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Directional Field Synthesis, Design, and Processing
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Abstract

Direction fields and vector fields play an increasingly important role in computer graphics and geometry processing. The
synthesis of directional fields on surfaces, or other spatial domains, is a fundamental step in numerous applications, such as mesh
generation, deformation, texture mapping, and many more. The wide range of applications resulted in definitions for many types
of directional fields: from vector and tensor fields, over line and cross fields, to frame and vector-set fields. Depending on the
application at hand, researchers have used various notions of objectives and constraints to synthesize such fields. These notions
are defined in terms of fuirmess, feature alignment, symmeiry, or field topology, to mention just a few. To facilitate these objectives,
various representations, discretizations, and optimization strategies have been developed. These choices come with varying
strengths and weaknesses. This repori provides a sysiemaltic overview of directional field synthesis for graphics applications, the
challenges it poses, and the methods developed in recent years (o address these challenges.

Categories and Subject Descriptors (according o ACM CCS): 13,5 [Computer Graphics]: Computational Geometry and Ohject
Modeling

1. Introduction There have been significant developments in directional field
synthesis over the past decade. These developments have been dniven
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Why Vector Fields?

Simulation and PDE



Why Vector Fields?

“Blood flow in the rabbit aortic arch and descending thoracic aorta”
Vincent et al.; J. Royal Society 2011

Biological science and imaging



Why Vector Fields?
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Weather modeling



Why Vector Fields?
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Vectorization of Line Drawings via Polyvector Fields (Bessmeltsev & Solomon; TOG 2019)

Vectorization



Why Vector Fields?
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https://forum.unity3d.com/threads/megaflow-vector-fields-fluid-flows-released.278000/

Simulation and engineering




Why Vector Fields?
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"OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport” (Onken et al.)

Continuous normalizing flows
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Many Challenges

Directional derivative? How to discretize?
Purely intrinsic version? Discrete derivatives?
Singularities? Singularity detection?

Flow lines? Flow line computation?




Crash course
in theory/discretization of vector fields.



Many Challenges

Directional derivative? How to discretize?
Purely intrinsic version? Discrete derivatives?
Singularities? Singularity detection?

Flow lines? Flow line computation?




Tangent Space

ToM =~'(0), where v(0) = p
= image(dgp,)




Some Definitions

Tangent bundle:
TM :={(p,v) :veT,M}

Vector field:
u: M — TM with u(p)

(p,v),v e T, M

Images from Wikipedia, SIGGRAPH course



Scalar Functions

Map points to real numbers



Differential of a Map

Definition (Differential). Suppose ¢ : M — N is a map from a submanifold M C R into a
submanifold N C R". Then, the differential dgp, : Ty M — TopN of @ at apoint p € M is given by

dep(v) := (¢ o7)(0),

where 7y : (—¢, &) — M is any curve with y(0) = p and +'(0) = v € Tp M.

Linear map of tangent spaces

dpp(7'(0)) == (¢ o) (0)

@(x)

Image from Wikipedia
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4

Gradien

For each p € M

v-Vf(p) forallv e Ty M.

Proposition




How do you
differentiate
a vector field?



h www.wgnflag.com/xcart/images/P/G-50_StopSeatBeltsStockSign.jpg
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Common point of confusion.
(especially for your instructor)




THETHING

http://www.relatably.com/m/img/complicated-memes/60260587.jpg



What's the issue?

PN

How to identify different
tangent spaces?




Many Notions of Derivative

Differential of covector
(defer for now) (or, forever?)

Lie derivative
Weak structure, purely topological

Covariant derivative
Strong structure, involves geometry



Y(p+tX)-Y
DY 2 lim (p+tX) —Y(p)

t—0 t



Vector Field Flows: Diffeomorphism

d
awtzvowt

Useful property: ., (x) = P, (1s(x))
Diffeomorphism with inverse {_;




Fw( em/r(/ﬂ/&.'
Killing Vector Fields (KVFs)




Differential of Vector Field Flow

d%bt(p) ; TpM — th(p)M

Image from Smooth Manifolds, Lee



Lie Derivative

d(0—1)e,.p)Wa,(p))

Fig. 9.13 The Lie derivative of a vector field

1
(£VW)p = lim — [(dw—t)wt(p)(wwt('p)) — WP]

t—0

Image from Smooth Manifolds, Lee



It’s pronounced

\\Lee {4

Not "“Lahy” or “Lye”

(BTW: It’s “oiler,” not “you-ler”)



Counterintuitive Property of Lie Derivative

1
(£VW)p = lim — [(dw—t)wt(p)(wwt('p)) — WP]

t—0

Image courtesy A. Carapetis

Depends on structure of V




What We Want

orange

RSy

What we don’t want:

Specify blue direction anywhere but at p.



Parallel Transport

Canonical identification of

tangent Spaces —



Covariant Derivative (Embedded)

Vuw := [dw(v)]! = projg, u(w o a)'(0)

|

Integral curve of v through p
Synonym: (Levi-Civita) Connection

( Note: [dw(v)]*t =I(v,w)n




Some Properties

Properties of the Covariant Derivative

As defined, VY depends only on V,, and Y to first order along c.

Also, we have the Five Properties:

1. C*-linearity in the V-slot:
V\/l_|_ﬂ/2Y: VV1Y+fV\/2Y where f : § — R

2. R-linearity in the Y-slot:
V\/(Yl + 3Y2) =VvYi+aVyYo where a € R

3. Product rule in the Y-slot:
Vv(fY)=Ff-VyY +(Vyf)-Y where f : S — R

4. The metric compatibility property: The Lie bracket
Vv(Y,Z)=(VvY,Z)+ (Y ,VvZ) | [V, Va](f) := Dy, Dy,(f)
7] . 17 - DV2DV1(f)
5. The "torsion-free” property: _ .
Defines a vector field, which
Vv, Vo =V, Vi = [V, V)] is tangent to S if Vi, Vs arel

Slide by A. Butscher, Stanford CS 468



Challenge Problem

4-3. In your study of differentiable manifolds, you have already seen an-
other way of taking “directional derivatives of vector fields,” the Lie
derivative L x Y.

(a) Show that the map L: T(M) x T(M) — T(M) is not a connec-

tion.
(b) Show that there is a vector field on R? that vanishes along the
rl-axis, but whose Lie derivative with respect to d; does not
vanish on the z'-axis. [This shows that Lie differentiation does
not give a well-defined way to take directional derivatives of

vector fields along curves.]

Riemannian Manifolds, Lee



Geodesic Equation

Projr .., m 7' (s)] =0

The only acceleration is out of the surface
No steering wheel!




Intrinsic Geodesic Equation

ny(t)")/(t) =0

No stepping on the accelerator
No steering wheel!




Parallel Transport

Preserves length, inner product
(can be used to define covariant derivative)



Holonomy

Integrated Gaussian curvature

Path dependence of parallel transport



2D Vector Field Topology

Drawings by Jonas Kibelbek



Poincare-Hopf Theorem

E index,, (v) = x(M)
)
where vector field v has isolated singularities {x;}.

indexpv = 1

Image from "Directional Field Synthesis, Design, and Processing” (Vaxman et al., EG STAR 2016)



Famous Corollary

Science Diagrams that Look Like Shitposts
@scienceshitpost

Those are a few of the concepts and objects studied by topology:
now we'll look at a theorem.

If you look at the way the hairs lic on a dog, you will find that
they have a ‘parting” down the dog’s back, and another along the
stomach. Now topologically a dog is a sphere (assuming it keeps
its mouth shut and neglecting internal organs) because all we have
to do is shrink its legs and fatten it up a bit (Figure 90).

— —

Figure 90

9:30 PM - Jan 20, 2020 - Twitter Web App

Hairy ball theorem



Extension in 2D: Direction Fields

I -vector field One vector, classical “vector field”

Two directions with T symmetry,

2-direction field “line field”, “2-RoSy field”

Three independent vectors, “3-

3 _vector fi
I -vector field polyvector field”

Four vectors with /2 symmetry,

4-vector field ) )
“non-unit cross field”

Four directions with /2 symmetry,

4-direction field “unit cross field”, “4-RoSy field”

Two pairs of vectors with T symme-

2
2°-vector field try each, “frame field”

Two pairs of directions with T sym-

22-direction field » .,
metry each, “non-ortho. cross field

Six directions with /3 symmetry,

6-direction field “6-RoSy”

Three pairs of vectors with T sym-

23_vector field
metry each

sk A 3 v~

"Directional Field Synthesis, Design, and Processing” (Vaxman et al., EG STAR 2016)



Polyvector Fields

Eurographics Symposium on Geometry Processing 2014 Volume 33 (2014), Number 5
Thomas Funkhouser and Shi-Min Hu
(Guest Editors)

Designing N-PolyVector Fields with Complex Polynomials

Olga Diamanti' Amir Vaxman®  Danicle Panozzo' Olga Sorkin&l*lomungl

 'ETH Zurich, Switzerland {UO) Ul, Tt Uk}
?Vienna Institute of Technology, Austria (Z) — (Z . uo) L (Z . Uk)

Figure 1: A smooth 4-PolyVector field is generated from a sparse sel of principal direction constrainis (faces in light blue). We
optimize the field for conjugacy and use it 1o guide the generation of a planar-quad mesh. Pseudocolor represents planarity.

Abstract

We introduce N-PolyVector fields, a generalization of N-RoSy fields for which the vectors are neither necessarily
orthogonal nor rotationally symmetric. We formally define a novel representation for N-PolyVectors as the root sels
of complex polynomials and analyze their topological and geometric properties. A smooth N-PolyVector field can
be efficiently generated by solving a sparse linear system without integer variables. We exploit the flexibility of
N-PolyVector fields to design conjugate vector fields, offering an intuitive tool to generate planar quadrilateral

One encoding of direction fields
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Extra: Volumetric Frame Fields
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Volumetric Challenge: Hex Meshing Problem

What singular
structures are possible?

What is the relationship
magefrom: _ _ ¢ :
exahecral Meshing. SIGGRAPH! 2008, Vancoveer, between meshes and fields?



Hex Mesh Singular Structures

=

3 I ’. . : c ; \ o e ’/"f. » :
e s > & “ 1’ "" " < ‘ .." =
Y e . 4 2
4 v « v ., .
v v
(0,4, 4) (0,2,8) (0,0.,12)

Images from:
Liu et al. "Singularity-Constrained Octahedral Fields for
Hexahedral Meshing." SIGGRAPH 2018, Vancouver.



Field-Guided Meshing Pipeline

Sphere tet mesh from http://doc.cgal.org/latest/Mesh_3/index.html

Frame per element on a tet mesh



Example Frame Fields

Images from:
Solomon, et al. "Boundary Element Octahedral Fields in Volumes." ACM Transactions on Graphics (TOG) 36.3, 2017.
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per point

Original idea in [Huang et al. 2011]
Visualization from [Ray, Sokolov, and Lévy 2016]

:az4+y4+z4

flz,y, z)



r, U, 2 — ottt
flz,y,2) Y

{rotations of f(x,y, 2)}

7
{degree-4 polynomials}



More Careful Characterization

’ {Rotations of a cube}

NS

Algebraic variety!

https://design.tutsplus.com/

Palmer et al. "Algebraic Representations for Volumetric Frame Fields." ACM Transactions on Graphics (TOG) 39.2, 2020.

Octahedral variety



Representation Theory Perspective

Space of rotations SO(S) P > GL(9) Wigner d-matrices

I

Octahedral variety ? —————— > F Orbit of f

Isometry (up to scale)

@ .

Roughly: Coefficients of f(R ' x)




Extension: Odeco Frames

(0,5,2) (1.3,3)

Orthogonally-decomposable tensors



Why Odeco?
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Vanishing near singular curves



Why Odeco?

Octahedral

Energy density



Extra: Volumetric Frame Fields
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Vector Fields: Discretization
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Many Challenges

Directional derivative? How to discretize?
Purely intrinsic version? Discrete derivatives?
Singularities? Singularity detection?

Flow lines? Flow line computation?




Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based




Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based




Triangle-Based

Triangle as its own tangent plane
One vector per triangle

Piecewise constant

Discontinuous at edges/vertices

Easy to unfold/hinge

D




Discrete Levi-Civita Connection

Simple notion of parallel transport
Transport around vertex:

Excess angle is (integrated)
Gaussian curvature (holonomy!)




Arbitrary Connection

\L/Notate — |

Represent using angle 0.4, of extra rotation.



Trivial Connections

Vector field design
Zero holonomy on discrete cycles

Except for a few singularities
Path-independent away from
singularities

“Trivial Connections on Discrete Surfaces.” Crane et al., SGP 2010.




Trivial Connections: Detalls

Solve 0,44, of extra rotation per edge

Linear constraint:
Zero holonomy on basis cycles

V+2g constraints: Vertex cycles plus harmonic
Fix curvature at chosen singularities

Underconstrained: Minimize ||0||
“Best approximation” of Levi-Civita



Result

Resulting trivial connection
(no other singularities present)

Linear system



Helmholtz-Hodge Decomposition

Image courtesy K. Crane



Gradient of a Hat Function

1 1
HVfH B €3 Siﬂ@g B E
1
€
23
Vf=2
2A

I

Length of e, cancels

“base” In A
B

€23



Euler Characteristic




Discrete Helmholtz-Hodge

2—29g=V —E+ F
— 2F=(V-1)+(EF—1)+2g

Either
Vertex-based gradients

Edge-based rotated gradients

_ Edge-based gradients

Vertex-based rotated gradients

“Mixed” finite elements



Face-Based Calculus

& >

"Conforming” "Nonconforming”
Already did this in 6.838 [Wardetzky 2006]

Relationship: wij —= 051 -+ ¢j = ¢k
Gradient Vector Field



Volumetric Extension?

3D Hodge Decompositions of Edge- and Face-based Vector Fields

RUNDONG ZHAO, Michigan State University

MATHIEU DESBRUN, California Institute of Technology

GUO-WEI WEI and YIYING TONG, Michigan State University

Fig. 1. Five-Component Vector Field Decomposition. On a tetrahedral mesh of the kitten with a spherical cavity, a vector field is decomposed into a
gradient field with zero potential on the boundary, a curl field with its vector potential orthogonal to the boundary, a pair of tangential and normal harmonic
fields, and a harmonic field that is both a gradient and a curl field. Potential fields are shown in the corners of their corresponding components.

We present a compendium of Hodge decompositions of vector fields on
tetrahedral meshes embedded in the 3D Euclidean space. After describing
the foundations of the Hodge decomposition in the continuous setting, we
describe how to implement a five-component orthogonal decomposition
that generically splits, for a variety of boundary conditions, any given dis-
crete vector field expressed as discrete differential forms into two potential
fields, as well as three additional harmonic components that arise from the
topology or boundary of the domain. The resulting decomposition is proper
and mimetic, in the sense that the theoretical dualities on the kernel spaces
of vector Laplacians valid in the continuous case (including correspondences
to cohomology and homology groups) are exactly preserved in the discrete
realm. Such a decomposition only involves simple linear algebra with sym-
metric matrices, and can thus serve as a basic computational tool for vector

static and dynamical problems — for instance, fluid simulation to
enforce incompressibility. The mathematical foundations behind
such decompositions were developed using the theory of differential
forms for any finite-dimensional compact manifold without bound-
ary early on [Hodge 1941], but were fully extended to manifolds
with boundaries much more recently [Shonkwiler 2009].

In computer graphics, the analysis and processing of vector fields
over surfaces have received plenty of attention in recent years. Con-
sequently, the resulting computational tools needed to achieve a
Hodge decomposition have been well documented and tested on
various applications; see, e.g., recent surveys on surface vector field
analvsis [Vaxman et al 2016: de Goes et al 2016al For the case



Vector Fields on Triangle Meshes

No consensus:

Triangle-based

Edge-based | Defer to DEC! |

Vertex-based

C R°




Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based




Vertex-Based Fields

Pros

Possibility of higher-
order differentiation

Cons

Vertices don’t have
natural tangent spaces

Gaussian curvature
concentrated



2D (Planar) Case: Easy

Piecewise-linear (x,y) components



Example: Killing Energy

1
Approximate Killing |d||&ve = 5 /Q( | | Jq + Jy |5, dA = dTIT((X)d

Vector Field

Killing operator

"As-Killing-As-Possible Vector Fields for Planar Deformation” (SGP 2011) Solomon, Ben-Chen, Butscher, Guibas 80



3D Case: Ambiguous




Geodesic Polar Map

J’Uk

r; = Provides notion
2T — Ki of tangency, but

Preserve radial lines continuity issues

“Vector Field Design on Surfaces,” Zhang et al., TOG 2006

Parallel transport radially from vertex



Recent Method

Discrete Connection and Covariant Derivative
for Vector Field Analysis and Design

Beibei Liu and Yiying Tong

Michigan State University

and

Fernando de Goes and Mathieu Desbrun
California Institute of Technology

In this paper, we introduce a discrete definition of connection on simplicial
manifolds, involving closed-form continuous expressions within simplices
and finite rotations across simplices. The finite-dimensional parameters of
this connection are optimally computed by minimizing a quadratic mea-
sure of the deviation to the (discontinuous) Levi-Civita connection induced
by the embedding of the input triangle mesh, or to any metric connection
with arbitrary cone singularities at vertices. From this discrete connection,
a covariant derivative is constructed through exact differentiation, leading
to explicit expressions for local integrals of first-order derivatives (such as
divergence, curl and the Cauchy-Riemann operator), and for L2-based ener-
gies (such as the Dirichlet energy). We finally demonstrate the utility, flexi-
bility, and accuracy of our discrete formulations for the design and analysis
of vector, n-vector, and n-direction fields.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Compu-
tational Geometry & Object Modeling—Curve & surface representations.

CCS Concepts: sComputing methodologies — Mesh models;

Includes basis,

derivative operators

digital geometry processing, with applications ranging from texture
synthesis to shape analysis, meshing, and simulation. However, ex-
isting discrete counterparts of such a differential operator acting on
simplicial manifolds can either approximate local derivatives (such
as divergence and curl) or estimate global integrals (such as the
Dirichlet energy), but not both simultaneously.

In this paper, we present a unified discretization of the covariant
derivative that offers closed-form expressions for both local and
global first-order derivatives of vertex-based tangent vector fields
on triangulations. Our approach is based on a new construction of
discrete connections that provides consistent interpolation of tan-
gent vectors within and across mesh simplices, while minimizing
the deviation to the Levi-Civita connection induced by the 3D em-
bedding of the input mesh—or more generally, to any metric con-
nection with arbitrary cone singularities at vertices. We demon-
strate the relevance of our contributions by providing new com-
putational tools to design and edit vector and n-direction fields.

2 — - ama



Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based




Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based
.. others?

C RS




More Exotic Choice

An Operator Approach to Tangent Vector Field Processing

Omri Azencot' and Mirela Ben-Chen' and Frédéric Chazal® and Maks Ovsjanikov®

Technion - Israel Institute of Technology
2 Geometrica, INRIA
3LIX, Ecole Polytechnique
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Figure 1: Using our framework various vector field design goals can be easily posed as linear constraints. Here, given three
symmetry maps: rotational (S1), bilateral (S2) and front/back (S3), we can generate a symmetric vector field using only S

l i
), /)

(left), S1 + S2 (center) and S1 + S2 + S3 (right). The top row shows the front of the 3D model, an

Abstract
In this paper, we introduce a novel coordinate-free method for manipulating and analyzing v
surfaces. Unlike the commonly used representations of a vector field as an assignment of v
the mesh, or as real values on edges, we argue that vector fields can also be naturally viewe
domain and range are functions defined on the mesh. Although this point of view is common in differential geometry



Subdivision Fields

Subdivision Exterior Calculus for Geometry Processing

Mathieu Desbrun
Caltech

Fernando de Goes
Pixar Animation Studios

KL= '\V/;
)
7/ </
;7)1/{’

Pixar Animation Studios

Mark Meyer Tony DeRose

Pixar Animation Studios

Figure 1: Subdivision Exterior Calculus (SEC). We introduce a new technique to perform geometry processing applications on subdivision
surfaces by extending Discrete Exterior Calculus (DEC) from the polygonal to the subdivision setting. With the preassemble of a few operators
on the control mesh, SEC outperforms DEC in terms of numerics with only minor computational overhead. For instance, while the spectral
conformal parameterization [Mullen et al. 2008] of the control mesh of the mannequin head (left) results in large quasi-conformal distortion
(mean = 1.784, max = 9.4) after subdivision (middle), simply substituting our SEC operators for the original DEC operators significantly
reduces distortion (mean=1.005, max=3.0) (right). Parameterizations, shown at level 1 for clarity, exhibit substantial differences.

Abstract

This paper introduces a new computational method to solve differ-
ential equations on subdivision surfaces. Our approach adapts the
numerical framework of Discrete Exterior Calculus (DEC) from
the polygonal to the subdivision setting by exploiting the refin-
ability of subdivision basis functions. The resulting Subdivision
Exterior Calculus (SEC) provides significant improvements in ac-
curacy compared to existing polygonal techniques, while offering
exact finite-dimensional analogs of continuum structural identities
such as Stokes’ theorem and Helmholtz-Hodge decomposition. We
demonstrate the versatility and efficiency of SEC on common ge-
ometry processing tasks including parameterization, geodesic dis-
tance computation, and vector field design.

Keywords: Subdivision surfaces, discrete exterior calculus, dis-
crete differential geometry, geometry processing.

Concepts: eMathematics of computing — Discretization; Com-
nutations in finite fields:

and Schroder 2000; Warren and Weimer 2001]. In spite of this
prominence, little attention has been paid to numerically solving
differential equations on subdivision surfaces. This is in sharp con-
trast to a large body of work in geometry processing that developed
discrete differential operators for polygonal meshes [Botsch et al.
2010] serving as the foundations for several applications ranging
from parameterization to fluid simulation [Crane et al. 2013a].

Among the various polygonal mesh techniques, Discrete Exterior
Calculus (DEC) [Desbrun et al. 2008] is a coordinate-free formal-
ism for solving scalar and vector valued differential equations. In
particular, it reproduces, rather than merely approximates, essen-
tial properties of the differential setting such as Stokes’ theorem.
Given that the control mesh of a subdivision surface is a polygonal
mesh, applying existing DEC methods directly to the control mesh
may seem tempting. However, this approach ignores the geometry
of the limit surface, thus introducing a significant loss of accuracy
in the discretization process (Fig. 1). A customary workaround is
to perform computations on a denser polyeonal mesh generated by

Subdivision Directional Fields

BRAM CUSTERS, Utrecht University/TU Eindhoven
AMIR VAXMAN, Utrecht University

Initial Curl free

Parameterization

Fig. 1. Rotationally-seamless parameterization with a subdivision directional field. An initial field (left) is optimized for low curl at the coarsest level I = 0. We
subdivide the field to fine level I = 3 (center), and then solve for a seamless parameterization in both levels (right). Our subdivision preserves curl, and thus

results in a low integration error in both levels. The coarse-level optimization takes 7.5 secs, the subdivision 7.6 secs, and the parameterization 7.0 secs, to a

total of 22.1 secs. This is a speedup of about two orders of magnitude compared to running the curl optimization directly on the fine level, taking 1438.7 secs.

We present a novel linear subdivision scheme for face-based tangent direc-
tional fields on triangle meshes. Our subdivision scheme is based on a novel
coordinate-free representation of directional fields as halfedge-based scalar
quantities, bridging the mixed finite-element representation with discrete
exterior calculus. By commuting with differential operators, our subdivision
is structure-preserving: it reproduces curl-free fields precisely, and repro-
duces divergence-free fields in the weak sense. Moreover, our subdivision
scheme directly extends to directional fields with several vectors per face
by working on the branched covering space. Finally, we demonstrate how
our scheme can be applied to directional-field design, advection, and robust
earth mover’s distance computation, for efficient and robust computation.

CCS Concepts: «Computing methodologies — Mesh models; Mesh ge-
ometry models; Shape analysis;

Additional Key Words and Phrases: Directional Fields, Vector Fields, Subdi-

1 INTRODUCTION

Directional fields are central objects in geometry processing. They
represent flows, alignments, and symmetry on discrete meshes.
They are used for diverse applications such as meshing, fluid sim-
ulation, texture synthesis, architectural design, and many more.
There is then great value in devising robust and reliable algorithms
that design and analyze such fields. In this paper, we work with
piecewise-constant tangent directional fields, defined on the faces
of a triangle mesh. A directional field is the assignment of several
vectors per face, where the most commonly-used fields comprise
single vectors. The piecewise-constant face-based representation of
directional fields is a mainstream representation within the (mixed)
finite-element method (FEM), where the vectors are often gradients

of piecewise-linear functions spanned by values on the vertices.
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