.stat.washington.edu/wxs/images/BUNMID.gif

Surfaces
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