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Common Constraints in ML/Vision

min @)

Euclidean space R"
Unit sphere S 1
Stiefel manifold V; (R™)

orthonormal k-frames

Grassmann manifold Gr(k,V)

k-dimensional linear subspaces of V
Rotation group SO(n)
Semidefinite matrices S

From “Optimizing in smooth waters: optimization on manifolds” (Boumal, 2015)



Example: Structure-from-Motion

Search space: set of rotations

SfM (Princeton Vision & Robotics group)

Slide courtesy Nicolas Boumal



Example: Cryo-EM

https://elifesciences.org/articles/37558
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Example: Sensor Network Localization

Search space: cloud of points, up to rigid motion

Slide courtesy Nicolas Boumal



Typical Approach

min f(x

min f(z)
"~ min f(R)— min f(R)
ReSO(3) | __ R'R=I

det(R)=1




Challenges

Constraints cut out a
nonconvex, curved set in R3%3

Ka) (b)

Naively: Degree 2 & 3 polynomials

Ko

https://www.researchgate.net/figure/Visualization-of-the-spherical-and-Hopf-coordinates-on-S0O3-using-angle-and-axis_figi_45098059




Fundamental Disagreement

min, f(x)
s.t. g(x) =0




Optimization Path: Step & Project

min, f(x)
s.t. g(x) =0




Projection Isn’t Obvious!

IIliIlaj HLE‘ — .CU()HQ

s.t. g(x) =0




Intrinsic Perspective
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http://opentranscripts.org/transcript/katherine-cross-at-the-conference-2015/



Optimization as a Lady Bug

https://www.shutterstock.com/video/clip-27741358-beautiful-tiny-ladybug-on-corn-leaf-slow-mo



Intrinsic Approach to Optimization

Optimize Wlthout stepplng
off of the manifold



Starting Point

Gradient descent on R"

Tpt1 = T — oV [ (T

Cost

Learning step

Minimum

Random w w
initial value

https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/



What are the
constituent parts of
gradient descent?



Gradient descent on R"

Tl = T + oV fxg)



First-Order Manifold Optimization

Gradient descent on R"

Tl = T + oV fxg)

Lh41 = eprk(—Oéka(éCk))

Manifold gradient descent (roughly)



Why Manifold Optimization?

Practical perspective:

Better algorithms

Automatic constraint satisfaction,
specialized to the space

Theoretical perspective:

Elegant mathematical
characterization

Generalize convexity, gradient descent, ...



c
9
afd

O

-
o)

O

ul
afd

c

()
P

n

c

()
-

()

el

Q.

&

O
U

£ |

A. ABSIL, R, MAHONY & R. SEPULCHR

(RANATRAREALLRAL AR AL,

|
‘
B



Matlab Toolbox

HMAH

— O X
et Manopt, a matlab toolbox for op X +
< C @& manoptorg X ¢ ® ‘

I'\/lanopt #A Home A Tutorial & Downloads @ Forum L About i Contact

Welcome to Manopt!

A Matlab toolbox for optimization on manifolds

Optimization on manifolds is a powerful paradigm to address nonlinear optimization problems. With

Manopt, it is easy to deal with various types of symmetries and constraints which arise naturally in ap-
plications, such as orthonormality and low rank.

Download & Get started A

Manifolds? Key features It's open source

Manifolds are mathematical sets with a smooth ~ Manopt comes with a large library of manifolds  Check out the license and let us know how you

A4



Additional Resource

NICOLAS BOUMAL

AN INTRODUCTION TO
OPTIMIZATION ON
SMOOTH MANIFOLDS

nicolasboumal .net/#book

NEPARTMEDR



Recall: Differential

df (V) = }112% (X0 + h\}? — f(x0)

Proposition. df, is alinear operator.

N

dfxo (V) = D f(X0) - v VJ

e |
Note: Technically we derived the 1D version. Nothing changes! /




Recall: Tangent Space

ToM =~'(0), where v(0) = p
1mage(dgg_1(p))

Skipping:
Independence of choice of g.



Back to Optimization

Gradient descent on R"

Tl = T + oV fxg)
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Lh41 = eprk(—Oéka(éCk))

Manifold gradient descent (roughly)



Recall: Gradient

Proposition For each p € M, there exists a unique vector Vf(p) € TpM so that dfy(v) =
v-Vf(p) forallv e Ty,M.



Walking along the Manifold: Exponential Map

CXPp (V) == (1)

vY,(1) where y,, is
(unique) geodesic from p
with velocity v.

https://en.wikipedia.org/wiki/Exponential_map_(Riemannian_geometry)



Geodesics are Complicated!




Weaker Notion: Retraction

Th1q = retractiong, (—aV f(zy))

Definition 4.1.1 (retraction) A retraction on a manifold M is a smooth
mapping R from the tangent bundle T M onto M with the following proper-
ties. Let R, denote the restriction of R to T, M.

(i) R.;(0,) =z, where 0, denotes the zero element of T, M.
(#i) With the canonical identification Ty, T, M ~ T, M, R, satisfies

DR,(0,) =idp,
where idr_aq denotes the identity mapping on T, M.

From “"Optimization Algorithms on
Matrix Manifolds” (Absil et al.)



More General Setting: Riemannian Manifold

Pair (M, g) of a differentiable
manifold M and a pointwise
positive definite inner product per
point g,(-,"): T,M X T,M — R.




Riemannian Inner Product

g(-,)p : TyM x TyM — R

Symmetric, bilinear,
positive definite form
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Example: Space of Parameterizations

\ |
WY AN 7 f
Y\ i \ J J
TR ‘\L—(Y//,—‘u:,
VAR NN 1/
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A

discretization .

Claici, Bessmeltsev, Schaefer, and Solomon. "Isometry-Aware Preconditioning
for Mesh Parameterization." SGP 2017, London. pny



Riemannian Gradient

Metric tensor g € R™*"
Gradient in coordinates Vf € R"

Vof =g~ 'Vf



Vof =g~ Vf



Riemannian Gradient Descent (the same!)

Gradient descent on R"

Tl = T + oV fxg)
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Lh41 = eprk(—Oéka(éCk))

Manifold gradient descent (roughly)



Extension: Line Search

Th1q = retractiong, (—aV f(zy))

Identical strategies to Euclidean case:

_ 1
° ak_E

* Backtracking
* 1D optimization

Sufficient decrease

https://www.phy.ornl.gov/csep/mo/nodeg.html



Extension: Newton’s Method?

st = T, — fgfm)—lw@:k)

Tough to define
On manifolds gives a different search direction

<omit>



Extension: Geodesic Convexity

x “"\\ x Hkx
\}' H}’
d d 3
CCR CCR Bo(2) C R
CONVEX SET NON-CONVEX SET NON-CONVEX SET
<omit>

https://www.groundai.com/project/non-convex-optimization-for-machine-learning/1



Example: Unit Sphere

S —fx e R": ||x|]» = 1}



Tangent Space of Sphere

TpS" ' ={veR": v -p=0}

Tg, S

4T
T.S?

5t

> B

SZ

https://math.stackexchange.com/questions/2219831/difference-of-vectors-living-in-different-tangent-spaces



Restriction of f: R" — R

Vsn—1f(p) = (Inxn_ppT)vR”f(p)

Project ambient gradient into the tangent plane



Retraction on Sphere: Two (Typical) Options

Exponential map

expp(V) = pcos || vl ‘

Projection

pP+V

R —
V) = ok




Example: Stiefel Manifold

V(R = {X e R* . X' X =1,



Vk(Rn) — {X - RnXk : XTX — ]kxk}



Tangent Space and Retraction

Tx ViR = {6 e R"F ¢ TX + XTe =0}
Rx(€) == (X + &) (Ipup + £ €)1/



Optimization Example:

Rayleigh Quotient Minimization

1
min  -x | Ax
xegn—12

Assume A is symmetric

On the board:

* Relationship to eigenproblems

* Intrinsic gradient

* First-order algorithm

* Extension: refining eigenvector estimates



Recall: Two (Typical) Options

Exponential map

expp(V) = pcos || vl ‘

Projection

pP+V

R —
V) = ok




min

1
—X

xegn—12

T Ax



Optimization Example:

Reqularized PCA

1 )
max XA
XEVK(R”) H HFI‘O

On the board:

* Relationship to PCA

* Extensions: Robust PCA, reqularized PCA
* Intrinsic gradient

* First-order algorithm



AR
Imax XA
X eV, (R) | It



What’s Next: Many (!)

Variations of PCA

Method

Objective fx (M)

Manifold M

Mapping ¥ = PX

PCA (§3.1.1)
MDS (§3.1.2)
LDA (§3.1.3)

Traditional

CCA (§3.1.4)

Orthogonal
CCA (§3.1.4)

MAF (§3.1.5)
SFA (§3.1.6)
SDR (§3.1.7)

LPP (§3.1.8)
UICA (§3.2.1)
PPCA (§3.2.2)
FA (§3.2.3)

LR (§3.2.4)

DML (§3.2.5)

|X — MMTX||2
¥ (dx (@i, ;) — dy (M Ty, MT;))?

tr(M =g M)
tr(M T Sy M)

o (M O0X])T2X, X (X, X)) 720,

er(2M] X, X, M)

V(M x, x T M, )er(m,) X, x," M)

tr(M T £5 M)
tr(M T ©M)

tr(MTXXT M)
tr (KZ (Kprrx +mel) 1)
tr (MT(XDX ")y~ T2XLXT(XDX ")~ 1/2M)
Slog [MTM|+ 230 377 log fo (m] =n)
log |MMT +02I| +tr (XXT(MMT +021)71)
log[MMT + D|+tr (XX (MMT + D)~ 1)
[[Xous — MXin|[F + A|M]|p

> en(i) dpg (4, JL‘J)Z + A, W(zi # z¢)
jen(
[l + dpr (.’IT;;..’I"J)Q — ri_,u(:r;.:zrl_)zi N }

Odxr

Odxr

Odxr

Oda X1 ¢ dpXT

(r)do X7 g Odbxr

(_f)dx ™

der

Odxr

oxr
Raxr
lex r
JRdxr

lﬁ)dx T

E?dx r

MTX
MTX
MTX

MT (X,XT)

w7 (%,X7)

M X, ., M X,

MTX

MTX

MTX
MT(XDXT)~T/2x

MTX

MT(MMT +020)~1X

MT(MMT 4+ D)~1X

SV T X, for M =USVT

MTX

From “Linear Dimensionality Reduction: Survey, Insights, and Generalizations”

(Cunningham & Ghahramani; JMLR 2015)



What's Next: Efficient Semidefinite Programming

Samuel Burer - Renato D.C. Monteiro

A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization

Received: March 22, 2001 / Accepted: August 30, 2002
Published online: December 9., 2002 - @ Springer-V&rlag 20 Deterministic guarantees for Burer_MonteirO

Abstract. In this paper, we present a nonlinear programmir factorizations of smooth semidefinite programs

(SDPs) in standard form. The algorithm’s distinguishing fe:

symmetric, positive semidefinite variable X of the SDP with ;

ization X = RR'. The rank of the factorization, i.e., the num _ NICOLA_S BOU_MAL _ _
to enhance computational speed while maintaining equivalene Mathematics Department and Program in Applied and Computational Mathematics,

the convergence of the algorithm are derived, and encouragin Princeton University

problems are also presented. VLADISLAV VORONINSKI

Helm.ai
Key words. semidefinite programming — low-rank factori

Lagrangian — limited memory BFGS AND
AFONSO S. BANDEIRA

Department of Mathematics and Center for Data Science,
Courant Institute of Mathematical Sciences, New York University

1. Introduction
Abstract

In the past few years, the topic of semidefinite We consider semidefinite programs (SDPs) with equality constraints. The vari-
considerable attention in the optimization con able to be optimized is a positive semidefinite matrix X of size n. Following the

included the i . . fth icallv effici Burer—Monteiro approach, we optimize a factor ¥ of size n x p instead, such that
included the mvestigation of theoretically efficien X =YY . This ensures positive semidefiniteness at no cost and can reduce the

tical implementation codes, and the exploration ' dimension of the problem if p is small, but results in a non-convex optimiza-



What's Next: Distance Completion & Embedding

Low-rank optimization for distance matrix completion

B. Mishra, G. Meyer and R. Sepulchre

Abstract— This paper addresses the problem of low-rank
distance matrix completion. This problem amounts to recover
the missing entries of a distance matrix when the dimension of
the data embedding space is possibly unknown but small com-
pared to the number of considered data points. The focus is on
high-dimensional problems. We recast the considered problem
into an optimization problem over the set of low-rank positive
semidefinite matrices and propose two efficient algorithms for
low-rank distance matrix completion. In addition, we propose
a strategy to determine the dimension of the embedding space.
The resulting algorithms scale to high-dimensional problems
and monotonically converge to a global solution of the problem.
Finally, numerical experiments illustrate the good performance
of the proposed algorithms on benchmarks.

This is the pre-print version of [1].

[. INTRODUCTION

Completing the missing entries of a matrix under low-rank
constraint is a fundamental and recurrent problem in many
modern engineering applications (see [2] and references
therein). Recently, the problem has gained much popularity

thanks to collaborative filtering applications and the Netflix
th\]]l‘“‘ﬂ(’l’t" r.'l—l

a restrictive set of given distances. Inference on the unknown
entries is possible thanks to the low-rank property which
models the redundancy between the available data.

A closely related problem is multidimensional scaling
(MDS) for which all pairwise distances are available up
front. A solution to this problem is the classical multidimen-
sional scaling algorithm (CMDS), which relies on singular
value decomposition to find a globally optimum embedding
of fixed-rank. The CMDS algorithm minimizes the total
quadratic error on scalar products between data points. Other
algorithms have focused on variant cost functions, see the
paper [10] for a survey in this area.

In contrast to the classical multidimensional scaling for-
mulation, the problem of Euclidean distance matrix com-
pletion involves missing distances. The problem can be
considered as a variant of multidimensional scaling problem
with binary weights [10], [11]. The low-rank distance matrix
completion problem is known to be NP-hard in general [12],
[13], but convex relaxations have been proposed to render
the problem tractable [14], [15]. Typical convex relaxations
cast the EDM completion problem into a convex optimization



What's Next: Low-Rank Completion

SIAM J. OPTIM. (© 2013 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 1214-1236

LOW-RANK MATRIX COMPLETION BY RIEMANNIAN
OPTIMIZATION*

BART VANDEREYCKENT

Abstract. The matrix completion problem consists of finding or approximating a low-rank ma-
trix based on a few samples of this matrix. We propose a new algorithm for matrix completion that
minimizes the least-square distance on the sampling set over the Riemannian manifold of fixed-rank
matrices. The algorithm is an adaptation of classical nonlinear conjugate gradients, developed within
the framework of retraction-based optimization on manifolds. We describe all the necessary objects
from differential geometry necessary to perform optimization over this low-rank matrix manifold,
seen as a submanifold embedded in the space of matrices. In particular, we describe how metric
projection can be used as retraction and how vector transport lets us obtain the conjugate search
directions. Finally, we prove convergence of a regularized version of our algorithm under the assump-
tion that the restricted isometry property holds for incoherent matrices throughout the iterations.
The numerical experiments indicate that our approach scales very well for large-scale problems and
compares favorably with the state-of-the-art, while outperforming most existing solvers.

Key words. matrix completion, low-rank matrices, optimization on manifolds, differential
geometry, nonlinear conjugate gradients, Riemannian manifolds, Newton

AMS subject classifications. 15A83, 65K05, 53B21

DOI. 10.1137/110845768

1. Introduction. Let A € R™*™ be an m x n matrix that is only known on a
subset Q of the complete set of entries {1,...,m} x {1,...,n}. The low-rank matrix

completion problem [16] consists of finding the matrix with lowest rank that agrees
with A on (2:



What's Next: Synchronization

Article

The International Journal of
Robotics Research

SE-Sync: A certifiably correct algorithm 201, Vol 3803 95-125

L The Author(s) 2018

for synchronization over the special Ariclereuse gidelines:
Euclidean group
®SAGE

David M Rosen!, Luca Carlone?, Afonso S Bandeira®, and John J Leonard*

Abstract
Many important geometric estimation problems naturally take the form of synchronization over the special Euclidean
group: estimate the values of a set of unknown group elements xi,...,x, € SE(d) given noisy measurements of a sub-

set of their pairwise relative transforms .r!-_l.xj,-. Examples of this class include the foundational problems of pose-graph
simultaneous localization and mapping (SLAM) (in robotics), camera motion estimation (in computer vision), and sensor
network localization (in distributed sensing), among others. This inference problem is typically formulated as a non-convex
maximum-likelihood estimation that is computationally hard to solve in general. Nevertheless, in this paper we present an
algorithm that is able to efficiently recover certifiably globally optimal solutions of the special Euclidean synchronization
problem in a non-adversarial noise regime. The crux of our approach is the development of a semidefinite relaxation of
the maximum-likelihood estimation (MLE) whose minimizer provides an exact maximum-likelihood estimate so long as
the magnitude of the noise corrupting the available measurements falls below a certain critical threshold; furthermore,
whenever exactness obtains, it is possible to verify this fact a posteriori, thereby certifying the optimality of the recovered
estimate. We develop a specialized optimization scheme for solving large-scale instances of this semidefinite relaxation by
exploiting its low-rank, geometric, and graph-theoretic structure to reduce it to an equivalent optimization problem defined
on a low-dimensional Riemannian manifold, and then desien a Riemannian trimcated-Newton trust-resion method to solve



Many Examples

= O X
O manopt/examples at master - Nic X +
C @& GitHub, Inc. [US] | github.com w & ® 0 :
NicolasBoumal / manopt
<> Code Issues 2 Pull requests 2 Projects 0 Wiki Security
Branch: master v manopt / examples /
‘ NicolasBoumal Update low_rank_tensor_completion_embedded.m
PCA_stochastic.m New example PCA_stochastic to go with stochasticgra
dominant_invariant_subspace.m Added a few comments regarding implementation of
dominant_invariant_subspace_comp... Made a complex version of the dominant subspace ex
doubly_stochastic_denoising.m Cosmetics
elliptope_SDP.m cosmetic
elliptope_SDP_complex.m New example: elliptope SDP solver for complex SDP's
essential_svd.m Reverting some changes of commit bc37298

https://github.com/NicolasBoumal/manopt/tree/master/examples

adeneralized procrustes m Tvbo in comment
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