Vector Fields: Introduction

Justin Solomon

6.838: Shape Analysis

Spring 2021

Lots of Material/Slides From...

Vector Field Processing
 on triangle meshes

Render the Possibilities SIGGRAPH2016

Additional Nice Reference

Directional Field Synthesis, Design, and Processing

Amir Vaxman ${ }^{1}$ Marcel Campen ${ }^{2}$ Olga Diamanti ${ }^{3}$ Daniele Panozzo ${ }^{2,3}$ David Bommes ${ }^{4}$ Klaus Hildebrandt ${ }^{5}$ Mirela Ben-Chen ${ }^{6}$

${ }^{1}$ Utrecht University $\quad{ }^{2}$ New York University $\quad{ }^{3}$ ETH Zurich $\quad{ }^{4}$ RWTH Aachen University $\quad{ }^{5}$ Delft University of Technology $\quad{ }^{6}$ Technion

Abstract

Direction fields and vector fields play an increasingly important role in computer graphics and geometry processing. The synthesis of directional fields on surfaces, or other spatial domains, is a fundamental step in numerous applications, such as mesh generation, deformation, texture mapping, and many more. The wide range of applications resulted in definitions for many types of directional fields: from vector and tensor fields, over line and cross fields, to frame and vector-set fields. Depending on the application at hand, researchers have used various notions of objectives and constraints to synthesize such fields. These notions are defined in terms of fairness, feature alignment, symmetry, or field topology, to mention just a few. To facilitate these objectives, various representations, discretizations, and optimization strategies have been developed. These choices come with varying strengths and weaknesses. This report provides a systematic overview of directional field synthesis for graphics applications, the challenges it poses, and the methods developed in recent years to address these challenges. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-

Why Vector Fields?

Why Vector Fields?

Simulation and PDE

Why Vector Fields?

Why Vector Fields?

https://disc.gsfc.nasa.gov/featured-items/airs-monitors-cold-weather

Weather modeling

Why Vector Fields?

Vectorization of Line Drawings via Polyvector Fields (Bessmeltsev \& Solomon; TOG 2019)

Vectorization

Why Vector Fields?

https://forum.unity3d.com/threads/megaflow-vector-fields-fluid-flows-released.278000/
Simulation and engineering

Why Vector Fields?

"OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport" (Onken et al.)

Continuous normalizing flows

Why Vector Fields?

Pastry design

Many Challenges

- Directional derivative?
- Purely intrinsic version?
- Singularities?
- Flow lines?

Theoretical

Plan

Crash course

 in theory/discretization of vector fields.
Many Challenges

- Directional derivative?
- Purely intrinsic version?
- Singularities?
- Flow lines?

Theoretical

- How to discretize?
- Discrete derivatives?
- Singularity detection?
- Flow line computation?

Discrete

Tangent Space

$$
T_{\mathbf{p}} \mathcal{M}=\gamma^{\prime}(0), \text { where } \gamma(0)=\mathbf{p}
$$

$$
=\operatorname{image}\left(d g_{\mathbf{p}}\right)
$$

$\mathcal{M} \subseteq \mathbb{R}^{n}$

Some Definitions

Tangent bundle:
$T M:=\left\{(p, v): v \in T_{p} M\right\}$
Vector field:
$u: M \rightarrow T M$ with $u(p)=(p, v), v \in T_{p} M$

Scalar Functions

Map points to real numbers

Reneal
 Differential of a Map

$$
\begin{aligned}
& \text { Definition (Differential). Suppose } \varphi: \mathcal{M} \rightarrow \mathcal{N} \text { is a map from a submanifold } \mathcal{M} \subseteq \mathbb{R}^{k} \text { into a } \\
& \text { submanifold } \mathcal{N} \subseteq \mathbb{R}^{\ell} \text {. Then, the differential } d \varphi_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{M} \rightarrow T_{\varphi(\mathbf{p})} \mathcal{N} \text { of } \varphi \text { at a point } \mathbf{p} \in \mathcal{M} \text { is given by } \\
& d \varphi_{\mathbf{p}}(\mathbf{v}):=(\varphi \circ \gamma)^{\prime}(0), \\
& \text { where } \gamma:(-\varepsilon, \varepsilon) \rightarrow \mathcal{M} \text { is any curve with } \gamma(0)=\mathbf{p} \text { and } \gamma^{\prime}(0)=\mathbf{v} \in T_{\mathbf{p}} \mathcal{M} \text {. }
\end{aligned}
$$

Linear map of tangent spaces

$$
d \varphi_{\mathbf{p}}\left(\gamma^{\prime}(0)\right):=(\varphi \circ \gamma)^{\prime}(0)
$$

Readl:

Gradient Vector Field

Proposition For each $\mathbf{p} \in \mathcal{M}$, there exists a unique vector $\nabla f(\mathbf{p}) \in T_{\mathbf{p}} \mathcal{M}$ so that $d f_{\mathbf{p}}(\mathbf{v})=$ $\mathbf{v} \cdot \nabla f(\mathbf{p})$ for all $\mathbf{v} \in T_{\mathbf{p}} \mathcal{M}$.

How do you differentiate a vector field?

Common point of confusion.
(especially for your instructor)

Answer

What's the issue?

Many Notions of Derivative

- Differential of covector (defer for now) (or, forever?)
- Lie derivative

Weak structure, purely topological

- Covariant derivative

Strong structure, involves geometry

$$
D_{X} Y \stackrel{?}{=} \lim _{t \rightarrow 0} \frac{Y(p+t X)-Y(p)}{t}
$$

Vector Field Flows: Diffeomorphism

$$
\underset{\substack{d t}}{d} \psi_{t}=\psi_{t}
$$

Fu coeples
 Killing Vector Fields (KVFs)

Differential of Vector Field Flow

Lie Derivative

Fig. 9.13 The Lie derivative of a vector field

$$
\left(\mathcal{L}_{V} W\right)_{p}:=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(d \psi_{-t}\right)_{\psi_{t}(p)}\left(W_{\psi_{t}(p)}\right)-W_{p}\right]
$$

It's pronounced

Not "Lahy" or "Lye"

Counterintuitive Property of Lie Derivative

$$
\left(\mathcal{L}_{V} W\right)_{p}:=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(d \psi_{-t}\right)_{\psi_{t}(p)}\left(W_{\psi_{t}(p)}\right)-W_{p}\right]
$$

Depends on structure of V

What We Want

Parallel Transport

M

Canonical identification of tangent spaces

Covariant Derivative (Embedded)

$$
\nabla_{\mathbf{v}} \mathbf{w}:=[d \mathbf{w}(\mathbf{v})]^{\|}=\operatorname{proj}_{T_{\mathbf{p}} \mathcal{M}}(\mathbf{w} \circ \alpha)^{\prime}(0)
$$

Integral curve of v through p
Synonym: (Levi-Civita) Connection

Note: $[d \mathbf{w}(\mathbf{v})]^{\perp}=\mathbb{I}(\mathbf{v}, \mathbf{w}) \mathbf{n}$

Some Properties

Properties of the Covariant Derivative

As defined, $\nabla_{V} Y$ depends only on V_{p} and Y to first order along c.
Also, we have the Five Properties:

1. C^{∞}-linearity in the V-slot:
$\nabla_{V_{1}+f V_{2}} Y=\nabla_{V_{1}} Y+f \nabla_{V_{2}} Y$ where $f: S \rightarrow \mathbb{R}$
2. \mathbb{R}-linearity in the Y-slot:

$$
\nabla_{V}\left(Y_{1}+a Y_{2}\right)=\nabla_{V} Y_{1}+a \nabla_{V} Y_{2} \text { where } a \in \mathbb{R}
$$

3. Product rule in the Y-slot:

$$
\nabla_{V}(f Y)=f \cdot \nabla_{V} Y+\left(\nabla_{V} f\right) \cdot Y \text { where } f: S \rightarrow \mathbb{R}
$$

4. The metric compatibility property:

$$
\nabla_{V}\langle Y, Z\rangle=\left\langle\nabla_{V} Y, Z\right\rangle+\left\langle Y, \nabla_{V} Z\right\rangle
$$

5. The "torsion-free" property:
$\nabla_{V_{1}} V_{2}-\nabla_{V_{2}} V_{1}=\left[V_{1}, V_{2}\right]$

$$
\begin{aligned}
& \text { The Lie bracket } \\
& \begin{array}{r}
{\left[V_{1}, V_{2}\right](f):=D_{V_{1}} D_{V_{2}}(f)} \\
\\
-D_{V_{2}} D_{V_{1}}(f)
\end{array}
\end{aligned}
$$

Defines a vector field, which is tangent to S if V_{1}, V_{2} are!

Challenge Problem

4-3. In your study of differentiable manifolds, you have already seen another way of taking "directional derivatives of vector fields," the Lie derivative $\mathcal{L}_{X} Y$.
(a) Show that the map $\mathcal{L}: \mathcal{T}(M) \times \mathcal{T}(M) \rightarrow \mathcal{T}(M)$ is not a connection.
(b) Show that there is a vector field on \mathbf{R}^{2} that vanishes along the x^{1}-axis, but whose Lie derivative with respect to ∂_{1} does not vanish on the x^{1}-axis. [This shows that Lie differentiation does not give a well-defined way to take directional derivatives of vector fields along curves.]

Recall:

Geodesic Equation

$$
\operatorname{proj}_{T_{\gamma(s)} \mathcal{M}}\left[\gamma^{\prime \prime}(s)\right] \equiv 0
$$

- The only acceleration is out of the surface - No steering wheel!

Intrinsic Geodesic Equation

$$
\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0
$$

- No stepping on the accelerator
- No steering wheel!

ParalleI Transport

Only pathindependent if domain is flat.

$$
\mathbf{0}=\nabla_{\dot{\gamma}(t)} \mathbf{v}
$$

Preserves length, inner product (can be used to define covariant derivative)

Holonomy

Path dependence of parallel transport

2D Vector Field Topology

Poincaré-Hopf Theorem

where vector field v has isolated singularities $\left\{x_{i}\right\}$.

$$
v(c(t))=\|v(c(t))\|\binom{\cos \alpha(t)}{\sin \alpha(t)}
$$

Famous Corollary

Science Diagrams that Look Like Shitposts @scienceshitpost

Those are a few of the concepts and objects studied by topology: now we'll look at a theorem.

If you look at the way the hairs lie on a dog, you will find that they have a 'parting' down the dog's back, and another along the stomach. Now topologically a dog is a sphere (assuming it keeps its mouth shut and neglecting internal organs) because all we have to do is shrink its legs and fatten it up a bit (Figure 90).

Figure 90

Hairy ball theorem

Extension in 2D: Direction Fields

/ 1-vector field	One vector, classical "vector field"
/ 2-direction field	Two directions with π symmetry, "line field", "2-RoSy field"
入 1^{3}-vector field	Three independent vectors, "3polyvector field"
 4-vector field	Four vectors with $\pi / 2$ symmetry, "non-unit cross field"
X 4-direction field	Four directions with $\pi / 2$ symmetry, "unit cross field", "4-RoSy field"
f 2^{2}-vector field	Two pairs of vectors with π symmetry each, "frame field"
$\nsim 2^{2}$-direction field	Two pairs of directions with π symmetry each, "non-ortho. cross field"
6-direction field	Six directions with $\pi / 3$ symmetry, " 6 -RoSy"
 2^{3}-vector field	Three pairs of vectors with π symmetry each

"Directional Field Synthesis, Design, and Processing" (Vaxman et al., EG STAR 2016)

Polyvector Fields

Designing N-PolyVector Fields with Complex Polynomials

One encoding of direction fields

Vector Fields: Introduction

Justin Solomon

6.838: Shape Analysis

Spring 2021
6.838: Shape Analysis

Spring 2021

Volumetric Challenge: Hex Meshing Problem

Hex Mesh Singular Structures

Field-Guided Meshing Pipeline

Sphere tet mesh from http://doc.cgal.org/latest/Mesh_3/index.html

Frame per element on a tet mesh

Example Frame Fields

Frame Field Representation

Nine spherical harmonic coefficients
per point

Original idea in [Huang et al. 2011]
Visualization from [Ray, Sokolov, and Lévy 2016]

$$
f(x, y, z)=x^{4}+y^{4}+z^{4}
$$

Issue

$$
f(x, y, z)=x^{4}+y^{4}+z^{4}
$$

\{rotations of $f(x, y, z)$ \}

$$
\not \approx
$$

\{degree-4 polynomials\}

More Careful Characterization

Palmer et al. "Algebraic Representations for Volumetric Frame Fields." ACM Transactions on Graphics (TOG) 39.2, 2020.

Octahedral variety

Representation Theory Perspective

$$
\begin{array}{l|cc|}
\text { Space of rotations } \\
& \mathrm{SO}(3) \xrightarrow{\rho} \underset{\text { Octahedral variety }}{ } \underset{\text { Isometry (up to scale) }}{ }{ }^{\text {F }} \text { Wigner d-matrices }
\end{array}
$$

Roughly: Coefficients of $f\left(R^{\top} \mathbf{x}\right)$

Extension: Odeco Frames

Orthogonally-decomposable tensors

Why Odeco?

Vanishing near singular curves

Why Odeco?

Energy density

6.838: Shape Analysis

Spring 2021

Vector Fields: Discretization

6.838: Shape Analysis

Spring 2021

Many Challenges

- Directional derivative?
- Purely intrinsic version?
- Singularities?
- Flow lines?
- How to discretize?

Discrete derivatives?

- Singularity detection?

Flow line computation?

Vector Fields on Triangle Meshes

No consensus:

- Triangle-based
- Edge-based
- Vertex-based

Vector Fields on Triangle Meshes

No consensus:

- Triangle-based
- Edge-based
- Vertex-based

Triangle-Based

- Triangle as its own tangent plane
- One vector per triangle
- Piecewise constant
- Discontinuous at edges/vertices
- Easy to unfold/hinge

Discrete Levi-Civita Connection

- Simple notion of parallel transport
- Transport around vertex: Excess angle is (integrated) Gaussian curvature (holonomy!)

Arbitrary Connection

Represent using angle $\boldsymbol{\theta}_{\text {edge }}$ of extra rotation.

Trivial Connections

- Vector field design
- Zero holonomy on discrete cycles
- Except for a few singularities
- Path-independent away from singularities

Trivial Connections: Details

- Solve $\boldsymbol{\theta}_{\text {edge }}$ of extra rotation per edge
- Linear constraint: Zero holonomy on basis cycles
- V+2g constraints: Vertex cycles plus harmonic
- Fix curvature at chosen singularities
- Underconstrained: Minimize || $\overrightarrow{\boldsymbol{\theta}} \|$
= "Best approximation" of Levi-Civita

Result

Etatactar
 Helmholtz-Hodge Decomposition

Gradient of a Hat Function

$$
\begin{aligned}
& \qquad\|\nabla f\|=\frac{1}{\ell_{3} \sin \theta_{3}}=\frac{1}{h} \\
& \nabla f=\frac{e_{23}^{\perp}}{2 A} \\
& \text { Length of } e_{23} \text { cancels } \\
& \text { "base" in } \mathrm{A}
\end{aligned}
$$

Euler Characteristic

$$
\begin{aligned}
& V-E+F:=\chi \\
& \chi=2-2 g \\
& g=0
\end{aligned}
$$

Discrete Helmholtz-Hodge

$$
\begin{aligned}
& 2-2 g= V-F+F \\
& \Rightarrow 2 F=2 H-1)+2 g \\
& \text { Either }
\end{aligned}
$$

- Edge-based rotated gradients
- Edge-based gradients
- Vertex-based rotated gradients

"Mixed" finite elements

Face-Based Calculus

Vertex-based
Edge-based
"Conforming"
Already did this in 6.838
"Nonconforming" [Wardetzky 2006]

Relationship: $\psi_{i j}=\phi_{i}+\phi_{j}-\phi_{k}$

Gradient Vector Field

Volumetric Extension?

3D Hodge Decompositions of Edge- and Face-based Vector Fields

RUNDONG ZHAO, Michigan State University
MATHIEU DESBRUN, California Institute of Technology
GUO-WEI WEI and YIYING TONG, Michigan State University

Fig. 1. Five-Component Vector Field Decomposition. On a tetrahedral mesh of the kitten with a spherical cavity, a vector field is decomposed into a gradient field with zero potential on the boundary, a curl field with its vector potential orthogonal to the boundary, a pair of tangential and normal harmonic fields, and a harmonic field that is both a gradient and a curl field. Potential fields are shown in the corners of their corresponding components.

We present a compendium of Hodge decompositions of vector fields on tetrahedral meshes embedded in the 3D Euclidean space. After describing the foundations of the Hodge decomposition in the continuous setting, we describe how to implement a five-component orthogonal decomposition that generically splits, for a variety of boundary conditions, any given discrete vector field expressed as discrete differential forms into two potential fields, as well as three additional harmonic components that arise from the topology or boundary of the domain. The resulting decomposition is proper and mimetic, in the sense that the theoretical dualities on the kernel spaces of vector Laplacians valid in the continuous case (including correspondences to cohomology and homology groups) are exactly preserved in the discrete realm. Such a decomposition only involves simple linear algebra with symmetric matrices, and can thus serve as a basic computational tool for vector
static and dynamical problems - for instance, fluid simulation to enforce incompressibility. The mathematical foundations behind such decompositions were developed using the theory of differential forms for any finite-dimensional compact manifold without boundary early on [Hodge 1941], but were fully extended to manifolds with boundaries much more recently [Shonkwiler 2009].

In computer graphics, the analysis and processing of vector fields over surfaces have received plenty of attention in recent years. Consequently, the resulting computational tools needed to achieve a Hodge decomposition have been well documented and tested on various applications; see, e.g., recent surveys on surface vector field analysis [Vaxman

Vector Fields on Triangle Meshes

No consensus:

- Triangle-based
- Edge-based

Defer to DEC!

- Vertex-based

Vector Fields on Triangle Meshes

No consensus:

- Triangle-based
- Edge-based
- Vertex-based

Vertex-Based Fields

- Pros
- Possibility of higherorder differentiation
- Cons
- Vertices don't have natural tangent spaces
- Gaussian curvature concentrated

2D (Planar) Case: Easy

Piecewise-linear (x, y) components

Example: Killing Energy

3D Case: Ambiguous

Geodesic Polar Map

"Vector Field Design on Surfaces," Zhang et al., TOG 2006 Parallel transport radially from vertex

Recent Method

Discrete Connection and Covariant Derivative for Vector Field Analysis and Design

Beibei Liu and Yiying Tong
Michigan State University
and
Fernando de Goes and Mathieu Desbrun

> Includes basis, derivative operators

California Institute of Technology

In this paper, we introduce a discrete definition of connection on simplicial manifolds, involving closed-form continuous expressions within simplices and finite rotations across simplices. The finite-dimensional parameters of this connection are optimally computed by minimizing a quadratic measure of the deviation to the (discontinuous) Levi-Civita connection induced by the embedding of the input triangle mesh, or to any metric connection with arbitrary cone singularities at vertices. From this discrete connection, a covariant derivative is constructed through exact differentiation, leading to explicit expressions for local integrals of first-order derivatives (such as divergence, curl and the Cauchy-Riemann operator), and for L_{2}-based energies (such as the Dirichlet energy). We finally demonstrate the utility, flexibility, and accuracy of our discrete formulations for the design and analysis of vector, n-vector, and n-direction fields.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry \& Object Modeling-Curve \& surface representations.

CCS Concepts: •Computing methodologies \rightarrow Mesh models;
digital geometry processing, with applications ranging from texture synthesis to shape analysis, meshing, and simulation. However, ex isting discrete counterparts of such a differential operator acting on simplicial manifolds can either approximate local derivatives (such as divergence and curl) or estimate global integrals (such as the Dirichlet energy), but not both simultaneously.

In this paper, we present a unified discretization of the covarian derivative that offers closed-form expressions for both local and global first-order derivatives of vertex-based tangent vector fields on triangulations. Our approach is based on a new construction of discrete connections that provides consistent interpolation of tan gent vectors within and across mesh simplices, while minimizing the deviation to the Levi-Civita connection induced by the 3D em bedding of the input mesh-or more generally, to any metric con nection with arbitrary cone singularities at vertices. We demon strate the relevance of our contributions by providing new com putational tools to design and edit vector and n-direction fields.

Vector Fields on Triangle Meshes

No consensus:

- Triangle-based
- Edge-based
- Vertex-based

Vector Fields on Triangle Meshes

No consensus:

- Triangle-based
- Edge-based
- Vertex-based

More Exotic Choice

An Operator Approach to Tangent Vector Field Processing

Figure 1: Using our framework various vector field design goals can be easily posed as linear constraints. Here, given three symmetry maps: rotational (S1), bilateral (S2) and front/back (S3), we can generate a symmetric vector field using only S1 (left), $S 1+S 2$ (center) and $S 1+S 2+S 3$ (right). The top row shows the front of the 3D model, and

[^0] vector filelark as
derivative the mesh, or as real values on edges, we argue that vector fields can also be naturally viewe
 domain and range are functions defined on the mesh. Although this point of view is common in differential geometry

Subdivision Fields

Subdivision Exterior Calculus for Geometry Processing

Mathieu Desbrun Caltech

Mark Meyer

Tony DeRose
Pixar Animation Studios Pixar Animation Studios

Figure 1: Subdivision Exterior Calculus (SEC). We introduce a new technique to perform geometry processing applications on subdivision surfaces by extending Discrete Exterior Calculus (DEC) from the polygonal to the subdivision setting. With the preassemble of a few operators on the control mesh, SEC outperforms DEC in terms of numerics with only minor computational overhead. For instance, while the spectral conformal parameterization [Mullen et al. 2008] of the control mesh of the mannequin head (left) results in large quasi-conformal distortion reduces distortion $(\operatorname{mean}=1.005, \max =3.0)($ right $)$. Parameterizations, shown at level 1 for clarity, exhibit substantial differences.

Abstract

This paper introduces a new computational method to solve differential equations on subdivision surfaces. Our approach adapts the numerical framework of Discrete Exterior Calculus (DEC) from
the polygonal to the subdivision setting by exploiting the refinthe polygonal to the subdivision setting by exploiting the refin-
ability of subdivision basis functions. The resulting Subdivision Exterior Calculus (SEC) provides significant improvements in accuracy compared to existing polygonal techniques, while offering exact finite-dimensional analogs of continuum structural identities such as Stokes' theorem and Helmholtz-Hodge decomposition. We demonstrate the versatility and efficiency of SEC on common geometry processing tasks including parameterization, geodesic
tance computation, and vector field design. tance computation, and vector field design.
Keywords: Subdivision surfaces, discrete exterior calculus, dis-
crete differential geometry, geometry processing crete differential geometry, geometry processing.
Concepts: \bullet Mathematics of computing \rightarrow Discretization; Com-
and Schröder 2000; Warren and Weimer 2001]. In spite of this prominence, little attention has been paid to numerically solving differential equations on subdivision surfaces. This is in sharp con-
trast to a large body of work in geometry processing that developed trast to a large body of work in geometry processing that developed
discrete differential operators for polygonal meshes [Botsch et al. discrete differentia operators for polygonal meshes [Botsch et al.
2010] serving as the foundations for several applications ranging from parameterization to fluid simulation [Crane et al. 2013a].
Among the various polygonal mesh techniques, Discrete Exterior Calculus (DEC) [Desbrun et al. 2008] is a coordinate-free formalism for solving scalar and vector valued differential equations. In tial properties of the differential setting such as Stokes' theorem. Given that the control mesh of a subdivision surface is a polygonal mesh, applying existing DEC methods directly to the control mesh may seem tempting. However, this approach ignores the geometry of the limit surface, thus introducing a significant loss of accuracy in the discretization process (Fig. 1). A customary workaround is

Subdivision Directional Fields

BRAM CUSTERS, Utrecht University/TU Eindhoven
AMIR VAXMAN, Utrecht University

 subdivide the field to fine level $l=3$ (center), and then solve for a seamless parameterization in both levels (right). Our subdivision preserves curl, and thus results in a low integration error in both levels. The coarse-level optimization takes 7.5 secs, the subdivision 7.6 secs, and the parameterization 7.0 secs, to a
We present a novel linear subdivision scheme for face-based tangent directional fields on triangle meshes. Our subdivision scheme is based on a novel coordinate-free representation of directional fields as halfedge-based scalar quantities, bridging the mixed finite-element representation with discrete exterior calculus. By commuting with differential operators, our subdivision is structure-preserving: it reproduces curl-free fields precisely, and repro
duces divergence-free fields in the weak sense. Moreover, our subdivision duces divergence-free fields in the weak sense. Moreover, our subdivision
scheme directly extends to directional fields with several vectors per face by working on the branched covering space. Finally, we demonstrate how our scheme can be applied to directional-field design, advection, and robust earth mover's distance computation, for efficient and robust computation.
CCS Concepts: .Computing methodologies \rightarrow Mesh models; Mesh ge ometry models; Shape analysis

1 INTRODUCTION

Directional fields are central objects in geometry processing. They represent flows, alignments, and symmetry on discrete meshes They are used for diverse applications such as meshing, fluid simulation, texture synthesis, architectural design, and many more There is then great value in devising robust and reliable algorithms that design and analyze such fields. In this paper, we work with piecewise-constant tangent directional fields, defined on the face of a triangle mesh. A directional field is the assignment of several vectors per face, where the most commonly-used fields comprise single vectors. The piecewise-constant face-based representation of directional fields is a mainstream representation within the (mixed) finite-element method (FEM), where the vectors are often gradients of piecewise-linear functions spanned by values on the vertices.

Vector Fields: Discretization

6.838: Shape Analysis

Spring 2021

Extra: Continuous Normalizing Flows

 Justin Solomon6.838: Shape Analysis

Spring 2021

[^0]: Abstract
 In this paper, we introduce a novel coordinate-free method for manipulating and analyzing ve surfaces. Unlike the commonly used representations of a vector field as an assignment of

