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Surface Correspondence Problems

Which points on one object
correspond to points on another?



Typical Distinction from Registration

Seek shared structure
Instead of alignment




Applications
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Praun et al. 2001

Kraevoy and Sheffer 2004

Texture transfer
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Segmentation transfer




/
i ~
J \Q

Abstraction




Applications
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Image from “Shape Interpolations: Blendshape Math for Meshes"” (https://graphicalanomaly.wordpress.com/)

Blendshape modeling



Applications

Image from “Freesurfer”
(Wikipedia)

Statistical shape analysis



Applications
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“Earliest Record of Platychoerops, A New Species From Mouras Quarry, Mont de Berru, France”
Boyer, Costeur, and Lipman 2012

Paleontology



Mapping problem

Given two (or more) shapes
Find a map f, satisfying the following properties:

Fast to compute
Bijective
(if we expect global correspondence)

Low-distortion
Preserves important features

Adapted from slides by Q. Huang, V. Kim



Geometric Quality of Mappings

What do we need the map for?
Shape interpolation and texture transfer require highly accurate maps

Target Texture Locally and globally Globally accurate,
(projection) accurate map locally distorted map

Slide courtesy Danielle Ezuz



Geometric Quality of Mappings

How can we evaluate map quality?
Given a ground truth map, compute the cumulative error graph
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Slide courtesy Danielle Ezuz



Geometric Quality of Mappings

How can we evaluate map quality?
Given a ground truth map, compute the cumulative error graph
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Geometric Quality of Mappings

How can we evaluate map quality?
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Geometric Quality of Mappings

How can we evaluate map quality?
Measure conformal distortion (angle preservation)
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Geometric Quality of Mappings

How can we evaluate map quality?
Measure conformal distortion (angle preservation)

100 |
" 8o map #2
<{
9 60
.©
—
—
K 4
20
. S
. . o] 0.4 08 1.2 1.6 2
Target Texture Conformal Distortion

Slide courtesy Danielle Ezuz



Today’s Plan

Sampling of surface mapping
algorithms and models.

Graphics/vision bias!



Example: Consistent Remeshing
(Co-Parameterization)
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Kraevoy 2004
Adapted from slides by Q. Huang. V. Kim



Example: Mesh Embedding

Combinatorial
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G. Peyré, mesh processing course slides



Linear Solve for Embedding

minxl,...,x|v| Z(z,j)EE wZJHXZ _XJH%
s.t. x, fixed Yv € V}

w;; = 1: Tutte embedding
w;; from mesh: Harmonic embedding

Assumption: w symmetric.



Tutte Embedding Theorem

minxl,...,x|v| Z(Z,j)EE ijHX?’ _XJH%
s.t. x, fixed Yv € V}

Tutte embedding bijective if w nonnegative and
boundary mapped to a convex polygon.
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“How to draw a graph” (Proc. London Mathematical Society; Tutte, 1963)



Tradeoff: Consistent Remeshing

base domain

Pros:
Easy
Bijective
Cons:
Need manual landmarks

input meshes with features

Hard to minimize distortion

L ]
semi-regular remeshes

Praun et al. 2001
Adapted from slides by Q. Huang, V. Kim



Automatic Landmarks

Simple algorithm: Possible metrics
Set landmarks Conformality
Measure energy Area preservation
Repeat Stretch

E.g. small conformal distortion, large area distortion:

o s

Schreiner et al. 2004

Adapted from slides by Q. Huang, V. Kim



Recent Coparameterization in Graphics

“Orbifold Tutte Embeddings” (Aigerman and Lipman, SIGGRAPH Asia 2015)



FreeSurfer: Spherical Coparameterization
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Related Problem

Initialization 10 iterations 20 iterations Converged (196)

Image from "Scalable Locally Injective Mappings” (Rabinovich et al., 2017)

Parameterization



Local Distortion Measure

Tutte distortion:

Wil xy; Dgiger WiillXi — %53
s.t. x, fixed Vv € Vj

source t € T

Distortion := Z A D(Jy)

Triangle distortion measure

Notation from Rabinovich et al. 2017



How do you measure
distortion of a triangle?



Typical Distortion Measures

Name D(T) D(o)
Symmetric Dirichlet || J||% + [|[T~1]|% S (024 072)
Exponential
Symmetric
Dirichlet exp(S(HJH% + HJ‘lH%)) exp(s Z?:l((f? + U?L_z))
Hencky strain Hlog J'J H; > q(log®ay)
1 tr(J'J 1,01 02
exp(s - 2 (L exp(s(z (2 + 22)
AMIPS 1 2" det(J) ) 92 fl
-1 _
+ 5 (det(J) + det (I71)) + (o102 + ppp )
2 2
Conformal AMIPS 2D g(g( j] )) g;;;g;
2 2 2
Conformal AMIPS 3D-2(23). Troa ol
det(J) 3 (c10203)3

Table from “Scalable Locally Injective Mappings” (Rabinovich et al., 2017)



End-to-End Coparameterization

PATRICK SCHMIDT, RWTH Aachen University
JANIS BORN, RWTH Aachen University
MARCEL CAMPEN, Osnabriick University
LEIF KOBBELT, RWTH Aachen University
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Distortion-Minimizing Injective Maps Between Surfaces

AonB AonB

Fig. 1. Left: input meshes A and B of disk topology. Center and right: these meshes are continuously mapped onto each other via an intermediate flat
domain (top) by composing two planar parametrizations. The map is constrained by just two landmarks (thumb and pinky). Center: both parametrizations
are optimized for isometric distortion; the composed map, however, has high distortion (visualized in red on top). Right: our method directly optimizes the
distortion of the composed map in an end-to-end manner, naturally aligning similarly curved regions as they map to each other with lower isometric distortion.

The problem of discrete surface parametrization, i.e. mapping a mesh to
a planar domain, has been investigated extensively. We address the more
general problem of mapping between surfaces. In particular, we provide a
formulation that yields a map between two disk-topology meshes, which
is continuous and injective by construction and which locally minimizes
intrinsic distortion. A common approach is to express such a map as the
composition of two maps via a simple intermediate domain such as the
plane, and to independently optimize the individual maps. However, even
if both individual maps are of minimal distortion, there is potentially high
distortion in the composed map. In contrast to many previous works, we
minimize distortion in an end-to-end manner, directly optimizing the quality
of the composed map. This setting poses additional challenges due to the
discrete nature of both the source and the target domain. We propose a
formulation that, despite the combinatorial aspects of the problem, allows
for a purely continuous optimization. Further, our approach addresses the
non-smooth nature of discrete distortion measures in this context which
hinders straightforward application of off-the-shelf optimization techniques.

| E, |V Ogeh PONTTE ST S N TOT ¢ ST TR [ROUERN TUINE L DIIgtn oy | BIISLUCLIIE My ENOPUITUEILY Ta T | L U ST O, Ut S |

1 INTRODUCTION

Maps between surfaces are an important tool in Geometry Process-
ing. They are required to transfer information (such as attributes,
features, texture) between objects, to co-process multiple objects
(such as shape collections, animation frames), to interpolate between
objects (e.g. for shape morphing), or to embed and parametrize ob-
jects (e.g. for template fitting). We here consider the case of discrete
surfaces (triangle meshes) that are of disk topology.

A special case is mapping between a surface and the plane, i.e. the
problem of discrete surface parametrization. There is vast literature
on this topic, with many improvements and extensions proposed
each year. The general case of maps between (non-planar) surfaces,
by contrast, has received less treatment—it is significantly harder to
handle due to the aspect of combinatorial complexity incurred by
both source and target domain being discrete. In the planar para-
metrization scenario (mapping a discrete surface to the continuous B




Back to Correspondence: New Ildea

Not all calculations have to be at the triangle level!

Long-distance interactions

can stabilize geometric computations.



Gromov-Hausdorff Distance

Distance between metric spaces X, Y

dcu(X,Y) ¢}€an$iu£X ldx (z,2") — dy (¢(x), d(2"))]

h —

o 1,




Classical Multidimensional Scaling

1. Double centering: B := —%JDJ

Centering matrix J := I — %11T

2. Find m largest eigenvalues/eigenvectors

3. X = EmAf,er -

Torgerson, Warren S. (1958). Theory & Methods of Scaling.



Generalized MDS

,/\ \.//1/(/\/(//]. '//2)

Y2

ding (X, Y ) 1= ' dx (i, ;) — dy (Ys, Ys
t(X,Y) {yl,ﬂf}cy” x (T3, ;) — dy (ys, y5) |

Bronstein, Bronstein, and Kimmel; PNAS 2006



Problem: Quadratic Assignment

miny (MoT, T M)
s.t. T e€{0,1}nxm
1'1 = po
T'1= P1

Noneonver yaac/m tie /om/wa/n/

N P-hard!




What's Wrong?

:
A

\

Hard to optimize /\
Multiple optima = [




Tradeoff: GMDS

Pros:

Good distance for non-isometric metric spaces
Cons:

Non-convex
HUGE search space (i.e. permutations)

Adapted from slides by Q. Huang, V. Kim



GMDS In Practice

Heuristics to explore the permutations
Solve at a very coarse scale and interpolate
Coarse-to-fine
Partial matching

Bronstein’o8

Adapted from slides by Q. Huang, V. Kim



GMDS In Practice

Heuristics to explore the permutations
Solve at a very coarse scale and interpolate
Coarse-to-fine U Level k-1
Partial matching

Adapted from slides by Q. Huang, V. Kim Sahillioglu'12



GMDS In Practice

Heuristics to explore the permutations

Solve at a very coarse scale and interpolate
(y)

1/

Coarse-to-fine

Partial matching

® Find correspondence ¥, %" minimizing distortion between
* *
current parts v , v

® Select parts ", v minimizing the distortion with current
correspondence ¢, " subjectto A(u™,v™) < Ag

Adapted from S“des by O Huang, V K|m A. Bronsteln, M. Bronsteln, A. Bruckstein, R. Kimmel, IJCV 2008



Returning to Desirable Properties

Given two (or more) shapes
Find a map f, satisfying the following properties:

Fastto-compute
Biiocti

(if we expect global correspondence)

Low-distortion _

Preserves important features

Adapted from slides by Q. Huang, V. Kim



Gromov-Wasserstein Distance

[Mémoli 2007]

GWQ((/J’OadO y
min // dy(, :1;‘ ’)]Qd’)/(ﬂfay) d’y(:L",y')
YEM(po,p) J Jxy x5



Entropic Reqularization
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Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)



Gromov-Wasserstein Plus Entropy

Entropic Metric Alignment for Correspondence Problems

Justin Solomon* Gabriel Peyré

MIT CNRS & Univ. Paris-Dauphine

Abstract

Many shape and image processing tools rely on computation of cor-
respondences between geometric domains. Efficient methods that
stably extract “soft” matches in the presence of diverse geometric
structures have proven to be valuable for shape retrieval and transfer
of labels or semantic information. With these applications in mind,
we present an algorithm for probabilistic correspondence that opti-
mizes an entropy-regularized Gromov-Wasserstein (GW) objective.
Built upon recent developments in numerical optimal transportation,
our algorithm is compact, provably convergent, and applicable to
any geometric domain expressible as a metric measure matrix. We
provide comprehensive experiments illustrating the convergence
and applicability of our algorithm to a variety of graphics tasks.
Furthermore, we expand entropic GW correspondence to a frame-
work for other matching problems, incorporating partial distance
maltrices, user guidance, shape exploration, symmetry detection, and
joint analysis of more than two domains. These applications expand
the scope of entropic GW correspondence to major shape analysis
problems and are stable to distortion and noise.

Keywords: Gromov-Wasserstein, matching, entropy

Concepts: eComputing methodologies — Shape analysis;

1 Introduction

A basic component of the geometry processing toolbox is a tool for
mapping or correspondence, the problem of finding which points on
a target domain correspond to points on a source. Many variations
of this problem have been considered in the graphics literature, e.g.

Vladimir G. Kim
Adobe Research
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Figure 1: Entropic GW can find correspo
surface (left) and a surface with similar
shared semantic structure, a noisy 3D pe
hand drawing. Each fuzzy map was comp.

are violated these algorithms suffer from
local elastic terms into a single global ma

In this paper, we propose a new corres|
minimizes distortion of long- and short-
study an entropically-regularized version ¢
(GW) mapping objective function from [
the distortion of geodesic distances. The ¢
matching expressed as a “fuzzy™ correspo
of [Kim et al. 2012; Solomon et al. 2012
the correspondence via the weight of an e

Although [Mémoli 2011] and subsequent
bility of using GW distances for geometric
tional challenges hampered their practical
these challenges, we build upon recent m
timal transportation introduced in [Benar
etal. 2015]. While optimal transportation

function GROMOV-WASSERSTEIN(fty, Do, o, D, v, 1)
/ Computes a local minimizer T of (6)

I' «+ ONES(1n0 X n)
fori =1.2.3,...

K «+ exp(D[p,|0[p]D T /o)

I + SINKHORN-PROJECTION(K"" @ T =) o )
return I'

function SINKHORN-PROJECTION(K; 1, p2)

// Finds T minimizing KL(T|K) subject to T € M(p,. )
v, w1
forj =1.2,3,...
v—loK(wap)
we—10oK'(vepu,)
return [v]K[w]

Algorithm 1: lteration for finding regularized Gromov-Wasserstein
distances. ¢

, @ denote elementwise multiplication and division.

ent ontimization nroblem from reeularized GW comnutation (linear




Convex Relaxation

Tight Relaxation of Quadratic Matching

Itay Kezurer! Shahar Z. KovalskyJr Ronen Basri Yaron Lipman

Weizmann Institute of Science

Figure 1: Consistent Collection Matching. Results of the proposed one-stage procedure for finding consistent corres
between shapes in a collection showing strong variability and non-rigid deformations.

Abstract

Establishing point correspondences between shapes is extremely challenging as it involves both finding se
semantically persistent feature points, as well as their combinatorial matching. We focus on the latter and con:
the Quadratic Assignment Matching (QAM) model. We suggest a novel convex relaxation for this NP-hard pro
that builds upon a rank-one reformulation of the problem in a higher dimension, followed by relaxation ir
semidefinite program (SDP). Qur method is shown to be a certain hybrid of the popular spectral and doy
stochastic relaxations of QAM and in particular we prove that it is tighter than both.

Experimental evaluation shows that the proposed relaxation is extremely tight: in the majority of our experir
it achieved the certified global optimum solution for the problem, while other relaxations tend to produce
optimal solutions. This, however, comes at the price of solving an SDP in a higher dimension.

tr (WY)
v = [x][x]"
X Ecoanﬁ
trYy =k
Y>0
qursf :kz
qrst
0, if g=s, r#t
qu_yfg 0, lf?’:f.q#b

min {Xgr, X5}, otherwise




Continuum
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Heat Kernel Map

Heat K 1 Map kM (p, x)
\\

t

HKM,(z,t) := ki(p, )

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel /f/l//l/

Ovsjanikov et al. 2010




Tradeoff: Heat Kernel Map

1 . z*\ »(‘.
Pros: Ny
Tiny search space —

Some extension to partial matching
Cons:

(Extremely) sensitive to
deviation from isometry

ﬂi .

Adapted from slides by Q. Huang, V. Kim
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Observation About Mapping

Angle and area preserving Angle preserving
isometries C conformal maps
Hard! Easier

Mobius Voting for Surface Correspondence
Lipman and Funkhouser 2009



O(n3) Algorithm for Perfect Isometry

Algorithm for Perfect Isometrjes

C

s | AL

b4

http://www.mpi-inf.mpg.de/resources/deformableShapeMatching/EG2011_Tutorial/slides/4.3%20SymmetryApplications.pdf
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Observation
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Hard work is per-surface, not per-map



Mobius Transformations

az + b
cz +d

Bijective conformal maps of the
extended complex plane



Mid-Edge Uniformization
' WA
PR, %

Cannot scale triangles to flatten



Mobius Voting

1. Map surfaces to

ol - complex plane
xfﬁf N P/eX P :
== ‘> 2.Select three points

(T\/ 3. Map plane to itself

vl matching these points
| 4.Vote for pairings using
distortion metric to

weight

5. Return to 2

Mobius Voting for Surface Correspondence
Lipman and Funkhouser 2009



Voting Algorithm

Input: points X = {z;} and £ = {wy}
number of iterations /
minimal subset size K

Output: correspondence matrix C = (Cy ¢).

/* Mdbius voting * /
while number of iterations < I do
Random z;1,27,23 € X;.
Random wy,wp, w3 € X).
Find the Mobius transformations my,m; s.t.
mi(zj) =yj, m(wj) =yj, j=1,2,3.
Apply m; on £ to get Zp = mj(zx)-
Apply my on X; to get wy = my(wy).
Find mutually nearest-neighbors (Z;,wy) to formulate
candidate correspondence c.

if number of mutually closest pairs > K then
Calculate the deformation energy E(c)

/* Vote in correspondence matrix

*/
foreach (Z;,wy) mutually nearest-neighbors do
1
’ Cro  Cre + e+E(c)/n”
end
end

end




Tradeoff: Mobius Voting

Pros:
Efficient

Voting procedure handles some non-isometry
Cons:

Does not provide smooth/continuous map
Does not optimize global distortion
Only for genus o

Adapted from slides by Q. Huang, V. Kim



Blended Intrinsic Maps

Distortion of m, Distortion of m;

Different conformal maps distorted in different places.

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011



Use for Dense Mapping

Blending Weights for m, 1., and m;, Distortion of t/he Blended Map
Combine good parts of different maps!

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

f

> {'.\ ' |
! Set of

M o / consistent
' candidate

M, maps

Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map

Blend maps
K.
mi S
= g
2
S A
® {,
4y
© | L=
m 7 N \\ j \

Candidate Maps
Map similarity matrix
Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

Q00

800 |

. First

500 ¢ .
g - I

+.. Eigenvalue

Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

/\ Area-distortion
<

D\ i\lV%/
08 U4

Candidate Map Blending Weight
&)

(p)

Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map

\\?, ’
Blending Weights \
< T
;'[r g ]
?v .é’%ﬂb - > >
o 4 >
Blended Map :

Adapted from slides by Q. Huang, V. Kim Kim'11

Blend maps




Some Examples

Symmetric flip

Adapted from slides by Q. Huang, V. Kim Kim'11



Evaluation
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Tradeoff: Blended Intrinsic Maps

Pros:

Can handle non-isometric shapes

Efficient
Cons:

Lots of area distortion for some shapes
Genus o manifold surfaces

Adapted from slides by Q. Huang, V. Kim
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Functional Maps

u ' \ [Ovsjanikov et al. 2012]

N\ U/

¢ v C Y

Points on M, to points on M




Functional Maps

i [Ovsjanikov et al. 2012]
| )
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e N & ,
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FqﬁLQ(M)_)LQ(MO) 3 |

My

Fafl(x) == fo qﬁ(ﬂf)t
d \ <

Functions on M to functions on M,




Mathematical Sidebar
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WiKIPEDIA Category theory
e ee nojopata From Wikipedia, the free encyclopedia

This article includes a list of general references, but it remains largely unverified because it lacks sufficient

? corresponding inline citations. Please help to improve this article by introducing more precise citations. (November

¢ 2009) (Learn how and when to remove this template message)
Random article -

ut Wikipedia

Category theory formalizes mathematical structure and its concepts in terms of a labeled directed graph called a category, whose _/
tact us 1
D nodes are called objects, and whose labelled directed edges are called arrows (or morphisms).!'! A category has two basic
Jonate X EE——

properties: the ability to compose the arrows associatively, and the existence of an identity arrow for each object. The language of

| ribute category theory has been used to formalize concepts of other high-level abstractions such as sets, rings, and groups. Informally,
| Help category theory is a general theory of functions
sam 1o e¢ [/
HEa oo Several terms used in category theory, including the term "morphism”, are used differently from their uses in the rest of (1 5 f 1
Community portal

mathematics. In category theory, morphisms obey conditions specific to category theory itself

Recent changes

Upload

Samuel Eilenberg and Saunders Mac Lane introduced the concepts of categories, functors, and natural transformations from 2

1942-45 in their study of algebraic topology, with the goal of understanding the processes that preserve mathematical structure.
0 Schematic representation ofa &
Category theory has practical applications in programming language theory, for example the usage of monads in functional category with objects X, Y, Zand

What
programming. It may also be used as an axiomatic foundation for mathematics, as an alternative to set theory and other proposed morphisms f, g, g = f. (The
category's three identity morphisms
1x: 1y and 15, if explicitly
represented, would appear as three
arrows, from the letters X, Y, and Z
this page 1 Basic concepts to themselves, respectively.)
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Functional Maps

[Ovsjanikov et al. 2012]
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Functional map:




Example Maps

E
= E
i} s
& & ¢ =06
1-08 ) f B
= n B - [_ 4

4 6 8 10 12 14 16 18 20 7 a4 f A 10 17 14 1A 18

(¢) left to right map (d) head to tail map

Adapted from slides by Q. Huang, V. Kim



Functional Maps

Simple Algorithm
Compute some geometric functions to be preserved: A, B

Solve in least-squares sense forC: B=CA
Additional Considerations

Favor commutativity
Favor orthonormality (if shapes are isometric)
Efficiently getting point-to-point correspondences

Adapted from slides by Q. Huang, V. Kim Ovsjanikov'12



Tradeoff: Functional Maps

Pros:
Condensed representation
Linear
Alternative perspective on mapping

Many recent papers with variations
Cons:

Hard to handle non-isometry
Some progress in last few years!

Adapted from slides by Q. Huang, V. Kim



Other Operators for Commutativity

* Compose with inverse map for identity [Eynard et al. 2016]
 Laplacian of displaced mesh [Corman et al. 2017]
» Diagonal operator from descriptor [Nogneng and Ovsjanikov 2017]
* Infinitesimal displacement rate of change of Laplacian [Corman and Ovsjanikov 2018]
* Kernel matrix [Wang et al. 2018]
* Operators built from matched curves [Gehre et al. 2018]
* Pointwise products of functions [Nogneng et al. 2018]
* Subdivision hierarchies [Shoham et al. 2019]
* Resolvent of Laplacian operator [Ren et al. 2019]
...and others



Coupled Quasi-Harmonic Basis

w \}ﬁ | -’

T” W 1

f“ “l “\ /“I h“h ‘?*u “\

Laplac1an elgenbases Coupled quasi- harmomc bases

—

ming off (BT Wx®) + off (U T Wy W) 4 u||FTd — GT\I’H%ro
st. ®TDy® =1
U DyU =1

[Kovnatsky et al. 2012]



Leverage Symmetry

* Symmetry generators are self-maps
« Can quotient functional spaces by symmetries

“"Shape Matching via Quotient Spaces,” Ovsjankov et al. 2013



Map Upsampling

ZooMOuT: Spectral Upsampling for Efficient Shape Correspondence

Input: 2 X 2 map
=

SIMONE MELZI*, University of Verona

JING REN”, KAUST

EMANUELE RODOLA, Sapienza University of Rome
ABHISHEK SHARMA, LIX, Ecole Polytechnique
PETER WONKA, KAUST

MAKS OVSJANIKOV, LIX, Ecole Polytechnique

We present a simple and efficient method for refining maps or correspon-
dences by iterative upsampling in the spectral domain that can be imple-
mented in a few lines of code. Our main observation is that high quality maps
can be obtained even if the input correspondences are noisy or are encoded
by a small number of coefficients in a spectral basis. We show how this
approach can be used in conjunction with existing initialization techniques

(1) Given k = ko and an initial C of size kg X ky.
(2) Compute arg ming ||H<D‘;‘VC;£ — fl)‘rjwnf:

(3) Set k = k + 1 and compute Cj. = ((D’jw)JrH(Dk
(

N
4) Repeat the previous two steps until k = kpax.

COI’I‘CSpOI‘ldeI‘lCC correspondence

Fig. 1. Given a small functional map, here of size 2 x 2 which corresponds
to a very noisy point-to-point correspondence (middle right) our method
can efficiently recover both a high resolution functional and an accurate
dense point-to-point map (right), both visualized via texture transfer from
the source shape (left).

across a range of application scenarios, including symmetry detection, map
refinement across complete shapes, non-rigid partial shape matching and
function transfer. In each application we demonstrate an improvement with

-  ——
respect to both the quality of the results and the computational speed com- . . . Source Ini: 4 x 4 zoomOut X X 20 X 2 zoomOut
parrf):d to the best co(inpeti);lg methods, with up to twc?orders of nrljagnitude spaces [Biasotti et al. 2016; Jain and Zhang 2006; Ma n=4.3K to 5 X5 66 <7 0 0 to 50 X 50
speed-up in some applications. We also demonstrate that our method is Ovsjanikov et al. 2012]. Despite significant recent W - I o O A
both robust to noisy input and is scalable with respect to shape complexity. their wide practical applicability, however, spectra = = iy -ﬂ:l';x..- e
Finally, we present a theoretical justification for our approach, shedding both be computationally expensive and unstable | o n i
light on structural properties of functional maps. dimensionality of the spectral embedding. On the = m - .'q':..:" ‘

CCS Concepts: « Computing methodologies — Shape analysis. reduced dimensionality results in very approximat Target

medium and high-frequency details and leading to s n = 10K
Additional Key Words and Phrases: Shape Matching, Spectral Methods,

facts in applications.
Functional Maps

In this paper, we show that a higher resolution ma -
ACM Reference Format: ered from a lower resolution one through a remarka ) 4 l
Simone Melzi, Jing Ren, Emanuele Rodola, Abhishek Sharma, Peter Wonka, efficient iterative Spectral up-sampling technique, Wi 3

and Maks Ovsjanikov. 2019. ZooMOUT: Spectral Upsampling for Efficient
Shape Correspondence. ACM Trans. Grabh. 38. 6. Article 155 (November 2019).

the following two basic steps:



Shape Differences
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“Map-based exploration of intrinsic shape differences and variability” (Rustamov et al., 2013)



Inner Products

[Rustamov et al. 2013]
(F,9)a == / f(

(f.9)c —/M Vf(x) - Vg(z)] dA

Inner product matrix

sz .= <wza %)



Shape Differences

[Rustamov et al. 2013]

}ﬁ | A\ Ll J Trick:

@ | 'y Compare surfaces

7' — ) by comparing inner

| Fqﬁ: LQ(M) — LQ(M[))E ( y p g.

| o~ ? product matrices.
S

I\ ¢
<f7 9>¥ = <F¢[f],F¢[g]>MO D = (HM)—lFTHNF

Functional map pulls back products




Continuous Question

[Rustamov et al. 2013]

Given

area-based and conformal
Inner product matrices,

can you compute

lengths and angles?



[Corman et al. 2017]
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Extension to Extrinsic Shape

¢ increases [Corman et al. 2017]
¢ decreases

TSN offset surface

Encodes mean curvature!

('Kﬂ? i \ \ ﬂ{/\"\]\
{ﬁ\f& ?@\ I 47A% Lj@l)
Y]

| = il <
Q\Q\ f mﬁ:\, WM,Z /
i\ N = A TN _ o
\Xx _/xv\); NS g_':";éi-: PROPOSITION 4. Suppose a mesh M satisfies the criteria in
‘;\\\\ é%;ﬁ;&fﬂ‘oposmons 1 and 2. Given the topology of M, the area-based

\(\4/ \\E;‘:’?;‘éand conformal product matrices A(p) and C(v; i) of M, and the
wﬁ%‘;ﬁﬂé— ' ;area-based and conformal product matrices A, (p,) and C(v; juy)
— “of M, the geometry of M can (almost always) be reconstructed up

rieid motion



Useful Surve

Computing and Processing
Correspondences with Functional
Maps

SIGGRAPH 2017 COURSE NOTES

Organizers & Lecturers:

Maks Ovsjanikov, Etienne Corman, Michael Bronstein,
Emanuele Rodola, Mirela Ben-Chen, Leonidas Guibas,
Frederic Chazal, Alex Bronstein




Deep Functional Maps

Many extensions:

* Incorporate commutativity
* Learn shape features

* Self-supervision

X SHOT

()
G ()
( Res K }{ ResK]

C
y
v

Figure 3. FMNet architecture. Input point-wise descriptors (SHOT [38] in this paper) from a pair of shapes are passed through an
identical sequence of operations (with shared weights), resulting in refined descriptors F', G. These, in turn, are projected onto the
Laplacian eigenbases ®, W to produce the spectral representations F, G. The functional map (FM) and soft correspondence (Softcor)
layers, implementing Equations (3) and (6) respectively, are not parametric and are used to set up the geometrically structured loss £r (5).

“Deep functional maps: Structured prediction for dense shape correspondence” (Litany et al. 2017)
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Reversible Harmonic Maps

Reversible Harmonic Maps between Discrete Surfaces

DANIELLE EZUZ, Technion - Israel Institute of Technology
JUSTIN SOLOMON, Massachusetts Institute of Technology

Information transfer between triangle meshes is of great importance in com-
puter graphics and geometry processing. To facilitate this process, a smooth
and accurate map is typically required between the two meshes. While such
maps can sometimes be computed between nearly-isometric meshes, the
more general case of meshes with diverse geometries remains challenging.
[We propose a novel approach for direct map computation between triangle
meshes without mapping to an intermediate domain, which optimizes for
the harmonicity and reversibility of the forward and backward maps. Our
method is general both in the information it can receive as input, e.g. point
landmarks, a dense map or a functional map, and in the diversity of the
geometries to which it can be applied. We demonstrate that our maps exhibit
lower conformal distortion than the state-of-the-art, while succeeding in
correctly mapping key features of the input shapes.

CCS Concepts: - Computing methodologies — Shape analysis;

[ACM Reference Format:

Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. 2019. Reversible Har-
monic Maps between Discrete Surfaces. ACM Trans. Graph. 1, 1, Article 1
f(January 2019), 13 pages. https://doi.org/10.1145/3202660

1 INTRODUCTION

Mapping 3D shapes to one another is a basic task in computer
graphics and geometry processing. Correspondence is needed, for
example, to transfer artist-generated assets such as texture and pose
from one mesh to another [Sumner and Popovié¢ 2004], to com-
pute in-between shapes using shape interpolation [Heeren et al.
B2012- Von-Tvcowic7 et al 20151 and to carrv ont staticetical chane

MIRELA BEN-CHEN, Technion - Israel Institute of Technology

domain (e.g. [Aigerman and Lipman 2016]). While such methods
minimize distortion of the maps into the intermediate domain, the

Example of a method
for dense
without requiring an intermediate domain. c o r re S p 0 n d e n c e =

tic information by starting from some user guidance given 1n the

bated when the input shapes have significa
features, such as four-legged animals with d
a cat and a giraffe. In this case, the isometric ¢
map is expected to be large, and thus minin
the two maps into an intermediate domain
minimizing the distortion of the compositio

We propose a novel approach for comp
versible map between surfaces that are not

form of sparse landmark constraints or a functional correspondence.
Our main contribution is the formulation of an optimization prob-
lem whose objective is to minimize the geodesic Dirichlet energy
of the forward and backward maps, while maximizing their re-
versibility. We compute an approximate solution to this problem
using a high-dimensional Euclidean embedding and an optimiza-
tion technique known as half-quadratic splitting [Geman and Yang
1995]. We demonstrate that our maps have considerably lower local
distortion than those from state-of-the-art methods for the diffi-
cult case of non-isometric deformations. We further show that our
maps are semantically accurate by measuring their adherence to

self-symmetries of the input shapes, their agreement with ground-

Slides courtesy D. Ezuz



Approach

Input: a sparse set of landmarks (p;, q;)
Initialize the map by mapping geodesic cells of each landmark p; to the
corresponding landmark g;




Approach

Input: a sparse set of landmarks (p;, q;)
Initialize the map by mapping geodesic cells of each landmark p; to the
corresponding landmark g;

Optimize the map with respect to an energy that promotes smoothness and
bijectivity



Measures smoothness of a map:

1
E(¢12) ZE f‘dﬁbm‘z
M,

A map is harmonic if it is a critical point of the Dirichlet
energy



Ep(d12) = 2 Wuvdﬁz(ﬁblz(u);(lbu(v))




Discrete Precise Maps

Stochastic matrices with barycentric coordinates at each row:




Discrete Precise Maps

M,
V, € R™"2*3 is a matrix with vertex coordinates of M,



Discretization of Dirichlet Energy

If we replace the geodesic distances by Euclidean distances,
the discrete Dirichlet energy is:

Eguc(Plz) — ||P12Vz||2 — TTClC@((Psz)T P12V2)

j i

is a matrix with —w;; at
entry i, j, and the sum of the L —Wij Zv Wiy
weights on the diagonal



Discrete Dirichlet Energy

We use a high dimensional embedding where Euclidean
distances approximate geodesic distances (MDS)

Xz E an X8

Then, the discrete Dirichlet energy is approximated by:

Ep (P12) — ||P12X2 ||12/|/1



Minimizing the Dirichlet Energy

A map that maps all vertices to a single point is harmonic
Minimizing the harmonic energy “shrinks” the map:

optimize Ej

Initial map (Id)




Reversibility

We add a reversibility term to prevent the map from
shrinking




Reversibility

Continuous setting:
Fr (T2, To) = ) dug, (0,71 (T ) + ) g, (0. T22(T1 (1))
VeV, vevy,

The term E (Ty5, To1) promotes injectivity and surjectivity

M,




Reversibility

Discrete setting:

Er(P12, P21) = P21 PioXo — X550, 4 P12 Paa Xy — X4 Iy,

Again we use X, X, the high dimensional embedding of each shape to
approximate geodesic distances




Total Energy

We combine the Dirichlet energy and the reversibility term:

E(Pi13,Py1) = aEp(P13) + aEp(Pyq) + (1 — a)Er(Py2, Pr1)

The parameter a controls the trade off between the terms



Optimization

All the terms are quadratic, but P;,, P, are constrained to the
feasible set of precise maps

)i k

P, =1-0.1—0.2—0./—Jrowi

E(Py3,Py1) = aEp(Py3) + aEp(Py1) + (1 — a)Eg(Py2, Pay)



Optimization

We know how to optimize functions of the form:

are min ||P,,A — B||?
g P12€S|| 12 |

S is the feasible set of precise maps



Optimization Pi, = arg min [IP1A — B,

If we constrain to vertex-to-vertex maps (subset of feasible set):

P, is a binary stochastic matrix |
given

A | [

1 P1,A4 ||~ B




Optimization Pi, = arg min||Py,A — Bl

1 ( )
1 ( }

fEFZ bZO,szl

min min |[( BT )(k )—( i )




Optimization

Py, = arg min
12 8P12€S

1P1,A — Blliy,

If P, is any precise map:

min min
f€EF, b=0,Xb=1

Seems expensive

Rows of f

(b )(

)-

Optimize barycentric coordinates by projecting the i;;, row to a triangle

in R*z (geometric algorithm)

Parallelizable!



Optimization

Our energies are not of this form exactly:
Ep(P12) = TT(( P1,X3) "Wy Py Xz)

Er(Py2, Py1) = |[Py1 P12 X, — X2||12\/12 + ||P12 P21 Xy — X1||12v11

W_/

We use “half quadratic splitting” such that our energy is of the
desired form



Optimization

Introduce new variables

X,, should approximate P,,X,, so we add a term ||P;, X, — X5 ]|?

X, should approximate P,;X;, so we add aterm ||P,; X; — X51||*

We replace P;, X5 by X;, wherever it bothers our optimization



Optimization

We rewrite our energies with the new variables:
Ep(X12) = Tr(X{, Wy X13)

Er(X12,X21, P2, Pa1) = I1P21X12 — X257, + [1P12X01 — X1 Iy,

EQ(X12» PlZ) — ||P12X2 R X12”12Wl



Optimization

We optimize the energy:
E(X12,X21, P12, P21) = aEp(X12) + aEp(X3q) +

+ (1 —a)Er(X12,X21, P12, Pr1) +
+BEq(X12,P12) + BEo(X21, P21)

by alternatingly optimizing for each variable
Optimize P;, or P,; using projection
Optimize X4, or X, by solving a linear system

Dirichlet

Reversibility

Penalty



Hyperbolic Weighted
Orbifolds Averages



Hyperbolic Weighted
Orbifolds Averages

Ours
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