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A geometric way
to compare 

probability measures.

Monge Kantorovich Dantzig Wasserstein Brenier McCann VillaniOtto

Nobel prize Fields medal
(and French politician)
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“Somewhere over here.”



“Exactly here.”



“One of these two places.”



Lp norm
KL divergence





Measured overlap, 
not displacement.



Match mass from the distributions

Cost to move mass 𝒎
from 𝒙 to 𝒚:

𝒎 ⋅ 𝒅(𝒙, 𝒚)



Even the laziest shoveler

must do some work.
Property of the distributions themselves!

My house!





General transport problem



http://www.sciencedirect.com/science/article/pii/S152407031200029X#

Shortest path 
distance

Expectation

Geodesic distance d(x,y)





http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html

PDF [CDF] CDF-1

Doesn’t extend
past 1d!



“Empirical measures”

Linear program:  Finite number of variables
Algorithms:  Simplex, interior point, auction, …



Never a reason to “leapfrog” mass!



Not always well-posed!
[Monge 1781]; image courtesy Marco Cuturi
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Metric when d(x,y) satisfies the 
triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000):  99—121.

Revised in:

“Ground Metric Learning”
Cuturi and Avis; JMLR 15 (2014)

“Earth Mover’s Distance”



Primal

Dual



[Benamou & Brenier 2000]

Tip of an iceberg:

Manifold theory of transport!
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Wassersteinization
[wos-ur-stahyn-ahy-sey-shuh-n]
noun.

Introduction of optimal transport 
into a computational problem.
cf.  least-squarification, L1ification, deep-netification, kernelization



We have tools to

 Solve optimal transport problems 
numerically

 Differentiate transport distances in 
terms of their input distributions

Bonus:
Transport cost from 𝝁 to 𝝂 is a 

convex function of 𝝁 and 𝝂.



Minimum-cost flow

-1 +2

-1Supply

Demand

1

1



[Kusner et al. 2015]

Use word embeddings

Word Mover’s Distance (WMD)



Alignment
[Feydy, Charlier, Vialard, and Peyré 2017]

Caveat:
Not a good model for deformation!



EPFL Computer Graphics and Geometry Laboratory; Rayform SA



Image from [Lavenant, Claici, Chien, & Solomon 2018]

Image from [Vaxman & Solomon 2019]



Zebra image courtesy F. de Goes; photo by F. Durand; distribution image courtesy S. Claici



[Bassetti 2006]

Minimum Kantorovich Estimator



[Courty et al. 2017]

1. Estimate transport map
2. Transport labeled samples to new domain

3. Train classifier on transported labeled samples



[Arjovsky et al. 2017]
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Theme in computation:

Same in theory, but
different in practice

 Choose one of each:

▪Formulation

▪Discretization



“No Free Lunch”

[Wardetzky et al. 2007]
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Cuturi.  “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)

OK to drop 
nonnegative 
constraint!



Alternating projection

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". 
Pacific J. Math. 21, 343–348 (1967).



1. Supply vector p
2. Demand vector q

3. Multiplication by K

Solomon et al. "Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains." SIGGRAPH 2015.



[Genevay et al. 2016]

• Debiases entropy-regularized transport near zero
• Easy to compute:  Three calls to Sinkhorn
• Links optimal transport to maximum mean discrepancy (MMD)
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Images/math from [Lavenant, Claici, Chien, and Solomon 2018]



In computer science:

Network flow problem

Smooth PDE analog: [Solomon et al. 2014]
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https://www.jasondavies.com/power-diagram/



 Simple algorithm:  Gradient ascent
Ingredients:  Power diagram

 More complex:  Newton’s method
Converges globally [de Goes et al. 2012; Kitagawa, Mérigot, 
& Thibert 2016]

 ML setting:  Stochastic optimization
[Genevay et al. 2016; Staib et al. 2017; Claici et al. 2018]

Concave in 𝝓!





Method Advantages Disadvantages

Entropic regularization •Fast
•Easy to implement
•Works on mesh using 

heat kernel

•Blurry
•Becomes singular as 
𝜶 → 𝟎

Eulerian optimization •Provides displacement 
interpolation
•Connection to PDE

•Hard to optimize
•Triangle mesh 

formulation unclear

Semidiscrete
optimization

•No regularization
•Connection to 

“classical” geometry

•Expensive 
computational 
geometry algorithms

Many others:
Stochastic transport, dual ascent, Monge-Ampère PDE, …
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Extra:
New methods 
in learning



[Genevay et al. 2016]



[PhD thesis: Genevay 2019]

Parameterize dual potentials:
• Using RKHS [Genevay et al. 2016]
• Using neural networks [Seguy et al. 2017]
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[Agueh and Carlier 2010]



Wasserstein Subset Posterior (WASP)
[Srivastava et al. 2018]



[Mémoli 2007]



[Solomon et al. 2016]



“Entropic Wasserstein Gradient Flows” [Peyré 2015]



Image from

“Quantum Optimal Transport for Tensor Field Processing”
[Peyré et al. 2017]

Open problem:  Dynamical version?  Curved surfaces?



Wasserstein barycenter

Somewhere between semidiscrete and smooth
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