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Review and Notation

(Column) vector: x € R"
Matrix: A € R¥*¢
Transpose: x| € R AT ¢ REXF

Useful shorthand:

Dot product: XTy

Quadratic form: XTAy



More Notation

Standard basis: {ex},_;

— V—ZU €/



Two Roles for Matrices

r operator (map):

Lix+y| = Lix| + L[y
L|cx| = cL|x] Lix| = Ax
Quadratic form (dot product):
g(u,v) =g(v,u)
glau,v) = ag(u,v)
glu+v,w)=guw)+g(v,w)
g(uv 11) >0 — TBV






glau,v) = ag(u,v)

(u+v,w)=g(u,w)+g(v,w




Einstein Notation

Sum repeated upper/lower indices



Same Data Structure, Two Uses

Map between vector spaces L[X] — Ax

g(u,v) = u' Bv

ccos(zy/1z11y1)|

\ ar
: Protip: .
https://mathin org/image/lin transformation_2d_m2_o_o_ Know your |nPUt and OUtPU

Matrlces obscure geometry
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Quadratic Form

g(u,v) = g(u"ey, v'ey)
— uFvlgley, ep)

k, L
— WU gy



Typechecking

(L} 1y - L (o' (o piof\  [w!)

L2 L3 - L2 || 2P Y Lok w?

\LyoLyo-eonr) \ot)  \Ep k) \w)

g(u,v) = g(u"ey, v'e,
= uFvlqler, e

— uFolgy,

Upper/lower indices matter



To Ponder At Home

Describe in Einstein notation:

min ixTAX —x'bl — Ax=b
X

What's up with A?



New Terminology

A X
—— =~

matrix vector

X — AxX
R/—/

linear operator



Abstract Example: Linear Algebra

> (R)
Llf] =~ 1)ar

Eigenvectors?
[“Eigenfunctions!”]



Back. to reality:

Linear System of Equations

A

>
|
U

Simple “inverse problem”



Common Strategies

Gaussian elimination
O(n3) time to solve Ax=b or to invert

But: Inversion is unstable and slower!

Never ever compute At if you can avoid it.



Interesting Perspective
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Example of a Structured Problem

1 -2 1 J1 g1
1 —2 1 /o go

1 -2 1 . In



Linear Solver Considerations

Never construct A1 explicitly
(if you can avoid it)

Added structure helps
Sparsity, symmetry, positive definiteness,
bandedness

inv(A)*b < (A’*A)\ (A’xb) < A\Db



Two Classes of Solvers

Direct (explicit matrix)
Dense: Gaussian elimination/LU, QR for least-squares
Sparse: Reordering (SuiteSparse, Eigen)

Iterative (apply matrix repeatedly)
Positive definite: Conjugate gradients
Symmetric: MINRES, GMRES
Generic: LSQR



Very Common: Sparsity

Induced by the connectivity of
siaseeus the triangle mesh.

e

]
2

= T i
e i

|
1

el

Iteration of CG has local effect
= Precondition!




For 6.838

No need to implement a linear solver

If a matrix is sparse, your code should
store It as a sparse matrix!

= O X
es Sparse Arrays - The Julia Languac X +
<« C & httpsy//docsjulialang.org i ® ’ H
@ (I:)O » Standard Library » Sparse Arrays ©) Edit on GitHub
‘I w0 v Sparse Arrays
Julia has support for sparse vectors and sparse matrices in the SparseArrays stdlib module. Sparse arrays are
arrays that contain enough zeros that storing them in a special dat4 — = =

Home execution time, compared to dense arrays. 4\ Sparse Matrices - MATLAB & Sin X+
Manual & C & httpsy//www.mathworks.com i (%] ‘ H

Getting Started

T .

Variables compressed Sparse Column (CSC) Sparse M ‘\ I\ﬂath\-‘vorks Products  Solutions  Academia Support Community — Events

Integers and Floating-Point In Julia, sparse matrices are stored in the Compressed Sparse Colu(l Dle e Pl 111=18110 (o]t BRERAL Examples Functions

Mumbers the type SparseMatrixCSC{Tv, T1}, where Tv is the type of the st

) . storing column pointers and row indices. The internal representati Close § TrialSoftware  § ProductUpdates & Translate This Page
Mathematical Operations and )
Elementary Functions « Documentation Home S parse Matrices 2018
areeM Ccec{Tv = e - OEer
struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSp «l Elementary sparse matrices, reordering algorithms, iterative methods, sparse linear algebra
Complex and Rational Numbers m::Int « Mathematics
n::Int « Mahematies Sparse matrices provide efficient storage of double or logical data that has a large percentage of zeros. While full (or dense) matrices store every single element in
Strings I T memory regardless of value, sparse matrices store only the nonzero elements and their row indices. For this reason, using sparse matrices can significantly reduce the
¢ e e Elementary Math amount\rof E‘lemor\f required for data storage. i e ? ’
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Aside: Matrix Calculus

[ Matrix Calculus b4 + — ] x
The Mat riX CO Okb O Ok < C @ Notsecure | www.matrixcalculus.org ¥ ® ‘
[ http://matrixcookbook.com ] Malrix Calculus  Documentation  About
Kaare Brandt Petersen Matrix Calculus

Michael Syskind Pedersen

: P; P MatrixCalculus provides matrix calculus for everyone. It is an online tool that computes vector and matrix derivatives {matrix calculus
VERSION: NOVEMBER 15, 2012 P ¥ P )

Examples Operators Error Messages
derivative of | ¢ "A*x + c*sin(y)"*x wrt., x v
0.5-x7-A-x
a ., 4 . T T ; . T Syt
d—[r “A-z+c-sin(y) -z)=2-z - A+ (c-sin(y)) 0.5"%"A"X
T
A - exp(x)
where
sin(x)” -y
Aisa  Symmetric Matrix v : :
Python  Latex yev) -x
cisa Scalar v Comman subes Ssior
xisa v m GD
yisa Vector v lA-x - y|2
Yl

sum(log(exp(—y @ (X -w))+1))




Optimization Terminology

mianR" f(X)
s.t.g(x) =0
h(x) > 0

Objective (“Energy Function”)



Optimization Terminology

mianR" f(X)

s.t.g(x) =0
h(x) > 0

Equality Constraints



Optimization Terminology

mianR" f(X)

s.t.g(x) =0
h(x) > 0

Inequality Constraints



Differential

df (V) = }112% f(x0 + h\}? — f(Xo0)

Proposition. df,, is alinear operator.

(V) = VI x0) Y g

1

Vo




Notions from Calculus

f:R"— R
([ Of Of of
V= (8331’8332"”’83:”>

Gradient



Notions from Calculus

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Jacobian



Notions from Calculus

http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif

Hessian



Optimization to Root-Finding

Vfx)=0

(unconstrained)

Saddle point Local max

Local min

Critical point



Encapsulates Many Problems

minyern f(X)

s.t. g(x) =0
h(x) >0

Ax =b < f(x) = ||Ax = b
Ax=Ax & f(x)=|Ax|2, g(x)=|Ix[[2 -1
Roots of g(x) < f(x) =0



How effective are
generic
optimization tools?



How effective are
generic
optimization tools?



Try the
simplest method first.



Quadratic with Linear Equality

miny lX Ax —b'x+c
S.t. MX—V

(assume A is symmetric and positive definite)






Quadratic with Linear Equality

min, %XTAX —b'x+c¢

s.t. Mx=v

(assume A is symmetric and positive definite)

|

(a0 ) (3)=(+)



Special Case: Least-Squares

1
min §HAX — b5

1
— min §XTATAX b Ax + HbH%

— A'Ax=A'b

Normal equations
(better solvers for this case!)



Example: Mesh Embedding

Combinatorial

,/Atﬂ‘l
22N\
)'/‘:5";;‘"‘
2N

-

Conformal

G. Peyré, mesh processing course slides



Linear Solve for Embedding

minxl,...,x|v| Z(z,j)EE ijHX’L _XJH%
s.t. x, fixed Yv € V}

w;; = 1: Tutte embedding
w;; from mesh: Harmonic embedding

Assumption: w symmetric.



Returning to Parameterization

minxl,...,x|v| Z(z,j)EE ijHX’L _XJH%
s.t. x, fixed Yv € V}

What if
Vo = 17




Nontriviality Constraint

S.t. XH2 = ]

{ miny || Ax|2 } — A Ax = \x

Prevents trivial solution x = 0.

Extract the smallest eigenvalue.



Back to Parameterization

Mullen et al. “Spectral Conformal Parameterization.” SGP 2008.

m&n u' Lcu +—  L.u= \Bu

uT Be=0 <+— Easy fix
u' Bu=1



Unconstrained Optimization

min f(x
X ]

Unstructured.



Basic Algorithms

J(80,8,) .

0,

Xk+1 — X — Oéka(Xk;)
Gradient descent



Basic Algorithms

Xp1 = Xp, — [H f(x1)] 7V f(xx)

2
®
3

Newton’s Method




Example: Shape Interpolation

Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights 0, 0.25, 0.5, 0.75, 1.0.

Frohlich and Botsch. “Example-Driven Deformations Based on Discrete Shells.” CGF 2011.



Interpolation Pipeline

Roughly:
1. Linearly interpolate edge lengths and dihedral
angles.

0 = (1 — )00 + ¢!
p* = (1 —1)8° + o}

2. Nonlinear optimization for vertex positions.

min A we(le(z) — £5)

---’




Matlab: £fminunc orminfunc
C++: 1ibLBFGS, d1ib, others

Typically provide functions for function and
gradient (and optionally, Hessian).

Try several!



Lagrange Multipliers: Idea

miny, f(x)

s.t. g(x)




Lagrange Multipliers: Idea

miny, f(x)
V9N s.t. g(x)=0

- Decrease f: —Vf
- Violate constraint: £Vg



Lagrange Multipliers: Idea

miny, f(x)
s.t. g(x)

|
-




Example: Symmetric Eigenvectors

flz)=z' Az = Vf(z) =24z
g(x) = ||zl = Vg(z) =2z
— Ax = A\x



Use of Lagrange Multipliers

Turns constrained optimization into

unconstrained root-finding.
Vi(z) = AVg(x)
g(x) =0



Example: Polycube Maps

Note: Final method includes more terms!




Advanced Topic: Variational Calculus

Sometimes your unknowns
are not numbers!

Can we use calculus to optimize anyway?



Gateaux Derivative

d
dF [u; ] := o Flu+ hp]|n=0
Vanishes for a|/|\lll at a critical point!

Analog of derivative at v in ¢ direction
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