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Which points on one object 
correspond to points on another?



Seek shared structure
instead of alignment



Kraevoy and Sheffer 2004 

Texture transfer

Praun et al. 2001



Ovsjanikov et al. 2012

Segmentation transfer



Solomon et al. 2016

Abstraction



Blendshape modeling
Image from “Shape Interpolations: Blendshape Math for Meshes” (https://graphicalanomaly.wordpress.com/)



Image from “Freesurfer”
(Wikipedia)

Statistical shape analysis



“Earliest Record of Platychoerops, A New Species From Mouras Quarry, Mont de Berru, France”
Boyer, Costeur, and Lipman 2012

Paleontology



Given two (or more) shapes
Find a map f, satisfying the following properties:

▪ Fast to compute

▪ Bijective
(if we expect global correspondence)

▪ Low-distortion

▪ Preserves important features

Adapted from slides by Q. Huang, V. Kim



What do we need the map for?

Shape interpolation and texture transfer require highly accurate maps

Target Texture 
(projection)

Locally and globally 
accurate map

Globally accurate, 
locally distorted map

Slide courtesy Danielle Ezuz



How can we evaluate map quality?

Given a ground truth map, compute the cumulative error graph

𝑝

𝑀1 𝑀2

Computed 
mapping of 𝑝

Ground truth 
mapping of 𝒑
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How can we evaluate map quality?

Given a ground truth map, compute the cumulative error graph
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How can we evaluate map quality?

Measure conformal distortion (angle preservation)

Conformal Distortion
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How can we evaluate map quality?

Measure conformal distortion (angle preservation)

map #2

Conformal Distortion
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Sampling of surface mapping 
algorithms and models.

Graphics/vision bias!



Kraevoy 2004 

landmark correspondences

consistent parameterization

Adapted from slides by Q. Huang, V. Kim



G. Peyré, mesh processing course slides



 𝒘𝒊𝒋 ≡ 𝟏: Tutte embedding

 𝒘𝒊𝒋 from mesh: Harmonic embedding

Assumption:  𝒘 symmetric.



“How to draw a graph” (Proc. London Mathematical Society; Tutte, 1963)

Tutte embedding bijective if 𝒘 nonnegative and 
boundary mapped to a convex polygon.



 Pros:

▪ Easy

▪ Bijective

 Cons:

▪ Need manual landmarks

▪ Hard to minimize distortion

Praun et al. 2001
Adapted from slides by Q. Huang, V. Kim



 Simple algorithm:

▪ Set landmarks

▪ Measure energy

▪ Repeat

E.g. small conformal distortion, large area distortion:

 Possible metrics

▪ Conformality

▪ Area preservation

▪ Stretch

Schreiner et al. 2004

Adapted from slides by Q. Huang, V. Kim



“Orbifold Tutte Embeddings” (Aigerman and Lipman, SIGGRAPH Asia 2015)



Neuroimaging data analysis



Parameterization

Image from “Scalable Locally Injective Mappings” (Rabinovich et al., 2017)



Notation from Rabinovich et al. 2017

Triangle distortion measure

Tutte distortion:



How do you measure 
distortion of a triangle?



Table from “Scalable Locally Injective Mappings” (Rabinovich et al., 2017)





Not all calculations have to be at the triangle level!

Long-distance interactions
can stabilize geometric computations.



Distance between metric spaces X, Y

Best map Worst distortion



Torgerson, Warren S. (1958). Theory & Methods of Scaling.



Bronstein, Bronstein, and Kimmel; PNAS 2006



General notion of 
correspondence



Hard to optimize
Multiple optima



 Pros:

▪ Good distance for non-isometric metric spaces

 Cons:

▪ Non-convex

▪ HUGE search space (i.e. permutations)

Adapted from slides by Q. Huang, V. Kim



 Heuristics to explore the permutations

▪ Solve at a very coarse scale and interpolate

▪ Coarse-to-fine

▪ Partial matching

Bronstein’08
Adapted from slides by Q. Huang, V. Kim



 Heuristics to explore the permutations

▪ Solve at a very coarse scale and interpolate

▪ Coarse-to-fine

▪ Partial matching

Sahillioglu’12Adapted from slides by Q. Huang, V. Kim



 Heuristics to explore the permutations

▪ Solve at a very coarse scale and interpolate

▪ Coarse-to-fine

▪ Partial matching

Adapted from slides by Q. Huang, V. Kim



Given two (or more) shapes
Find a map f, satisfying the following properties:

▪ Fast to compute

▪ Bijective
(if we expect global correspondence)

▪ Low-distortion

▪ Preserves important features

Adapted from slides by Q. Huang, V. Kim



[Mémoli 2007]



Cuturi.  “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)







Weak assumptions Strong assumptions



One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010

Theorem: Only have to match one point!



 Pros:

▪ Tiny search space

▪ Some extension to partial matching

 Cons:

▪ (Extremely) sensitive to 
deviation from isometry

Adapted from slides by Q. Huang, V. Kim



Weak assumptions Strong assumptions

????



Möbius Voting for Surface Correspondence
Lipman and Funkhouser 2009

Hard! Easier

Angle and area preserving Angle preserving



Map triplets of points
http://www.mpi-inf.mpg.de/resources/deformableShapeMatching/EG2011_Tutorial/slides/4.3%20SymmetryApplications.pdf



Hard work is per-surface, not per-map

Easy



Bijective conformal maps of the 
extended complex plane

http://www.ima.umn.edu/~arnold//moebius



Cannot scale triangles to flatten

Hole

PL, 
continuous

PL, 
continuous 

at midpoints
Rotate gradient 

of u 90o



Möbius Voting for Surface Correspondence
Lipman and Funkhouser 2009

1. Map surfaces to 
complex plane

2. Select three points
3. Map plane to itself 

matching these points
4.Vote for pairings using 

distortion metric to 
weight

5. Return to 2





 Pros:

▪ Efficient

▪ Voting procedure handles some non-isometry

 Cons:

▪ Does not provide smooth/continuous map

▪ Does not optimize global distortion

▪ Only for genus 0

Adapted from slides by Q. Huang, V. Kim



Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011

Different conformal maps distorted in different places.



Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011

Combine good parts of different maps!



 Algorithm:

▪ Generate consistent maps

▪ Find blending weights per-point on each map

▪ Blend maps

Kim’11Adapted from slides by Q. Huang, V. Kim
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 Algorithm:

▪ Generate consistent maps

▪ Find blending weights per-point on each map

▪ Blend maps

Kim’11
Map similarity matrix

Adapted from slides by Q. Huang, V. Kim



Kim’11

 Algorithm:

▪ Generate consistent maps

▪ Find blending weights per-point on each map

▪ Blend maps

Adapted from slides by Q. Huang, V. Kim



 Algorithm:

▪ Generate consistent maps

▪ Find blending weights per-point on each map

▪ Blend maps

Kim’11

Area-distortion

Adapted from slides by Q. Huang, V. Kim



Kim’11

 Algorithm:

▪ Generate consistent maps

▪ Find blending weights per-point on each map

▪ Blend maps

Adapted from slides by Q. Huang, V. Kim



Kim’11Adapted from slides by Q. Huang, V. Kim



Kim’11



 Pros:

▪ Can handle non-isometric shapes

▪ Efficient

 Cons:

▪ Lots of area distortion for some shapes

▪ Genus 0 manifold surfaces

Adapted from slides by Q. Huang, V. Kim





Points on M0 to points on M

[Ovsjanikov et al. 2012]



Functions on M to functions on M0

[Ovsjanikov et al. 2012]





Matrix taking Laplace-Beltrami (Fourier) 
coefficients on M to coefficients on M0

[Ovsjanikov et al. 2012]

Functional map:



Adapted from slides by Q. Huang, V. Kim



 Simple Algorithm

▪ Compute some geometric functions to be preserved: A, B

▪ Solve in least-squares sense for C:  B = C A

 Additional Considerations

▪ Favor commutativity

▪ Favor orthonormality (if shapes are isometric)

▪ Efficiently getting point-to-point correspondences

Ovsjanikov’12Adapted from slides by Q. Huang, V. Kim



 Pros:
▪ Condensed representation

▪ Linear

▪ Alternative perspective on mapping

▪ Many recent papers with variations
 Cons:

▪ Hard to handle non-isometry
Some progress in last few years!

Adapted from slides by Q. Huang, V. Kim



• Compose with inverse map for identity [Eynard et al. 2016]
• Laplacian of displaced mesh [Corman et al. 2017]
• Diagonal operator from descriptor [Nogneng and Ovsjanikov 2017]
• Infinitesimal displacement rate of change of Laplacian [Corman and Ovsjanikov 2018]
• Kernel matrix [Wang et al. 2018]
• Operators built from matched curves [Gehre et al. 2018]
• Pointwise products of functions [Nogneng et al. 2018]
• Subdivision hierarchies [Shoham et al. 2019]
• Resolvent of Laplacian operator [Ren et al. 2019]

...and others



[Kovnatsky et al. 2012]



“Shape Matching via Quotient Spaces,” Ovsjankov et al. 2013

• Symmetry generators are self-maps
• Can quotient functional spaces by symmetries





“Map-based exploration of intrinsic shape differences and variability” (Rustamov et al., 2013)



[Rustamov et al. 2013]



[Rustamov et al. 2013]

Functional map pulls back products

Trick:

Compare surfaces 
by comparing inner 
product matrices.



Given

area-based and conformal 
inner product matrices,

can you compute

lengths and angles?

[Rustamov et al. 2013]



Precisely
what do shape 

differences determine 
on meshes?

Edge 
lengths.

[Corman et al. 2017]



Throw in the 
offset surface.
Encodes mean curvature!

[Corman et al. 2017]





“Deep functional maps: Structured prediction for dense shape correspondence” (Litany et al. 2017)

Many extensions:

• Incorporate commutativity
• Learn shape features
• Self-supervision



Correspondence Problems
Justin Solomon

6.838: Shape Analysis
Spring 2021



Extra:  Reversible Harmonic Maps
Justin Solomon

6.838: Shape Analysis
Spring 2021



Example of a method 
for dense 

correspondence.

Slides courtesy D. Ezuz



Input: a sparse set of landmarks (𝑝𝑖 , 𝑞𝑖)

 Initialize the map by mapping geodesic cells of each landmark 𝑝𝑖 to the 

corresponding landmark 𝑞𝑖

𝑀1 𝑀2



Input: a sparse set of landmarks (𝑝𝑖 , 𝑞𝑖)

 Initialize the map by mapping geodesic cells of each landmark 𝑝𝑖 to the 

corresponding landmark 𝑞𝑖

 Optimize the map with respect to an energy that promotes smoothness and 

bijectivity



Measures smoothness of a map:

𝐸 𝜙12 =
1

2
න

𝑀1

𝑑𝜙12
2

A map is harmonic if it is a critical point of the Dirichlet
energy



𝐸𝐷 𝜙12 = 

𝑢,𝑣 ∈Ε1

𝑤𝑢𝑣𝑑𝑀2

2 𝜙12 𝑢 , 𝜙12(𝑣)

𝑢

𝑀1 𝑀2
𝑣

𝜙12(𝑣)

𝜙12(𝑢)



Stochastic matrices with barycentric coordinates at each row:

𝑖

𝑀1 𝑀2

row 𝑖

𝑗 𝑘 𝑙

𝑗

𝑘
𝑙

𝑃12 =
⋮

⋮
0.1 0.2 0.7



Stochastic matrices with barycentric coordinates at each row:

𝑉2 ∈ ℝ𝑛2×3 is a matrix with vertex coordinates of 𝑀2

𝑖

𝑀1 𝑀2

𝑗 𝑘 𝑙

𝒗𝒋

𝒗𝒌
𝒗𝒍

⋮

⋮

0.1 0.2 0.7
𝑣𝑗

𝑣𝑘

𝑣𝑙

𝑖

𝑃12 𝑉2

𝑖𝑡ℎ row of 
𝑃12𝑉2



If we replace the geodesic distances by Euclidean distances, 
the discrete Dirichlet energy is:

𝐸𝐷
𝐸𝑢𝑐 𝑃12 = 𝑃12𝑉2 𝑊1

2 = 𝑇𝑟𝑎𝑐𝑒 𝑃12𝑉2
⊤𝑊1𝑃12𝑉2

𝑊1 is a matrix with −𝑤𝑖𝑗 at 

entry 𝑖, 𝑗, and the sum of the 
weights on the diagonal

𝑗 𝑘

−𝑤𝑖𝑗 σ𝑣𝑤𝑖𝑣 −𝑤𝑖𝑘𝑖

𝑊1

𝑖



We use a high dimensional embedding where Euclidean 
distances approximate geodesic distances (MDS)

𝑋2 ∈ ℝ𝑛2×8

Then, the discrete Dirichlet energy is approximated by:

𝐸𝐷 𝑃12 = 𝑃12𝑋2 𝑊1

2



A map that maps all vertices to a single point is harmonic

Minimizing the harmonic energy “shrinks” the map:

𝑀1

Initial map (Id)

𝑀2

optimize 𝐸𝐷



 We add a reversibility term to prevent the map from 
shrinking

𝑇12

𝑇21
𝑀1 𝑀2



Continuous setting:

𝐸𝑅 𝑇12, 𝑇21 = 

𝑣∈𝑉1

𝑑𝑀2
𝑣, 𝑇21 𝑇12 𝑣 + 

𝑣∈𝑉2

𝑑𝑀1
𝑣, 𝑇12 𝑇21 𝑣

The term 𝐸𝑅 𝑇12, 𝑇21 promotes injectivity and surjectivity

𝑇12

𝑇21
𝑀1 𝑀2



Discrete setting:

𝐸𝑅 𝑃12, 𝑃21 = 𝑃21𝑃12𝑋2 − 𝑋2 𝑀2

2 + 𝑃12𝑃21𝑋1 − 𝑋1 𝑀1

2

Again we use 𝑋1, 𝑋2 the high dimensional embedding of each shape to 

approximate geodesic distances

𝑇12

𝑇21
𝑀1 𝑀2



We combine the Dirichlet energy and the reversibility term:

𝐸 𝑃12, 𝑃21 = 𝛼𝐸𝐷 𝑃12 + 𝛼𝐸𝐷 𝑃21 + 1 − 𝛼 𝐸𝑅(𝑃12, 𝑃21)

The parameter 𝛼 controls the trade off between the terms



All the terms are quadratic, but 𝑃12, 𝑃21 are constrained to the 
feasible set of precise maps

𝑖

𝑀1 𝑀2

row 𝑖

𝑗 𝑘 𝑙

𝑗

𝑘
𝑙

𝑃12 =
⋮

⋮
0.1 0.2 0.7

𝐸 𝑃12, 𝑃21 = 𝛼𝐸𝐷 𝑃12 + 𝛼𝐸𝐷 𝑃21 + 1 − 𝛼 𝐸𝑅(𝑃12, 𝑃21)



We know how to optimize functions of the form:

arg min
P12∈𝑆

𝑃12𝐴 − 𝐵 2

𝑆 is the feasible set of precise maps



If we constrain to vertex-to-vertex maps (subset of feasible set): 

𝑃12 is a binary stochastic matrix

𝑃12
∗ = arg min

𝑃12∈𝑆
𝑃12𝐴 − 𝐵 𝑀1

2

𝐵1
1

1

1
1

1

𝐴𝑃12

−
𝑗

𝑗

𝑃12𝐴

given

𝑖𝑖

𝑖



If 𝑃12 is any precise map: 

𝐵1

1

1
1

1

𝐴𝑃12

−𝑃12𝐴

given

𝑖

.1 .2.7

−min
𝑓∈𝐹2

min
𝑏≥0,Σ𝑏=1

𝑏⊤
𝑖

Rows of 𝑓

𝑓

𝑃12
∗ = arg min

𝑃12∈𝑆
𝑃12𝐴 − 𝐵 𝑀1

2



If 𝑃12 is any precise map: 

Seems expensive

 Optimize barycentric coordinates by projecting the 𝑖𝑡ℎ row to a triangle 

in ℝ𝑘2 (geometric algorithm)

 Parallelizable!

−min
𝑓∈𝐹2

min
𝑏≥0,Σ𝑏=1

𝑏⊤
𝑖

Rows of 𝑓

𝑃12
∗ = arg min

𝑃12∈𝑆
𝑃12𝐴 − 𝐵 𝑀1

2



Our energies are not of this form exactly:

𝐸𝐷(𝑃12) = 𝑇𝑟 𝑃12𝑋2
⊤𝑊1 𝑃12 𝑋2

𝐸𝑅 P12, 𝑃21 = 𝑃21𝑃12𝑋2 − 𝑋2 𝑀2

2 + 𝑃12𝑃21𝑋1 − 𝑋1 𝑀1

2

We use “half quadratic splitting” such that our energy is of the 
desired form



Introduce new variables

▪ 𝑋12 should approximate 𝑃12𝑋2, so we add a term 𝑃12𝑋2 − 𝑋12
2

▪ 𝑋21 should approximate 𝑃21𝑋1, so we add a term 𝑃21𝑋1 − 𝑋21
2

We replace 𝑃12𝑋2 by 𝑋12 wherever it bothers our optimization



We rewrite our energies with the new variables:

𝐸𝐷(𝑋12) = 𝑇𝑟 𝑋12
⊤𝑊1 𝑋12

𝐸𝑅 𝑋12, 𝑋21, P12, 𝑃21 = 𝑃21𝑋12 − 𝑋2 𝑀2

2 + 𝑃12𝑋21 − 𝑋1 𝑀1

2

𝐸𝑄(𝑋12, 𝑃12) = 𝑃12𝑋2 − 𝑋12 𝑀1

2



We optimize the energy:

by alternatingly optimizing for each variable
 Optimize 𝑃12 or 𝑃21 using projection
 Optimize 𝑋12 or 𝑋21 by solving a linear system

Dirichlet

Reversibility

Penalty

𝐸 𝑋12, 𝑋21, P12, 𝑃21 = 𝛼𝐸𝐷 𝑋12 + 𝛼𝐸𝐷 𝑋21 +

+ 1 − 𝛼 𝐸𝑅 𝑋12, 𝑋21, P12, 𝑃21 +

+𝛽𝐸𝑄 𝑋12, 𝑃12 + 𝛽𝐸𝑄(𝑋21, 𝑃21)



Target
Hyperbolic 
Orbifolds

Weighted 
Averages

Ours



Target
Hyperbolic 
Orbifolds

Weighted 
Averages

Ours
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