Continuous Curves

Justin Solomon

What is a curve?

Defining "Curve"

A function?

Subtlety

$\gamma(t) \equiv (0,0)$

Not a curve

Different from Calculus

$$\gamma_1(t) = (t, 2t)$$

$$\gamma_2(t) = \begin{cases} (t, 2t) & t \le 1\\ (2(t - \frac{1}{2}), 4(t - \frac{1}{2}) & t > 1 \end{cases}$$

http://sd271.k12.id.us/lchs/faculty/sjacobson/ibphysics/compendium/12_files/imageoo3.jpg

Graphs of Smooth Functions

 $\gamma(t) = (t^2, t^3)$

http://en.wikipedia.org/wiki/Singular_point_of_a_curve

Geometry of a Curve

A curve is a set of points with certain properties.

It is not a function.

Geometric Definition

Set of points that locally looks like a line.

Differential Geometry Definition

Formal Statement

Parameterized Curve

Some Vocabulary

- Trace of parameterized curve $\{\gamma(t):t\in(a,b)\}\subseteq\mathbb{R}^n$

Component functions

$$\gamma(t) = (x(t), y(t), z(t))$$

Change of Parameter

 $t\mapsto\gamma\circ\phi(t)$

Geometric measurements should be invariant to changes of parameter.

Dependence of Velocity

$\tilde{\gamma}(t) := \gamma(\phi(t))$

Effect on velocity and acceleration?

$\tilde{\gamma}(t) := \gamma(\phi(t))$

Arc Length

 $\int \|\gamma'(t)\|_2 dt$

Independent of parameter!

Parameterization by Arc Length

http://www.planetclegg.com/projects/WarpingTextToSplines.html

Moving Frame in 2D

$$\mathbf{T}(s) := \gamma'(s)$$

$$\implies \|\mathbf{T}(s)\|_{2} \equiv 1$$

$$\mathbf{N}(s) := J\mathbf{T}(s) = T'(s)$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\mathbf{N} = \mathbf{N}$$

$$\mathbf{N} = \mathbf{N}$$

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas

Philosophical Point

Differential geometry "should" be coordinate-invariant.

Referring to x and y is a hack!

(but sometimes convenient...)

How do you describe a curve without coordinates?

Turtles All The Way Down

$$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \end{pmatrix} := \begin{pmatrix} 0 & \kappa(s) \\ -\kappa(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \end{pmatrix}$$
Signed curvature κ is rate of change of turning angle θ .
$$T(s) = \cos \theta(s) \mathbf{e}_1 + \sin \theta(s) \mathbf{e}_2$$

$$\pi(s) := \theta'(s)$$

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas

Use coordinates *from* the curve to express its shape!

$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \end{pmatrix} := \begin{pmatrix} 0 & \kappa(s) \\ -\kappa(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \end{pmatrix}$

Radius of Curvature

https://www.quora.com/What-is-the-base-difference-between-radius-of-curvature-and-radius-of-gyration

Fundamental theorem of the local theory of plane curves:

κ(*s*) distinguishes a planar curve up to rigid motion.

Fundamental theorem of the local theory of plane curves:

κ(*s*) distinguishes a planar curve up to rigid motion.

Statement shorter than the name!

Idea of Proof

$$\mathbf{T}(s) := (\cos \theta(s), \sin \theta(s))$$

> $\kappa(s) := \theta'(s)$

Image from DDG course notes by E. Grinspun

Provides intuition for curvature

Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sgo6-courseo1.pdf

Winding Number

$$W[\gamma] := \frac{1}{2\pi} \int_{a}^{b} \kappa(s) \, ds \in \mathbb{Z}$$

$W[\gamma]$ is an integer, and smoothly deforming γ does not affect $W[\gamma]$.

Image from: Grinspun and Secord, "The Geometry of Plane Curves" (SIGGRAPH 2006)

Frenet Frame: Curves in \mathbb{R}^3

$$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix}$$

Binormal: T × N
Curvature: In-plane motion
Torsion: Out-of-plane motion

$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix}$

Fundamental theorem of the local theory of space curves:

Curvature and torsion distinguish a 3D curve up to rigid motion.

Aside: Generalized Frenet Frame

$$\gamma(s): \mathbb{R} \to \mathbb{R}^n$$

Suspicion: Application to time series analysis? ML?

C. Jordan, 1874

Gram-Schmidt on first n derivatives

Continuous Curves

Justin Solomon

Extra: First Variation Formula

Justin Solomon

Discrete Curves

Justin Solomon

Frenet Frame: Curves in \mathbb{R}^2

$$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \end{pmatrix} := \begin{pmatrix} 0 & \kappa(s) \\ -\kappa(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \end{pmatrix}$$
igned curvature κ is rate of change of turning angle θ .
$$T(s) = \cos \theta(s) \mathbf{e}_1 + \sin \theta(s) \mathbf{e}_2$$

$$\pi(s) := \theta'(s)$$

S

Use coordinates *from* the curve to express its shape!

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas

Winding Number

$$W[\gamma] := \frac{1}{2\pi} \int_{a}^{b} \kappa(s) \, ds \in \mathbb{Z}$$

$W[\gamma]$ is an integer, and smoothly deforming γ does not affect $W[\gamma]$.

Image from: Grinspun and Secord, "The Geometry of Plane Curves" (SIGGRAPH 2006)

Frenet Frame: Curves in \mathbb{R}^3

$$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix}$$

Binormal: T × N
Curvature: In-plane motion
Torsion: Out-of-plane motion

What do these calculations look like in software?

Old-School Approach

Piecewise smooth approximations

Question

What is the arc length of a cubic Bézier curve?

$$\int_a^b \|\gamma'(t)\|_2 \, dt$$

Question

What is the arc length of a cubic Bézier curve?

$$\int_{a}^{b} \|\gamma'(t)\|_{2} \, dt$$

Sad fact: **Closed-form** expressions rarely exist. When they do exist, they usually are messy.

Only Approximations Anyway

$\{\text{B\'ezier curves}\} \subsetneq \{\gamma : \mathbb{R} \to \mathbb{R}^3\}$

Simpler Approximation

Piecewise linear: Poly-line

Big Problem

Boring differential structure

Finite Difference Approach

$$f'(x) \approx \frac{1}{h} [f(x+h) - f(x)]$$

THEOREM: As $\Delta h \rightarrow 0$, [insert statement].

Reality Check

Two Key Considerations

Convergence to continuous theory

Discrete behavior

Examine discrete theories of differentiable curves.

Examine discrete theor<u>ies</u> of differentiable curves.

Recall: Signed Curvature on Plane Curves

Turning Numbers

http://mesh.brown.edu/3DPGP-2007/pdfs/sgo6-courseo1.pdf

Discrete Gauss Map

Discrete Gauss Map

Discrete Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sgo6-courseo1.pdf

Key Observation

What's Going On?

What's Going On?

Interesting Distinction

 $\kappa_1 \neq \kappa_2$

Same integrated curvature

Interesting Distinction

 $\kappa_1 \neq \kappa_2$

Same integrated curvature

What's Going On?

Discrete Turning Angle Theorem

First Variation Formula

Discrete Case

For Small θ

http://en.wikipedia.org/wiki/Taylor_series

Same behavior in the limit

No Free Lunch

Choose one:

 Discrete curvature with turning angle theorem

Discrete curvature from
 gradient of arc length

Remaining Question

Does discrete curvature converge in limit? **Ges!** Under some assumptions!

Remaining Question

Does discrete curvature converge in limit?

Questions:

- Type of convergence?
- Sampling?
- Class of curves?

Yes! Under some assumptions!

Discrete Differential Geometry

Different discrete behavior

Same convergence

Curves in 3D?

https://www.behance.net/gallery/7618879/Strange-Attractors
Frenet Frame

$$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix}$$

Application

u'

π - κ

Structure Determination of Membrane Proteins Using Discrete Frenet Frame and Solid State NMR Restraints Achuthan and Quine Discrete Mathematics and its Applications, ed. M. Sethumadhavan (2006)

Potential Discretization

$$egin{aligned} \mathbf{T}_j &= rac{\mathbf{p}_{j+1} - \mathbf{p}_j}{\|\mathbf{p}_{j+1} - \mathbf{p}_j\|_2} \ \mathbf{B}_j &= \mathbf{T}_{j-1} imes \mathbf{T}_j \ \mathbf{N}_j &= \mathbf{B}_j imes \mathbf{T}_j \ \mathbf{Discrete Frenet frame} \end{aligned}$$

 $\mathbf{T}_k = R(\mathbf{B}_k, \theta_k) \mathbf{T}_{k-1}$ $\mathbf{B}_{k+1} = R(\mathbf{T}_k, \phi_k) \mathbf{B}_k$ "Bond and torsion angles" (derivatives converge to κ and τ , resp.)

Discrete frame introduced in: **The resultant electric moment of complex molecules** Eyring, Physical Review, 39(4):746—748, 1932.

Transfer Matrix

$$\begin{pmatrix} \mathbf{T}_{i+1} \\ \mathbf{N}_{i+1} \\ \mathbf{B}_{i+1} \end{pmatrix} = R_{i+1,i} \begin{pmatrix} \mathbf{T}_i \\ \mathbf{N}_i \\ \mathbf{B}_i \end{pmatrix} \mathbf{C}_{i+1}$$

<u>Discrete</u> construction that works for fractal curves and converges in continuum limit.

Discrete Frenet Frame, Inflection Point Solitons, and Curve Visualization with Applications to Folded Proteins Hu, Lundgren, and Niemi Physical Review E 83 (2011)

Frenet Frame: Issue

$$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix}$$

Segments Not Always Enough

http://www.cs.columbia.edu/cg/rods/

Simulation Goal

Adapted Framed Curve

http://www.cs.columbia.edu/cg/rods/

Normal part encodes twist

Bending Energy

$$E_{\text{bend}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \alpha \kappa^2 \, ds$$

Penalize turning the steering wheel

 $\kappa \mathbf{N} = \mathbf{T}'$

$$= (\mathbf{T}' \cdot \mathbf{T})\mathbf{T} + (\mathbf{T}' \cdot \mathbf{m}_1)\mathbf{m}_1 + (\mathbf{T}' \cdot \mathbf{m}_2)\mathbf{m}_2$$
$$= (\mathbf{T}' \cdot \mathbf{m}_1)\mathbf{m}_1 + (\mathbf{T}' \cdot \mathbf{m}_2)\mathbf{m}_2$$
$$:= \omega_1\mathbf{m}_1 + \omega_2\mathbf{m}_2$$

Bending Energy

$$E_{\text{bend}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \alpha(\omega_1^2 + \omega_2^2) \, ds$$

Penalize turning the steering wheel

 $\kappa \mathbf{N} = \mathbf{T}'$

 $= (\mathbf{T}' \cdot \mathbf{T})\mathbf{T} + (\mathbf{T}' \cdot \mathbf{m}_1)\mathbf{m}_1 + (\mathbf{T}' \cdot \mathbf{m}_2)\mathbf{m}_2$ $= (\mathbf{T}' \cdot \mathbf{m}_1)\mathbf{m}_1 + (\mathbf{T}' \cdot \mathbf{m}_2)\mathbf{m}_2$ $:= \omega_1 \mathbf{m}_1 + \omega_2 \mathbf{m}_2$

Twisting Energy

$$E_{\text{twist}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \beta m^2 \, ds$$

Punish non-tangent change in material frame

$$m := \mathbf{m}'_1 \cdot \mathbf{m}_2$$

$$= \frac{d}{dt} (\mathbf{m}_1 \cdot \mathbf{m}_2) - \mathbf{m}_1 \cdot \mathbf{m}'_2$$

$$= -\mathbf{m}_1 \cdot \mathbf{m}'_2 \longleftarrow \underset{\text{does not affect } E_{twist}!}{\mathsf{Swapping } m_1 \text{ and } m_2}$$

Bishop Frame: The Hipster Framed Curve

THERE IS MORE THAN ONE WAY TO FRAME A CURVE

RICHARD L. BISHOP

The Frenet frame of a 3-times continuously differentiable (that is, C^3) nondegenerate curve in euclidean space has long been the standard vehicle for analysing properties of the curve invariant under euclidean motions. For arbitrary moving frames, that is, orthonormal basis fields, we can express the derivatives of the frame with respect to the curve parameter in terms of the frame itself, and due to orthonormality the coefficient matrix is always skew-symmetric. Thus it generally has three nonzero entries. The Frenet frame gains part of its special significance from the fact that one of the three derivatives is always zero. Another feature of the Frenet frame is that it is *adapted* to the curve: the members are either tangent to or perpendicular to the curve. It is the purpose of this paper to show that there are other frames which have these same advantages and to compare them with the Frenet frame.

Relatively parallel fields. We say that a normal vector field M along a cur atively parallel if its derivative is tangential. Such a field turns only whater int is necessary for it to remain normal, so it is as close to being parallel ble without losing normality. Since its derivative is perpendicular to it, a parallel normal fie (couldn't decide on a meme) h fields occur classically in

Bishop Frame

 $\mathbf{\Omega} := \kappa \mathbf{B} \; (\text{``curvature binormal''})$

Darboux vector

http://www.cs.columbia.edu/cg/rods/

Most relaxed frame

Bishop Frame

 $\mathbf{\Omega} := \kappa \mathbf{B} \; (\text{``curvature binormal''})$

Darboux vector

http://www.cs.columbia.edu/cg/rods/

Most relaxed frame

Curve-Angle Representation

$$\mathbf{m}_{1} = \mathbf{u}\cos\theta + \mathbf{v}\sin\theta$$
$$\mathbf{m}_{2} = -\mathbf{u}\sin\theta + \mathbf{v}\cos\theta$$
$$1 \int d\mathbf{u}d\theta$$

$$E_{\text{twist}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \beta(\theta')^2 \, ds$$

Degrees of freedom for elastic energy:

- Shape of curve
- Twist angle θ

$$\mathbf{T}^i := rac{\mathbf{e}^i}{\|\mathbf{e}^i\|_2}$$

Tangent unambiguous on edge

Integrated curvature

$$\kappa_i := 2 \tan \frac{\phi_i}{2}$$

Yet another curvature!

$$(\kappa \mathbf{B})_i := \frac{2\mathbf{e}^{i-1} \times \mathbf{e}^i}{\|\mathbf{e}^{i-1}\|_2 \|\mathbf{e}^i\|_2 + \mathbf{e}^{i-1} \cdot \mathbf{e}^i}$$

Orthogonal to osculating plane, norm κ_i

Darboux vector

Bending Energy

 $E_{\text{bend}}(\Gamma) := \frac{\alpha}{2} \sum_{i} \left(\frac{(\kappa \mathbf{B})_i}{\ell_i/2} \right)^2 \frac{\ell_i}{2}$ $= \alpha \sum_{i} \frac{\|(\kappa \mathbf{B})_i\|_2^2}{\ell_i}$

Convert to pointwise and integrate

Discrete Parallel Transport

$$P_i(\mathbf{T}^{i-1}) = \mathbf{T}^i$$
$$P_i(\mathbf{T}^{i-1} \times \mathbf{T}^i) = \mathbf{T}^{i-1} \times \mathbf{T}^i$$

- Map tangent to tangent
 Preserve binormal
 Orthogonal
- Orthogonal

$$\mathbf{u}^{i} = P_{i}(\mathbf{u}^{i-1})$$
$$\mathbf{v}^{i} = \mathbf{T}^{i} \times \mathbf{u}^{i}$$

Discrete Material Frame

http://www.cs.columbia.edu/cg/rods/

Discrete Twisting Energy

Note θ_0 can be arbitrary

Simulation

\omit{physics} Worth reading!

Extension and Speedup

http://www.cs.columbia.edu/cg/threads/

Extension and Speedup

http://www.cs.columbia.edu/cg/threads/

Morals

One curve, three curvatures.

 $2\sin\frac{\theta}{2} \qquad 2\tan\frac{\theta}{2}$

Morals

Easy theoretical object, hard to use.

$$\frac{d}{ds} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{B}(s) \end{pmatrix}$$

Morals

Proper frames and DOFs go a long way.

$$\mathbf{m}_{1}^{i} = \mathbf{u}^{i} \cos \theta^{i} + \mathbf{v}^{i} \sin \theta^{i}$$
$$\mathbf{m}_{2}^{i} = -\mathbf{u}^{i} \sin \theta^{i} + \mathbf{v}^{i} \cos \theta^{i}$$

Next

http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg http://www.stat.washington.edu/wxs/images/BUNMID.gif

Surfaces

Discrete Curves

Justin Solomon

6.838: Shape Analysis Spring 2021

