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What is Optimal Transport?

A geometric way
to compare
probability measures.
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Plan For Today

1. Introduction to optimal transport
* Construction
* Many formulas

2. Applications

3. Discrete/discretized transport
* Entropic regularization
* Eulerian transport

* Semidiscrete transport

4. Extensions & frontiers




Useful References

Shameless self-promotion

Computational Optimal Transport

Snapshots of modern mathematics Neg/2017
from Oberwolfach

Computational Optimal Transport

Justin Solomon

Optimal transport is the mathematical discipline of
matching supply to demand while minimizing ship-
ping costs. This matching problem becomes extremely
challenging as the quantity of supply and demand
points increases; modern applications must cope with
thousands or millions of these at a time. Here, we
introduce the computational optimal transport prob-

Progress in Nontinear Differeatial Equaticns
and Their Apphcations.
£

Topics in Optimal

Transportation

Cédric Villani

| Optimal
Transport

for Applied
Mathematicians

¥ Birkhauser

Optimal Transport on Discrete Domains
Notes for AMS Short Course on Discrete Differential Geometry

Justin Solomon
1 Introduction

Many tools from discrete differential geometry (DDG) were inspired by practical considerations in
areas like computer graphics and vision. Disciplines like these require fine-grained understand-
ing of geometric structure and the relationships between different shapes—problems for which
the toolbox from smooth geometry can provide substantial insight. Indeed, a triumph of discrete
differential geometry is its incorporation into a wide array of computational pipelines, affecting
the way artists, engineers, and scientists approach problem-solving across geometry-adjacent dis-
ciplines.

A key but neglected consideration hampering adoption of ideas in DDG in fields like computer
vision and machine learning, however, is resilience to noise and uncertainty. The view of the world
provided by video cameras, depth sensors, and other equipment is extremely unreliable. Shapes
do not necessarily come to a computer as complete, manifold meshes but rather may be scattered
clouds of points that represent e.g. only those features visible from a single position. Similarly, it
may be impossible to pinpoint a feature on a shape exactly; rather, we may receive only a fuzzy
signal indicating where a point or feature of interest may be located. Such uncertainty only in-
creases in high-dimensional statistical contexts, where the presence of geometric structure in a
given dataset is itself not a given. Rather than regarding this messiness as an “implementation
issue” to be coped with by engineers adapting DDG to imperfect data, however, the challenge
of developine princinled vet noise-resilient discrete theories of shape motivates new frontiers in
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Probability as Geometry

p(x)
A

“Somewhere over here.”



Probability as Geometry

p(z)
A

» L

“Exactly here.”



Probability as Geometry

p(x)
A

» L

“One of these two places.”
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Equidistant!

||
=
S

Ip — qlh

0
KL(p|lq) = =) pilog =



What's Wrong?

overlap
displacement



Alternative Idea

S

Y

Cost to move mass m
x from x to y:
' m-d(x,y)
z R \

<

Match mass from the distributions



Observation

Even the laziest shoveler
must do some work.

Property of the distributions themselves!




Measure Coupling

m(x,y) := Amount moved from z to y

fE y > O \V/ZC - X y - YMaSSISPOStve

/ m(@,y) dy = po(x) Vo € X Jginsis
Y

/My Jdr=pi(y) Vy €Y 4is
X



Kantorovich Problem

OT(u,v;c) .= min //Xxy c(x,y)dmr(x,y)

mell(u,v)

General transport problem



p-Wasserstein Distance

)= min d(x,y)? dr(x y
mell(p, V) Xxxi i
£0 J((

http://www.sciencedirect.com/science/article/pii/S152407031200029X#



1-Wasserstein in 1D

( ming; [[r.g T(x,y)|x —y|ldxdy  Minimize total work
L st. > O Vx,y € R Nonnegative mass
Wileo 1) = Jr (%, y) dy = po(x) Vx € R Starts from py
\ Jr (x,y)dx = p1(y) Vy € R Ends at p;

"
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Source and target Transport map
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In One Dimension: Closed-Form

oo Doesn’t extend
Wi (p,v) = / |ICDF(u) — CDF(v)| df past 1d!

2

Wi (u,v) = / N (CDF~!(n) — CDF~'(v))" d¢



Fully-Discrete Transport

( minTE]RkOxkl Zij Tij’xm - xlj‘p
st. T>0
Wy (po, p1)]F = 1
[ P(:u ]/11)] 2] le — dp;
\ i Tij = ay;

Linear program: Finite number of variables
Algorithms: Simplex, interior point, auction, ...

“Empirical measures”




Semidiscrete Transport

ko
o = Zaoﬁm pa(S) = fspl(ﬂi‘) dx

Never a reason to “leapfrog” mass!

LA




Monge Formulation

inf /OO c(x,d(x))po(x) do

P4Po=pP1 J _ 50

[Monge 1781]; image courtesy Marco Cuturi

Not always well-posed!
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Example: Discrete Transport

X ={1,2,... .k}, Y ={1,2,... k)

“Earth Mover’s Distance”

( minTeRklxkz Zfij Tijcij
st. T >0
OT(v,w;C) = YT =vi Vie{l,... ki}
x 2iTij=w; Vi€l .. ka}.

Metric when d(x,y) satisfies the
triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.
Revised in:

“Ground Metric Learning”

Cuturi and Avis; JMLR 15 (2014)



Kantorovich Duality

OT(My V. C) = { m;ntW {féﬁ(;(’xya)y) dﬂ(gj’ y)

Primal

:{max¢¢ fX dﬂ —I-IY I/() Dual
s.t. o(x) +¢Y(y) < (aty)foraea:EXyEY



Flow-Based W,

o [farxion 3P(@ D)oz, 8)|1* da dt
s.5. V- (p ( tyv(z,t)) = 22L&

W3 (po, p1)=+ v(x,t) - n(x) =0 Vo € 8M
p(:l?,O) — /OO( )

\ /O('I'al) :pl(I)
[Benamou & Brenier 2000]

Tip of an iceberg:
Manifold theory of transport!
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Wassersteinization

[wos-ur-stahyn-ahy-sey-sh uA-n]
noun.

Introduction of optimal transport
into a computational problem.

cf. least-squarification, L,ification, deep-netification, kernelization




Key Ingredients

We have tools to

Solve optimal transport problems
numerically

Differentiate transport distances in
terms of their input distributions

Bonus:
Transport cost from utovisa
convex function of u and v.




Operations and Logistics

Demand

N\ :

Supply

Minimum-cost flow



Histograms and Descriptors

A
document 1 ‘oreets’ document 2
Obama Obama / ¢ The
o :
speaks . @ , ‘speaks’ President
to President sreets
the the
media ‘Chicago’ press
in o ‘media’ in
Illinois i " . o< y Chicago
‘Illinois”  Press

word2vec embedding

[Kusner et al. 2015]

Word Mover’s Distance (WMD)



Registration and Reconstruction

Caveat: V], -
Not a good model for deformation! \ }
(a) Dataset (b) OT fidelity (c) RKHS fidelity

t = t=1/3 t =
Fig. 2. First row: Matching of fibres bundles. Second row: Matching of two hand
surfaces using a balanced OT fidelity. Target is in purple.

[Feydy, Charlier, Vialard, and Peyré 2017]

Alighment



Engineering Design

EPFL Computer Graphics and Geometry Laboratory; Rayform SA



Interpolation

® e e e

Image from [Lavenant, Claici, Chien, & Solomon 2018]

Frame 30/50 Frame 35/50 Frame 40/50 Frame 45/50

Image from [Vaxman & Solomon 2019]



Blue Noise and
Distribution Approximation

Uniform samples Transport

1
min W3 /,L,—E .
X1,...,Lp T -
(5

Zebra image courtesy F. de Goes; photo by F. Durand; distribution image courtesy S. Claici



Statistical Estimation

{pe:0 €O}

MLE := min KL(vgata|pe)
HeO

—— MKE := min WQ(Vdataapé’)

0ecO [Bassetti 2006]

Minimum Kantorovich Estimator



Domain Adaptation

Dataset
+ -------------
+ ++ Qt o (oNe)
00 O
- 1
_|_."‘":~‘-: ________________________________
+ +
+ . ++ Class 1
(@] O O C(lass 2
© “ +_O Samples x7}
o +O Samples Xg
' —— Classifier onx?

Optimal transport

+ O Samples T, (x7)

O Samples x’i

transport map

T R

Classification on transported samples

— Classifier on T, (x)

labeled samples to new domain
classifier on transported labeled samples

[Courty et al. 2017]



Generative Adversarial Networks (GANs

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values oo = 0.00005, ¢ = 0.01, m = 64, negitie = 5.
Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic; the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. fp, initial generator’s parameters.
1: while # has not converged do
2 for t = 0, ..., Neritic do
3 Sample {2V}, ~ P, a batch from the real data.
4
5

Sample {z(7} | ~ p(z) a batch of prior samples.

Gu Vi [2= 20 fu(z®) = 57" fulga(2)]

w +— w + o - RMSProp(w, g.,)
7: w < clip(w, —¢, ¢)
8: end for
o: Sample {2} ~ p(z) a batch of prior samples.

100 gg —Vo= 37 fulge(z?))
11: 6 « 6 — o - RMSProp(6, g¢)
12: end while

Figure 9: WGAN algorithm: generator and critic are DCGANs. [Al’jOVSky et al. 2017]
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Theme in computation:

Same in theory, but
different in practice

- Choose one of each:

“Formulation

“Discretization



Well-Known Theme

“No Free Lunch”

SymMm Loc LIN PoOS PsD CON
MEAN VALUE 0 ° ° ° 0 o
INTRINSIC DEL ° o ° ° ° ?
COMBINATORIAL ° ° o ° ° o
COTAN ° ° ° 0 ° °

Observe that none of the Laplacians considered in graph-
ics fulfill all desired properties. Even more: none of them
satisfy the first four properties.

[Wardetzky et al. 2007]
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Entropic Reqularization

AN A W A N A W A\

\ \ \ ’

v=0 ~=0.0001=0.001 vy=0.01 ~=0.1

mlnT Z’L] TZ] Cij — QfH(T) OK to drop

nonnegative

S.t. ZJ sz — p’L constraint!
2. Tij = qj H(T) = —»_TislogTi

©]

Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)



Sinkhorn Algorithm

T = diag(u) K,diag(v),
where K, := exp(—C'/a)

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices".
Pacific J. Math. 21, 343-348 (1967).

Alternating projection



Ingredients for Sinkhorn

Supply vector p
Demand vector q
Multiplication by K

Solomon et al. "Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains." SIGGRAPH 2015.



Sinkhorn Divergences

Wcjg(ﬂ, V) = QWC,E(/% V)_WC,FJ(Ma M)—Wcjg(V, V)

* Debiases entropy-regularized transport near zero
* Easyto compute: Three calls to Sinkhorn

* Links optimal transport to maximum mean discrepancy (MMD)

V) 0
Wee(p, v) - 2We(p, v)

[Genevay et al. 2016]
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Discretization

>
e e

Unknown : 1 [0,1] x M — Ry
\..\,./ ~—~
time Space

. {/1/ m|2}
min
f4,m 0 M 2/1

where m = pv is the momentum, under the
constraints

Op+|V-m|=0,
Ho = raov
p1 = [

Images/math from [Lavenant, Claici, Chien, and Solomon 2018]



Graph analog:

Beckmann Formulation

==
W/

S.t. DTJ p1 Do
f

In computer science:
Network flow problem

Smooth PDE analog: [Solomon et al. 2014]
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Semidiscrete General Case

https //WWWJas'ondawes com/power-diagram/



Semidiscrete Algorithm

Fo) =Y oo+ | oy P 0) 01240

a; — ply) dA(Y
acbz : Aag%(%) ( ) ( ) Concave in ¢!

Simple algorithm: Gradient ascent

Ingredients: Power diagram

More complex: Newton’s method

Converges globally [de Goes et al. 2012; Kitagawa, Mérigot,
& Thibert 2016]

ML setting: Stochastic optimization

[Genevay et al. 2016; Staib et al. 2017; Claici et al. 2018]



Application




Redux

Disadvantages

Entropic regularization * Fast *Blurry
* Easy to implement * Becomes singular as
* Works on mesh using a—-0
heat kernel
Eulerian optimization *Provides displacement  *Hard to optimize
interpolation * Triangle mesh
* Connection to PDE formulation unclear
Semidiscrete * No regularization * Expensive
optimization * Connection to computational
“classical” geometry geometry algorithms
Many others:

Stochastic transport, dual ascent, Monge-Ampere PDE, ...
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New methods
in learning



Sinkhorn Autodiff

o 0 e K
. | | '
& & (c(iyy))iy e~ C/e xnk G b }
== | : ﬂm__{ }@ ———((C © K)br,ar)
‘i; ] . | ' ‘ b g1 )
= G W) let+1 EL(6)
Generative model Input data Sinkhorn /=1..... L—1

Figure 1: For a given fixed set of samples (z1,...,2,), and input data (yi,...,yn), flow diagram for the
computation of Sinkhorn loss function 6 — EéL)(H). This function is the one on which automatic differentiation
is applied to perform parameter learning. The display shows a simple 2-layer neural network gy : z — x, but this

applies to any generative model.

[Genevay et al. 2016]



Smoothed Dual Formulations

Proposition 19. The dual of entropy-reqularized OT between two probability measures

a and 3 can be rewritten as the maximization of an expectation over a @ [3:

XY
W, 0) = s FaoslfXY (w0 4,
where
ef. u(z)tv(y)—elz,y)
f7 = u(z) 4+ v(y) — eexp c fore>0. (2.2)
and when = 721 Bjoy, is discrete, the potential v is a m-dimensional vector (v;);

Algorithm 4 Averaged SGD for Semi-Discrete OT
Input: step size C' € R

Output: dual potential v € R™ Parameterize dual potentials:
v+ 0, (iterates for SGD) * Using RKHS [Genevay et al. 2016]
Vv (dual potential obtained by averaging) * Using neural networks [Seguy et al. 2017]

for k=1,2,... do
Sample zp from «

V& VL %vafk (v) (gradient ascent step using v)

V %v + %\7 (averaging step to get faster convergence of v)

end for

[PhD thesis: Genevay 2019]




New Progress on the Monge Formulation

Input Convex Neural Networks

Abstract

This paper presents the input convex neural net-
work architecture. These are scalar-valued (po-
tentially deep) neural networks with constraints
on the network parameters such that the output
of the network is a convex function of (some
of) the inputs. The networks allow for efficient
inference via optimization over some inputs to
the network given others, and can be applied to
settings including structured prediction, data im-
putation, reinforcement learning, and others. In
this paper we lay the basic groundwork for these
models, proposing methods for inference, opti-
mization and learning, and analyze their repre-
sentational power. We show that many existing
neural network architectures can be made input-
convex with a minor modification, and develop
specialized optimization algorithms tailored to
this setting. Finally, we highlight the perfor-
mance of the methods on multi-label prediction,
image completion, and reinforcement learning
problems, where we show improvement over the
existing state of the art in many cases.

1. Introduction

In this paper, we propose a new neural network architecture
that we call the input convex neural network (ICNN).These
are scalar-valued neural networks f(x,y;6) where x and
y denotes inputs to the function and # denotes the param-
eters, built in such a way that the network is convex in (a
3 M fimilamontal honabit trsthacs 10 :

B cniheet of) innute 11

Brandon Amos' Lei Xu?" J. Zico Kolter !

y) we can globally and efficiently (because the problem is

convex) solve th

Fundamentally,

in the network Vv
ing predictions i
ward process, W
scalar function (
ergy function) o
ers. There are ¢
networks.

Structured pre
notation above,

tured prediction.
tured input and

work over (z,y
for this pair, fol
malisms (LeCun|
the y € ) that

is exactly the ar|
suming that ) is
structured predic
This is similar i

networks (SPEN|
also use deep n
with the differen

Optimal transport mapping via input convex neural networks

Ashok Vardhan Makkuva “! Amirhossein Taghvaei > Jason D. Lee® Sewoong Oh*

Abstract

In this paper, we present a novel and principled
approach to learn the optimal transport between
two distributions, from samples. Guided by the
optimal transport theory, we learn the optimal
K. e e ich 1 ~aQ 1 p l

1. Introduction

Finding a mapping that transports mass from one distri-
bution ) to another distribution P is an important task in
various machine learning applications, such as deep genera-
tive models (Goodfellow et al., 2014; Kingma & Welling,
2013) and domain adaptation (G

. 1 TR o -

opalan et al., 2011; Ben-

traj e Target distribution Souce distribution

fu
tio
of

-6 -4 -2 0 2 4 6

(a) Data samples

°

-4

— Transport map e Generated dist The transport map vector field Vg(y) —y The level sets for g(y) — 1|y|?
8 S 5 _J “‘ T T \_,
“'j‘: E— fl 6 LJ" ‘\ ‘\_a
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(b) Our transport map

(c) Displacement vector field

(d) Level sets
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Extension:

Wasserstein Barycenters

o A VN N~

Wasserstein: p* := [ min ZWQ [y [i) ]

MEP ob(R™)

[Agueh and Carlier 2010]



Barycenters in Bayesian Inference

© Q )

Wasserstein Subset Posterior (WASP)
[Srivastava et al. 2018]



Extension:

Quadratic Matching

[Mémoli 2007]

GW3( (0, do),
min // dy(, :1;‘ d(y, y ]Qd’)/(ﬂ? Y) dq/(zc 7y,)
YEM(po,p) J Jxy x5



Variety of Correspondence Tasks

Inconsistent Consistent

[Solomon et al. 2016]




Extension:

Gradient Flows

t =20 t =30

“Entropic Wasserstein Gradient Flows” [Peyré 2015]



Extension:

Matrix Fields and Vector Measures

,,,,,,,,,,,

/ /
N\ v 1/ \\ ///
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t=0 t=1/8 t=1/4 t=3/8 t=1/2 t= t=3/4 t=17/8 t=1
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\

Image from
“*Quantum Optimal Transport for Tensor Field Processing”
[Peyré et al. 2017]

Open problem: Dynamical version? Curved surfaces?



Extension:

Sampling Problems

min W3 (oo, p) + W5 (o1, p)

po(z) @

Somewhere between semidiscrete and smooth

Wasserstein barycenter

p1(z)
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