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A Confusing Distinction

For "Customer Data and Engagement:"”

“Segmenting is the process of putting customers into
groups based on similarities, and clustering is the
process of finding similarities in customers so that they
can be grouped, and therefore segmented.”

http://www2.agilone.com/blog/blog/segmentation-vs-clustering



Our Objective

Divide a geometric domain
Into useful pieces.



Many Applications

Different cluster analysis results on "mouse" data set:
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What is a good
segmentation?



What i1s a Good Segmentation?

Application dependent!

Not an end in itself

Unsolicited advice:
Be suspicious of general
methods!

Image from “"Randomized Cuts for 3D Mesh Analysis (Golovinskiy and Funkhouser)



According to Facebook

A8, Aaron Hertzmann
October 9, 2018 -

One bit of sloppy writing that has permeated the computer graphics and
vision literature is the use of the word "semantic." Here's why | think that
you should avoid using it, or, at least, use it very carefully.

"Semantic" is a pretentious weasel-word. The word "semantic” is used in a
way that means almost nothing, which is ironic. However, it sounds like it's
implying some sort of insight about Al or human intelligence. | think that

researchers use it when they want to indicate that there's some high-level
knowledge or context involved, but they're too lazy to be concrete about it.

Instead of using the word "semantic," | suggest thinking more concretely
about what you really mean, and saying that instead. You will probably find
that your paper is clearer. It's a bit of extra work, but clear writing takes
work.

As an example, our SIGGRAPH 2010 paper was the first paper to apply
learned "semantic labeling" to 3D surfaces. | insisted that we avoid using
the word "semantic" as much as possible. Instead, we wrote that our
method learns to label object parts, such as "hand" or "wheel", and that the
labels can be chosen by a user. Saying that we learn to apply these labels
is much clearer than saying that our labeling is "semantic" or that we label
"semantic parts", whatever that means.

Other typical uses (I am making these examples up) is to say "We let the
user group regions based on semantic concerns" or "The video can be
broken into parts based on semantics." What do these sentences add?

Doug DeCarlo first pointed this issue out to me about a decade ago. He
pointed out that "semantics" is the study of meaning, like dictionary
definitions; how the phrase "l like it" means something different from "It likes
me." Objects in images do not have meanings in the same way. A hand or
wheel does not have a meaning. He said that reading this usage of
"semantic" was like "nails on a chalkboard,” and now | feel that way too.

There's a descriptivist argument one can make: our community's language
naturally evolves over time. However, this doesn't license arbitrary misuse
of language; we shouldn't use "plus" to mean "minus". Misusing technical
terms from other fields can cause lots of problems. Doug said that using
"semantic" in this way makes you sound stupid to, say, a computational
linguist who might review your grant proposal.

Whenever | see the word "semantic,” | think that the author hasn't thought
carefully about what they mean, and is only using this pretentious word
because they think it sounds cool. Avoid being that person.

| do make one exception: for better or for worse, the term "semantic
labeling" has come to mean a specific task in vision and in graphics. So |
think it's fair to use the term in this case: this is the name of a task, and one
must use shortcuts in names. The problem is that the word "semantic” is
used all over in lots of other contexts where it means very little.

D Fredo Durand, Alec Jacobson and 41 others 22 Comments
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Many Attempts to Standardize

A Benchmark Dataset and Evaluation Methodology for
Video Object Segmentation
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Our Approach

A few Interesting
geometric methods.

Geometry can come from:

* Embedding of a dataset

* Structure of a surface mesh
* Metriclearning



Simplest Possible

mm> > llx = ill?

17, 1 xeS8;

ttttt ://upload.wikimedia.org/wikipedia/commons/d/d2/K_Means_Example_Step_.svg

k-means clustering



Alternating Algorithm
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Voronoi Diagram

http://blog.alexbeutel.com/voronoi/v4.png
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K-Means++

1. Choose one center uniformly at random.

2. For each data point x not yet chosen, compute D (x), the distance
between x and the nearest center that has already been chosen.
Choose a new center randomly, with probability proportional to D (x)?.
Repeat 1-3 until k centers are chosen.

5. Proceed with k-means clustering.

W

Theorem 1.1. For any set of data points, E|¢| < 8(Ink + 2)¢opr.

k-means++: The Advantages of Careful Seeting (Arthur and Vassilvitskii 2007); pseudocode adapted from Wikipedia



Modern Seeding Algorithms: Many Options

Scalable K-Means++

Bahman Bahmani-t
Stanford University
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ABSTRACT

Over half a century old and showing no signs of aging,
k-means remains one of the most popular data process-
ing algorithms. As is well-known, a proper initialization
of k-means is crucial for obtaining a good final solution.
The recently proposed k-means++ initialization algorithm
achieves this, obtaining an initial set of centers that is prov-
ably close to the optimum solution. A major downside of the
k-means++ is its inherent sequential nature, which limits its
applicability to massive data: one must make k passes over
the data to find a good initial set of centers. In this work we
show how to drastically reduce the number of passes needed
to obtain, in parallel, a good initialization. This is unlike
prevailing efforts on parallelizing k-means that have mostly
focused on the post-initialization phases of k-means. We
prove that our proposed initialization algorithm k-meansl||
obtains a nearly optimal solution after a logarithmic num-
ber of passes, and then show that in practice a constant
number of passes suffices. Experimental evaluation on real-
world large-scale data demonstrates that k-means|| outper-
forms k-means++ in both sequential and parallel settings.

1. INTRODUCTION

Clustering is a central problem in data management and
.
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single method — k-means — remains the most popular clus-
tering method; in fact, it was identified as one of the top 10
algorithms in data mining [34]. The advantage of k-means
is its simplicity: starting with a set of randomly chosen ini-
tial centers, one repeatedly assigns each input point to its
nearest center, and then recomputes the centers given the
point assignment. This local search, called Lloyd’s itera-
tion, continues until the solution does not change between
two consecutive rounds.

The k-means algorithm has maintained its popularity even
as datasets have grown in size. Scaling k-means to massive
data is relatively easy due to its simple iterative nature.
Given a set of cluster centers, each point can independently
decide which center is closest to it and, given an assignment
of points to clusters, computing the optimum center can be
done by simply averaging the points. Indeed parallel imple-
mentations of k-means are readily available (see, for exam-

ple, cwiki.apache.org/MAHOUT/k-means-clustering.html

From a theoretical standpoint, k-means is not a good clus-
tering algorithm in terms of efficiency or quality: the run-
ning time can be exponential in the worst case [32, 4] and
even though the final solution is locally optimal, it can be
very far away from the global optimum (even under repeated
random initializations). Nevertheless, in practice the speed

and simplicity of k-means cannot be beat. Therefore, recent
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Abstract

Seeding — the task of finding initial cluster centers — is critical in obtaining high-
quality clusterings for k-Means. However, k-means++ seeding, the state of the
art algorithm, does not scale well to massive datasets as it is inherently sequential
and requires k full passes through the data. It was recently shown that Markov
chain Monte Carlo sampling can be used to efficiently approximate the seeding
step of k-means++. However, this result requires assumptions on the data gener-
ating distribution. We propose a simple yet fast seeding algorithm that produces
provably good clusterings even without assumptions on the data. Our analysis
shows that the algorithm allows for a favourable trade-off between solution quality
and computational cost, speeding up k-means++ seeding by up to several orders
of maonitnide We validate onr theoretical recnilte 1n evtencive evnerimente on a



Issue: Choice of k

J. R. Siatist. Soc. B (2001)
63, Part 2, pp. 411423

Estimating the number of clusters in a data set via

Informal intuition

“Elbow method:"
Look at percentage of
variance explained by
clusters (vague!)

the gap statistic

Robert Tibshirani, Guenther Walther and Trevor Hastie
Stanford University, USA

[Received February 2000. Final revision November 2000]

Summary. We propose a method (the ‘gap statistic”) for estimating the number of clusters (groups)
in a set of data. The technique uses the output of any clustering algorithm (e.g. K-means or
hierarchical), comparing the change in within-cluster dispersion with that expected under an

appropriate reference null distribution. Some theory is developed for the proposal and a simulation
study shows that the gap statistic usually outperforms other methods that have been proposed in the
literature.

Keywords: Clustering; Groups; Hierarchy; K-means; Uniform distribution

1. Introduction

Cluster analysis is an important tool for ‘unsupervised’ lecarning— the problem of finding
groups in data without the help of a response variable. A major challenge in cluster analysis is
the estimation of the optimal number of ‘clusters’. Fig. 1(b) shows a typical plot of an error
measure W (the within-cluster dispersion defined below) for a clustering procedure versus the
number of clusters k employed: the error measure W, decreases monotonically as the number
of clusters k increases, but from some k& onwards the decrease flattens markedly. Statistical

folklore has it that the location ol such an ‘elbow’ indicates the appropriaie number ol

clusters. The goal of this paper 1s to provide a statistical procedure to lormalize that heuristic.
For recent studies ol the elbow phenomenon, see Sugar (1998) and Sugar et al. (1999). A
comprehensive survey of methods for estimating the number of clusters is given in Milligan
and Cooper (1985), whereas Gordon (1999) discusses the best performers. Some of these
methods are described in Scctions 5 and 6, where they are compared with our method.
In this paper we proposc the ‘gap’ method for estimating the number of clusters. It is

Arctarnod ta bha amealicabls 0 siefirallyy any clhaetertino methoad Feoae cimmlictiy the thomestieal

)
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Application to Color Space

4% 8%

http://cs.nyu.edu/~dsontag/courses/mli2/slides/lecture1s4.pdf



Can Apply to Features

Figure 1: The k-means clustering on the GPS coordinates
results in a pose invariant segmentation.

“Laplace-Beltrami Eigenfunctions for Deformation Invariant
Shape Representation.”
Rustamov; SGP 2007



Dependence on Initial Guess

“"Randomized Cuts for 3D Mesh Analysis.”
Golovinskiy and Funkhouser; SIGGRAPH Asia 2008

Bug ... or feature?



Dependence on Initial Guess
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“"Randomized Cuts for 3D Mesh Analysis.”
Golovinskiy and Funkhouser; SIGGRAPH Asia 2008

Bug ... or feature?



Semidiscrete Transport

o = Zaoz‘éx(n p1(S) = /Spl(x) dx

Never a reason to “leapfrog” mass!

LA




Semidiscrete Transport

ht;q;)s://WWV\v.jas'ondavies.com/power-diagram/



Measure Quantization Problem

(Balanced k-means)

Approximate by a discrete measure:

1 k
DI

Solve for positions of the points x;.




Kantorovich Dual Problem

Flf,z1,...,Tm ZfﬁZf d(zi,y)? — fi) dpa(y)

weights / Power diagram regions

Alternating algorithm:

- oF 1
1. Update weights — _/v dp2(y)

Stochastic gradient descent afz m

g

: OF
2. Update points —:l?@'/V dpz(y) _/V yduz(y)

Fixed-point iteration 8:19@

CB,’: CB,':

Claici, Chien, and Solomon. "Stochastic Wasserstein Barycenters." ICML 2018.



Related Algorithm for Low-Dimensional Problems

De Goes et al. "Blue Noise through Optimal Transport." SIGGRAPH Asia 2012.



Geometry of k-Means

Assignment step
Assign point to its closest cluster center

Update step
Average all points in a cluster

Doesn’t have to be Euclidean



Geometry of k-Means

Assignment step /

Assign point to its closest cluster center
Updatestep 72
Average all points in a cluster

In a metric space



What does it mean to
average points in a
metric space?



Frechet Mean

“Frechet variance”

Generalizes Euclidean notation of “*mean.”









Example from Past Lecture

% “Fast Computation of Wasserstein Barycenters.” W2

Cuturi and Doucet, ICML 2014




Application to Neural Networks

Differentiating through the Fréchet Mean

Aaron Lou ™!

Abstract

Recent advances in deep representation learning
on Riemannian manifolds extend classical deep
learning operations to better capture the geom-
etry of the manifold. One possible extension is
the Fréchet mean, the generalization of the Eu-
clidean mean; however, it has been difficult to
apply because it lacks a closed form with an eas-
ily computable derivative. In this paper, we show
how to differentiate through the Fréchet mean
for arbitrary Riemannian manifolds. Then, fo-
cusing on hyperbolic space, we derive explicit
gradient expressions and a fast, accurate, and
hyperparameter-free Fréchet mean solver. This
fully integrates the Fréchet mean into the hyper-
bolic neural network pipeline. To demonstrate
this integration, we present two case studies. First,
we apply our Fréchet mean to the existing Hyper-
bolic Graph Convolutional Network, replacing its
projected aggregation to obtain state-of-the-art re-
sults on datasets with high hyperbolicity. Second,
to demonstrate the Fréchet mean’s capacity to gen-
eralize Euclidean neural network operations, we
develop a hyperbolic batch normalization method
that gives an improvement parallel to the one ob-
served in the Euclidean setting'.

Isay Katsman™' Qingxuan Jiang”

1

Serge Belongie ! Ser-Nam Lim? Christopher De Sa '

Table 1. Summary of operations in the Poincaré ball model and the hyperboloid model (K < 0)

Poincaré Ball Hyperboloid

Manifold D ={z € R": {z,x)2 < I"} L={reR": (z,2), = ,]\}
Metric ,','j;:"‘ = (/\_':“')B_q‘": where ,\_':“' = ﬁ and ¢® = I ‘l’,"';f:" = 1), where 1) is I except 1y g = —1
fote Ky, _ 1 . 1 o 2K||z—yl3 K, _ 1 . Lerrto .
Distance dfy (z,y) \/m(()h}l (l —(1+n'\'H"|:f'll—-'\'\'t”i]) diy (z,y) T cosh™  (K{x,y)r)
- Ky - \ sinh vl 2
Exp map expX(v) =r oK (temh ( |I\'|)‘-" !_,' l“’) \/]\"‘ '|’) exp® (v) = cosh(\/|K]|||v||z)x + v M\t/I\I/\!III\I!'II !l ’

Log map

cosh ™ (K {z,y) )

(y — K(z,y)cx)

logh (y) = —~=— tanh ™' (\/|K[|| — 2 @k yll2) 22Kl Jogy (y) =
VIK|AK | Kyll2

sinh(cosh~ ' (K {z.y)¢))

Figure 1. Depicted above is the Fréchet mean, p, of three g
x1,T2,x3 in the Lorentz model of hyperbolic space. A

Transport

K{yv)c
1+ K{(x,y)e

PTE, (v) = 3 gvily. PTE,(v) = v (o +y)

x|v

can see, the Fréchet mean conforms with the geometry
hyperboloid and is vastly different from the standard Euc
mean.

space, in which distances grow exponentially as one
away from the origin. Such a geometry is naturally equ
to embed trees, since if we embed the root of the tre

Table 2. Summary of hyperbolic counterparts of Euclidean operations in neural networks

Operation Formula

Matrix-vector multiplication ARK r=expl(A ln;_!;lj)‘- (x))
Bias translation x &% b=exp, (PTS, (b))
K12 (2) = expy (a(logy * (2)))

Activation function

the origin and layers at successive radii, the geometry _,
perbolic space admits a natural hierarchical structure. More




Finding Nicely-Shaped Regions on a Surface

Lloyd’s Algorithm

Alternate between
1. Fitting primitive
parameters
2. Assign points to
patches

“Variational Shape Approximation.”
Cohen-Steiner, Alliez, and Desbrun; SIGGRAPH 2004



Shape Collections

Image from “Medical Image Analysis via Fréchet Means of Diffeomorphisms (Davis 2008)



k-Medioids

Assignment step
Assign point to its closest cluster center

Update step

Replace cluster center with most central
data point

When Frechet means won’t work



Example Task

https://ps.is.tuebingen.mpg.de/research_projects/3d-mesh-registration

Clustering in a shape collection



Gromov-Hausdorff Distance

Distance between metric spaces X, Y

dcu(X,Y) ¢}€an$iu£X ldx (z,2") — dy (¢(x), d(2"))]

h —

o 1,




Gromov-Hausdorff Clustering

Eurographics Symposium on Point-Based Graphies (2007)
M. Botsch, R. Pajarola (Editors)

On the use of Gromov-Hausdorff Distances for Shape
Comparison

Facundo Mémali'’

IDepartment of Mathematics, Stanford University, California, USA.

Abstract
It is the purpose of this paper to propose and discuss certain modificafions of the ideas cond
Hausdor[f distances in order to tackle the problems of shape matching and comparison. Thes
render these distances more amenable to practical computations without sacrificing theoretical
second goal of this paper 15 to establish links to several other practical methods proposed in
comparing/matching shapes in precise terms. Connections with the Quadratic Assignment Pri
also established, and computational examples are presented.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Compu
and Object Modelling.

structure, that is, shapes are viewed
notion of distance compares the full
tained in the shapes, as opposed to

1. Introduction

Given the great advances in recent years in the fields of shape
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Agglomerative Clustering

OROROROXO

Y

https://upload.wikimedia.org/wikipedia/commons/a/ad/Hierarchical_clustering_simple_diagram.svg

Merge from the bottom up




Agglomerative Clustering in Geometry

“Hierarchical mesh segmentation based on fitting primitives.”
Attene, Falcidieno, and Spagnuolo; The Visual Computer 2006

Fit a primitive and measure error



Related Technique: Flood Fill

Reglion Growling Algorithm
Initialize a priority queue ( of elements
Loop until all elements are clustered
Choose a seed element and insert to (
Create a cluster C from seed
Loop until O is empty
Get the next element s from (Q
If s can be clustered into C
Cluster s into C
Insert s neighbors to (¢
Merge small clusters into neighboring ones

“Segmentation and Shape Extraction of 3D Boundary Meshes.”
Shamir; EG STAR 2006.

Region growing algorithm



In Redistricting

Flood Fill and Agglomerative Clustering

Electoral Bias in Simulated Florida Districting Plans
(Non-Compact District Simulation Procedure)
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Electoral Bias in Simulated Florida Districting Plans
(Compact District Simulation Procedure)
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1 25 50 75 100 125 150 175 200

Number of Districts in Simulated Districting Plan

Figure 4. Republican electoral bias in simulated Florida districting plans.
Note: Black dots indicate the average share of simulated districts that have pro-Bush
majorities in the simulated plans. Gray bars depict the entire range of pro-Bush district
shares that were observed across all simulations for each given legislature size. Red bars
depict the range of simulated outcomes for legislatures of 25 districts (Florida’s Congres-
sional Delegation), 40 districts (the Florida State Senate), and 120 districts (the Florida
State House).

Images from “"Redistricting Algorithms” (Becker and Solomon) and
“*Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures” (Chen and Rodden, 2013)



Clustering in Feature Space

N

Figure 4: Example of mesh attributes used for partitioning. Left: minimum curvature, middel: average geodesic distance, right:
shape diameter function.

“Segmentation and Shape Extraction of 3D Boundary Meshes.”
Shamir; EG STAR 2006.




Additional Desirable Properties

* Cardinality

— Not too small and not too large or a given number (of segment
or elements)

— Overall balanced partition

* Geometry
— Size: area, diameter, radius

— Convexity, Roundness

— Boundary smoothness

* Topology

— Connectivity (single component)

— Disk topology
— a given number (of segment or elements)

“Segmentation and Shape Extraction of 3D Boundary Meshes.”

Shamir; EG STAR 2006.
via Q. Huang, Stanford CS 468, 2012



Issue So Far

No notion of optimality.

No use of
local relationships.



Global Optimality Unlikely

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs e

The planar k-means problem is NP-hard"

Meena Mahajan #*, Prajakta Nimbhorkar?, Kasturi Varadarajan”

4 The Institute of Mathematical Sciences, Chennai 600 113, India
b The University of lowa, lowa City, IA 52242-1419, USA

ARTICLE INFO ABSTRACT

!f@yWOf‘_dS-' In the k-means problem, we are given a finite set S of points in ", and integer k > 1, and
Clustering we want to find k points (centers) so as to minimize the sum of the square of the Euclidean
k-means . S . 3 i . i .
Planar graphs distance of each point in S to its nearest center. We show that this well-known problem is
NP—harzllle{ss NP-hard even for instances in the plane, answering an open question posed by Dasgupta

(2007) [7].
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the k-means problem, we are given a finite set S of points in W™, and integer k > 1, and we want to find k points
(centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. This is a

sa173ll brvnatarm a1mvA mAamiilar ~litefartime wreralhlas Flaaf lRac alea racrattriad o 1ak oaF atfarmfima Frmame Flha s loaoariflR s e A~ e 111 F5 r



Spectral Clustering

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture16.pdf

K-means Spectral clustering

. . twocircles, 2 clusters
two circles, 2 clusters (K-means) '
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Rough notion of optimality
Assembles local relationships



Normalized Cuts for Two Cuts

Symmetric similarity matrix W

Cut score C(A, B) := > ica wj;
jEB

Volume V(A) := ZieA Zj Wi

Normalized cut score

N(A,B):=C(A,B)(V(A) ' +V(B)™ 1
“Normalized Cuts and Image Segmentation.”
Shi and Malik; PAMI 2000






Eigenvalue Problem

 x'Lx
min

x x!Dx
st.x D1 =0

Lx = )\Dx




Example on kNN Graph
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Image courtesy D. Sontag



For > 2 Clusters

Recursive bi-partitioning (Hagen et al. 1991)
Analogy: Agglomerative clustering
Potentially slow/unstable

Cluster multiple eigenvectors
Analogy: k-means after dimension reduction
More popular approach

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture16.pdf
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Fiedler vector (“algebraic connectivity”)



Back to the Laplacian

Computers & Graphics 33 (2009) 381-390

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag
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processing to more recent 3D content management. In this scenario, spectral methods are extremely
promising as they provide a natural library of tools for shape analysis, intrinsically defined by the shape
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functions that provide interesting insights in the structure and morphology of the shape. In this paper.
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Figure 7: Segmentations induced by the nodal domains of some eigenfunctions selected among the first 15 eigenfunctions (in order of increasing eigenvalues). Blue|
regions correspond to regions where the eigenfunctions have negative values, while red regions correspond to positive values.
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Nodal domain
[nohd-| doh-meyn]:

A connected region where
a Laplacian eigenfunction
has constant sign



Courant’s Theorem

The k-th Laplacian eigenfunction has
at most k nodal domains.

https://i.stack.imgur.com/JJIFP.png



Image courtesy Q. Huang

Inconsistent!



Is segmentation a
purely geometric
problem?



Obvious Counterexample

http://www.erflow.eu/brain-segmentation-science-case

Shape provides only a clue




Supervised Learning
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“Learning 3D Mesh Segmentation and Labeling.”
Kalogerakis, Hertzmann, and Singh; SIGGRAPH 2010

Use example data to help
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Preview

Image from "Dynamic Graph CNN for Learning on Point Clouds” (Wang et al. 2019)



Preview: Unsupervised Learning

single-shape segmentation joint shape segmentation

“Joint Shape Segmentation with Linear Programming.”
Huang, Koltun, and Guibas; SIGGRAPH Asia 2011



Clustering and Segmentation

Justin Solomon
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