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Previously

Map between two shapes.




Question

What happens if you compose
these maps?

o




What do you expect if
you compose
around a cycle?



Cycle consistency
[sahy-kuh | kuh n-sis-tuh n-seel:

Composing maps in a cycle
vields the identity



Philosophical Point

You should have a good reason if your
correspondences are inconsistent.




An Unpleasant Constraint

P1(P2(p3(x))) = 1d

Cycle consistency



Contrasting Viewpoint
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Sampling of methods for
consistent correspondence.

Spanning tree
Inconsistent cycle detection
Convex optimization



Holy Grall

Simultaneously optimize
all maps in a collection.
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Joint Matching: Simplest Formulation

Input
N shapes
N2 maps (see last lecture)

Output

Cycle-consistent
approximation



Spanning Tree: Original Context

“"Automatic Three-Dimensional Modeling from Reality” (Huber, 2002)

Multi-view registration



Unsurprisingly...

Given: Model graph G = (S, F)
Find: Largest consistent spanning tree

“"Automatic Three-Dimensional Modeling from Reality” (Huber, 2002)

NP-hard



Heuristic Algorithm
i




(a) Q¢ = 115 (h) Q¢ = 97.3 (¢c) Qc = 69.9 (d) Q¢ = —3183

Figure 3.13: Global quality values for several versions of the squirrel model. The model hypothesis
is shown in the top row with the corresponding 3D visualization in the bottom row. a) Correct
model. b) Correct model with a single view detached; c¢) Correct model split into equally sized two
parts (only one part shown in 3D). d) Model with one error.

Many spanning trees
Single incorrect match can destroy the maps



Inconsistent Loop Detection

Large for inconsistent cycles

max ZL,OLSCL
s.t. xp > x. Ve € L

{a) Images (b) Relation graph

x, =1 for false positive edge
x, = max of x, over loop

¥i

(d) Erroneous relations (c) Error statistics (mean error shown)

“Disambiguating Visual Relations Using Loop Constraints” (Zach et al., CVPR 2010)



Relationship: Consistency vs. Accurac

DOL: 10.1111/).1467-8659.2011.02022 x

Eurographics Symposium on Geometry Processing 2011 Volume 30 (201 1), Number 5
Mario Botsch and Scott Schaefer
(Guest Editors)

An Optimization Approach to
Improving Collections of Shape Maps

Andy Nguyn‘nt Mirela Ben-Chen' Katarzyna Welnicka® Yinyu Ye! Lconidas Guibas'

I'Stanford University

Technical University of Denmark Definition 3 Given a collection of maps M, let B(M) =

{m; j € M | Eacc(m; j) > 0} — the collection of inaccurate

Abstract maps. Then we say that M is almost accurate, if there do

Finding an informative, structure-preserving map between two shapes has been a long-standing problen not exiqt two mapq my,mo c B(M) Wthh bOth belono to
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Fuzzy Correspondences
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Exploring Collections of 3D Models using Fuzzy Correspondences (Kim et al., SIGGRAPH 2012)



Fuzzy Correspondences: Idea

Compute Nk x Nk similarity matrix
Same number of samples per surface
Align similar shapes

Compute spectral embedding

. . d d 2
Use as descriptor: Display e~ |di~dj]



Consistent Segmentation

single-shape segmentation
I __

Jjoint shape segmentation
__

choose

“Joint Shape Segmentation with Linear Programming”
(Huang, Koltun, Guibas; SIGGRAPH Asia 2011)



Joint Segmentation: Motivation

Structural similarity of segmentations

Extraneous geometric clues

Single shape segmentation Joint shape segmentation
[Chen et al. 09] [Huang et al. 11]

“Joint Shape Segmentation with Linear Programming”
(Huang, Koltun, Guibas; SIGGRAPH Asia 2011; slides provided by authors)



Joint Segmentation: Motivation

Structural similarity of segmentations

Low saliency

Single shape segmentation Joint shape segmentation
[Chen et al. 09] [Huang et al. 11]

“Joint Shape Segmentation with Linear Programming”
(Huang, Koltun, Guibas; SIGGRAPH Asia 2011; slides provided by authors)



Joint Segmentation: Motivation

(Rigid) invariance of segments

Articulated structures

Single shape segmentation Joint shape segmentation
[Chen et al. 09] [Huang et al. 11]

“Joint Shape Segmentation with Linear Programming”
(Huang, Koltun, Guibas; SIGGRAPH Asia 2011; slides provided by authors)



Parameterization

Initial subsets of randomized segmentations

._ /QT,— -
not

Randomized Cuts

Initial Segments

“Joint Shape Segmentation with Linear Programming”
(Huang, Koltun, Guibas; SIGGRAPH Asia 2011; slides provided by authors)



Segmentation Constraint/Score

Each point covered by one segment

lcover(p)| =1Vpe W

Avoid tiny segments

score(S) = Z area(s) - repetitions,
sES

“Joint Shape Segmentation with Linear Programming”
(Huang, Koltun, Guibas; SIGGRAPH Asia 2011; slides provided by authors)



Consistency Term

Defined in terms of mappings
Oriented
Partial

A
\ |

&

~

Many-to-one correspondences Partial similarity

“Joint Shape Segmentation with Linear Programming”
(Huang, Koltun, Guibas; SIGGRAPH Asia 2011; slides provided by authors)



Multi-Way Joint Segmentation

Objective function

f)score(si)-l— >,  consistency(S;, S;)
1=1 (SZ',Sj)Eg

/ Pairwise joint Multlwayjomt segmentation
segmentation

lﬁ e @\, "y

See paper: Linear program relaxation

vy




Can you extract
consistent maps in a
globally optimal way?



Basic Setup

1 0 O 0
0 0 O 1
0 1 0 0
0 0 1 0

Map as a permutation matrix



What is the inverse of a
permutation matrix?



Discrete Relaxation

1 0 O 0
0 0 O 1
0 1 0 0

Map as a doubly-stochastic matrix



Basic Setting

Given n objects
Each object sampled with m points

“Consistent Shape Maps via Semidefinite Programming” (Huang & Guibas, SGP 2013)



Map Collection: Matrix Representation
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» Diagonal blocks are
identity matrices

» Off diagonal blocks are
permutation matrices

» Symmetric



What is the rank of a
consistent map
collection matrix?



Hint: “Urshape” Factorization

» Diagonal blocks are
identity matrices

» Off diagonal blocks are
permutation matrices

» Symmetric




Rank m, Number of Samples




Many Equivalent Conditions

Definition 2.1 Given a shape collection S = {Sj,---,S,} of
n shapes where each shape consists of the same number of
samples, we say a map collection ® = {¢;; : S; = S;[1 <
i, j < n} of maps between all pairs of shapes is cycle consis-
tent if and only if the following equalities are satisfied:

O = ids,, 1<i<n, (1-cycle)
Ojiodij=1ids,, 1<i<j<n, (2-cycle)
OrioOjp00;j=1ids,, 1<i<j<k<n, (3-cycle) (1)

where idg, denotes the identity self-map on S;.

Equivalence for binary map matrix ®:
1. ® is cycle-consistent

2. X =Y.'Y;, where Y; = (X;1,..., Xin)
3. X >0



Equivalence for binary map matrix ®:
1. @ is cycle-consistent

2. X =Y,'Y;, where Y; = (X;1,..., Xin)
3. X =0



Approximation by Consistent Maps

maxx ;e p (X Xij)
s.t. X €{0,1}nmxnm

X =0
Xii = Im
X;1=1

119
Xl1=1



Approximation by Consistent Maps

maxx ;e p{Xi}, Xij)
s.t. X € {0, 1} nmxnm
oo
Xii = Im
X;i1=1
X;;1=1



Approximation by Consistent Maps

maxy ) _iep(Xijs Xij)
s.t. X €40,1}rmxnm
x =0 KM
Xii = I,
X;i1=1
X;;1=1



Approximation by Consistent Maps

maxx ;e p (X Xij)
s.t. X €{0,1}nmxnm
X>=0 |




Approximation by Consistent Maps

maxx ;e p (X Xij)
s.t. X €{0,1}nmxnm

X =0
X;i = 1,
X;1=1

119
Xl1=1



Approximation by Consistent Maps

maxy ) iep(Xijs Xij)
s.t. X €{0,1}nmxnm
X =0
Xii = I
X;i1=1
Xgl —1




Approximation by Consistent Maps

maxx ;e p (X Xij)
s.t. X € {0, 1} nmxnm

Nonconvex!

X;i1=1
X;1:1




Convex Relaxation

maxx ) _;jep(Xiy, Xij)
s.t. X >0
X =0
Xii = Iy
X;i1=1
X;;1=1



Rounding Procedure

maxy <X, X0>
s.t. X >0
X1=1
X'1=1

Linear assignment problem



Recovery Theorem

Can tolerate 4, /4(n — 1) incorrect
correspondences from each sample on one shape.

A, is algebraic connectivity; bounded above by two times maximum degree

\omit{PrOOf}



Recovery Theorem: Complete Graph

Can tolerate 25% incorrect correspondences from
each sample on one shape.

A, is algebraic connectivity; bounded above by two times maximum degree

\omit{PrOOf}



Phase Transition

0.8
0.7
0.6
v '
=
0.5
0.4
)

i ‘o8 T 180
n: number of objects

Always recovers [ Never recovers
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Weaker Relaxation

Solving the multi-way matching problem by
permutation synchronization

Deepti Pachauri; Risi Kondor® and Vikas Singh*'
_ "Dept. of Computer Sciences, University of Wisconsin-Madison
*Dept. of Biostatistics & Medical Informatics, University of Wisconsin-Madison

§ . s s . H =
Dept. of Computer Science and Dept. of Statistics, The University of Chicago E I g enve cto rre I axatlo n

pachauri@cs.wisc.edu risi@uchicago.edu vsingh@biostat.wisc.edu
of the same problem
Abstract

The problem of matching not just two, but m different sets of objects to each other
arises in many contexts, including finding the correspondence between feature
points across multiple images in computer vision. At present it is usually solved
by matching the sets pairwise, in series. In contrast, we propose a new method,
Permutation Synchronization, which finds all the matchings jointly, in one shot,
via a relaxation to eigenvector decomposition. The resulting algorithm is both
computationally efficient, and, as we demonstrate with theoretical arguments as
well as experimental results, much more stable to noise than previous methods.

1 Introduction

Finding the correct bijection between o012
{z},25,...,z},} is a fundametal probk
texts [1]. In this paper, we consider its g & °*°
Xy Xnyannsyd X, Our primary motivati¢ &
landmarks (feature points) across many -
key ingredient of image registration [2], @ ; ;¢ A
structure from motion (SFM) [8, 9]. HO\% Py
to problems such as matching multiple g E 0.04 :

s . 15 ' ! S
Preseqtly. lrvlulu—m:nchmg is usually §ol\z i e
matching X; to X5, then a permutation - o Yo o dd

san cORCe: F varions otis ies PERSTRE  eilgat. < ‘o
one can conceive of various strategies fi o000} - -~ &5 a5 o0
data are noisy, a single error in the sec m

pairwise matches [12, 13, 14]. In contrast, in this pzip-er we describe a new method, Permutation



Where do the pairwise
Input maps come from?



ossible Extension with Guarantees

BEurographics Symposium on Geometry Processing 2015 Volume 34 (2015), Number 5

Mirela Ben-Chen and Ligang Liu
(Guest Editors)

Tight Relaxation of Quadratic Matching
max tr(WY) (7a)
st ¥ [X][X]] (7b)
Itay Kezurer! Shahar Z. I(Jr_n.'allsk].-'Jr Ronen Basri Yaron Lipman k
X € convlIl, (7¢c)
Weizmann [nstitute of Science
' w try =k (7d)
Y >0 (7e)
2
Z qusf —_ k (Tf)
grst
0, if g=s, r#t
qus! < 0;. if r=t, q 75 k) (?g)
min{Xg,Xst}, otherwise
[
[
Figure 1: Consistent Collection Matching. Results of the proposed one-stage procedure for finding consistent correspondenc — ?
between shapes in a collection showing strong variability and non-rigid deformations. max Ztr (WU Y4 ) : (10a)
XY e '
Abstract b :
Establishing point correspondences between shapes is extremely challenging ax it involves both finding sets of ij vij k N A
semantically persistent feature points, as well as their combinatorial matching. We focus on the latter and consider S.L. (X T Y ) eC Vi< J ( 1 Ob)
the Quadratic Assignment Matching (QAM) model. We suggest a novel convex relaxation for this NP-hard problem ., L
that builds upon a rank-one reformulation of the problem in a higher dimension, followed by relaxation into a xu € DNconv Hn Vi ( | Oc)
semidefinite program (SDP). Our method is shown to be a certain hybrid of the popular spectral and doubly- )
stochastic relaxations of OAM and in particular we prove that it is tighter than both. X>0 (10d)

Experimental evaluation shows that the proposed relaxation is extremely tight: in the majority of our experimenis
it achieved the certified global optimum solution for the problem, while other relaxations tend to produce sub-

optimal solutions, This, however, comes al the price of solving an SDP in a higher dimension.
i Y e it e AE il e FEREY o B

U S B D ol o



Approximate Methods

stent Partial Matching of Shape Collections
via Sparse Modeling

L. Cosmo', E. Rodola®, A. Albarelli', E Mémoli®, D. Cremers”

"University of Venice, Italy  >TU Munich, Germany ~Ohio State University, U.S.

metric distortion and
SN WKS descriptor match

” L]

Figure 1: A partial multi-way correspondence obtained with our approach on a heterogeneous collection of shapes. Qur method
does not require initial pairwise maps as input, as it actively seeks a reliable corresponde

space of joint, cycle-consistent matches. Partially-similar as well as owtlier shapes are aut Input

far by adopting a sparse model for the joint correspondence. A subset of all matches is shav 3 {
Abstract < - Ly \ "C" 7~
Recent efforts in the area of joint object marching approach the problem by raking as ‘ ), ’ 1 =
which are then jointly optimized across the whole collection so that certain accuracy '/ & 4 /
satisfied. One narural requirement is cycle-consistency — namely the fact thar map \ \ \ ey ¥

same result regardless of the path taken in the shape collection. In this paper, we in 5
obrain consistent matches without requiring initial pairwise solurions to be given as i
a joint measure of merric distortion directly over the space of eyele-consistent maps; i
similar and extra-class shapes, we formulate the problem as a series of quadratic pro,
constraints, making our technique a natural candidate for analyzing collections with
The particular form of the problem allows us to leverage results and tools from th 2 ; : - d g :
theory. This enables a highly efficient optimization procedure which assures accur than a threshold; finally, a single multi-way match is extracted by solving problem (11). Second sub-problem: The multi-way
solutions in @ matter of minutes in collections with hundreds of shapes. matches extracted by iterating the previous step are compared using a measure of metric distortion; the final solution (in orange)
is obtained by solving problem (13) over the reduced feasible set.

Figure 6: Our matching pipeline. First sub-problem (from left): Given a collection of shapes as input, a set Q of queries are
generated (e.g., by farthest point sampling in the joint WKS space); we then compute distance maps (shown here as heat maps
over the shapes) in descriptor space from each shape point to each query q; € Q, and keep the vertices having distance smaller

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphic
and Object Modeling—Shape Analysis

1. Introduction this end, a natural and widely accepted criterion is cycle- CG F 2017

indine mafehac ammme smliinde mhianfe jc o racanreh S consistency [ZKP10], namely that composition of maps



Approximate Methods

Multiplicative updates

Entropic Metric Alignment for Correspondence Problems

Justin Solomon* Gabriel Peyré

MIT CNRS & Univ. Paris-Dauphine

Abstract

Many shape and image processing tools rely on computation of cor-
respondences between geometric domains. Efficient methods that
stably extract “soft” matches in the presence of diverse geometric
structures have proven to be valuable for shape retrieval and transfer

c information. With these applications in mind,
ithm for probabilistic correspondence that opti-
gularized Gromov-Wasserstein (GW) objective.
velopments in numerical optimal transportation,
mpact, provably convergent, and applicable to

‘ - " B — ain expressible as a metric measure matrix. We
! £ ! sive experiments illustrating the convergence
o ¥ s i . Booee.. if our algorithm to a variety of graphics tasks.
& L) > L .
- A g %N “ %oy [Kpand entropic GW correspondence to a frame-
* 4 o, tiy ' [ching problems, incorporating partial distance
i e ' o "-\, ««*  @nce, shape exploration, symmetry detection, and
J g S e . A
P = ; yre than two domains. These applications expand
$ % JBic GW correspondence to major shape analysis
#« %, - [able todistortion and noise.
& < ; “u
o & P L8 - s ) .
S pv-Wasserstein, matching, entropy
¥ g & * & Juting methodologies — Shape analysis;
¢ s
« T -
e o 5 ~ o n
g1 t 3
4 4 s + fof the geometry processing toolbox is a tool for
rd 'Y ndence, the problem of finding which points on
. = . espond to points on a source. Many variations
Inconsistent Consistent e been considered in the graphics literature, e.g.

mjn KL(G|AA"

wilh some sparse correspondences provided by the user. Regardless,
the basic task of geometric correspondence facilitates the transfer of
properties and edits from one shape to another.

The primary factor that distinguishes correspondence algorithms
is the choice of objective functions. Different choices of objective
functions express contrasting notions of which correspondences are
“desirable.” Classical theorems from differential geometry and most
modern algorithms consider local distortion, producing maps that
take tangent planes to tangent planes with as little stretch as possible;
<hehilv lareer neichborhoods micht be taken into account bv e o

Vladimir G. Kim Suvrit Sra
Adobe Research MIT

Source Targets

Figure 1: Entropic GW can find correspondences between a source
surface (left) and a surface with similar structure, a surface with
shared semantic structure, a noisy 3D point cloud, an icon, and a
hand drawing. Each fuzzy map was computed using the same code.

are violated these algorithms suffer from having to patch together
local elastic terms into a single global map.

In this paper, we propose a new correspondence algorithm that
minimizes distortion of long- and short-range distances alike. We
study an entropically-regularized version of the Gromov-Wasserstein
(GW) mapping objective function from [Mémoli 201 1] measuring
the distortion of geodesic distances. The optimizer is a probabilistic
matching expressed as a “fuzzy” correspondence matrix in the style
of [Kim et al. 2012; Solomon et al. 2012]; we control sharpness of
the correspondence via the weight of an entropic regularizer.

Although [Mémoli 2011] and subsequent work identified the possi-
bility of using GW distances for geometric correspondence, computa-
tional challenges hampered their practical application. To overcome
these challenges, we build upon recent methods for regularized op-
timal transportation introduced in [Benamou et al. 2015; Solomon
et al. 2015]. While optimal transportation is a fundamentally differ-
ent optimization problem from regularized GW computation (linear
versus quadratic matching), the core of our method relies upon
solving a sequence of regularized optimal transport problems.

Our remarkably compact algorithm (see Algorithm 1) exhibits global
convergence, i.e., it provably reaches a local minimum of the regu-
larized GW objective function regardless of the initial guess. Our
algorithm can be applied to any domain expressible as a metric mea-
sure space (see §2). Concretely, only distance matrices are required
as input, and hence the method can be applied to many classes of
domains including meshes, point clouds, graphs, and even more



Computer Vision Perspective

Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros
Berkeley Al Research (BAIR) laboratory, UC Berkeley

Monet Z_ Photos

Zebras T Horses Summer Z_ Winter

otograph i ' ™ » T Cezanne' ‘
Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Slides courtesy the authors
https://junyanz.github.io/CycleGAN/

Abstract 1. Introduction
Image-to-image translation is a class of vision and
W eraphics problems where the eoal is to learn the mapping

What did Claude Monet see as he place



Paired vs. Unpaired Problems

Paired Unpaired
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Adversarial Networks: Problem
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Cycle-Consistent Adversarial Networks

Small cycle loss
Large cycle loss

. \
Reconstruction S\

error

[Zhu*, Park*, Isola, and Efros, ICCV 2017]



Cycle Consistency Loss

Reconstruction
Reconstruction . error
error .- O«

See similar formulations [Yi et al. 2017], [Kim et al. 2017] [Zhu*, Park*, Isola, and Efros, ICCV 2017]
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More Than Two Domains?

(a) Cross-domain models (b) StarGAN

Choi et al.,, CVPR 2018
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Extra: Angular Synchronization
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