Homework 4: Vector Fields and Optimal Transport

Due April 24, 2019

Problem 1 (20 points). Suppose that $\gamma: (-1,1) \to S$ is a geodesic segment on a two-dimensional surface $S \subseteq \mathbb{R}^3$. For every $s \in (0,1)$, let $\mathbf{N}(s)$ be a unit vector in $T_{\gamma(s)}S$ that is orthogonal to $\dot{\gamma}(s)$; you can assume $\mathbf{N}(s)$ is a differentiable function. In this problem, you will prove that the mapping $\phi(s,t) := \exp_{\gamma(s)}(t\mathbf{N}(s))$ for $s \in (-1,1)$ and small t is an orthogonal parameterization of a neighborhood of $\gamma(0)$.

- (a) Draw an informative picture. What could go wrong if t is allowed to become too large?
- (b) Let $E_1 := \frac{\partial \phi}{\partial s}$ and $E_2 := \frac{\partial \phi}{\partial t}$. Show that $\nabla_{E_2} E_2 = 0$ for all s, t. *Hint:* Recall the connection between geodesics, the geodesic equation, and the exponential map. If it is easier, prove (c) before (b).
- (c) Show that $\|\mathbf{E}_2\| = 1$ for all (s, t). Hint: why is this true when s is arbitrary and t = 0? Now hold s fixed and show that $\frac{\partial}{\partial t} \|\mathbf{E}_2\|^2 = 0$ for all t.
- (d) Show that $\langle \mathbf{E_1}, \mathbf{E_2} \rangle = 0$ for all (s,t). *Hint*: why is this true when s is arbitrary and t=0? Now hold s fixed and show that $\frac{\partial}{\partial t} \langle \mathbf{E_1}, \mathbf{E_2} \rangle = 0$ for all t.

Problem 2 (10 points). Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is a function and that $F: \mathbb{R}^3 \to \mathbb{R}^3$ is a vector field. Verify the following exterior calculus identities:

- (a) $\nabla f = (\mathrm{d}f)^{\sharp}$
- (b) $\nabla \cdot F = \star d \star (F^{\flat})$
- (c) $\nabla \times F = (\star d(F^{\flat}))^{\sharp}$
- (d) $\Delta f = \star d \star df$

Problem 3 (20 points). The *divergence theorem* says that for any smooth vector field \mathbf{X} on a surface S with boundary ∂S , we have

$$\int_{S} \operatorname{div}(\mathbf{X}) \, \mathrm{d}A = \int_{\partial S} \langle \mathbf{X}, \mathbf{N} \rangle \, \mathrm{d}s \,.$$

where dA is the Riemannian area form, **N** is a unit vector tangent to S but an outward pointing normal to ∂S , and we must use an arc-length parametrization for ∂S for this equation to hold. Stokes' Theorem says that for any differential k-form ω and (k+1)-dimensional submanifold $c \subseteq S$ we have

$$\int_{\partial c} \omega = \int_{c} d\omega.$$

In this problem, you will show that Stokes' Theorem implies the divergence theorem, using a well-chosen ω . For this problem, you can assume that the identity you proved in 2(b) holds on surfaces.

- (a) Explain why $\operatorname{div}(\mathbf{X})dA$ can be put in the form $d\omega$ for some form ω , and what is ω ?
- (b) Apply Stokes' Theorem to $d\omega$ and S itself. We thus get $\int_S \operatorname{div}(\mathbf{X}) dA = \int_{\partial S} \omega$. To develop the right hand side further, you must know how to evaluate the "line integral" $\int_{\partial S} \omega$. Suppose that we can parametrize the boundary ∂S by arc-length as a curve $\gamma:[0,\ell]\to S$ with tangent vector $\mathbf{T}(s):=\dot{\gamma}(s)$. Now $\int_{\partial S} \omega$ is defined to be $\int_0^\ell \omega(\mathbf{T}(s)) ds$. Show that $\omega(\mathbf{T})=\langle \mathbf{X},\mathbf{N}\rangle$ where \mathbf{N} is the vector obtained by rotating \mathbf{T} counterclockwise by $\pi/2$.

Hint: For this problem, you might want to use that in 2 dimensions the Hodge star operates of a one form ω acts on vectors as $\star \omega(\mathbf{v}) = \omega(\text{Rot}_{\pi/2}\mathbf{v})$.

For the coding assignment, we've provided you with helper functions for loading and plotting triangle meshes. Before starting the homework, take a look at utils/ for MATLAB code or utils.jl for Julia code to familiarize yourself with the syntax.

Problem 4 (40 points). In this problem you will implement the Sinkhorn method for approximating the "earth mover's distance" (EMD) between two probability distributions on a triangle mesh.

(a) Suppose we are given a pairwise squared distance matrix $D \in \mathbb{R}^{n \times n}$. D_{ij} measures the distance between bins i and j of a histogram with n bins. For example, $D_{ij} = \|\mathbf{x}_i - \mathbf{y}_j\|_2^2$ for given point sets $\mathbf{x}_1, \dots, \mathbf{x}_n$ and $\mathbf{y}_1, \dots, \mathbf{y}_n$. The EMD between histograms \mathbf{p} and \mathbf{q} is defined as

$$W(\mathbf{p}, \mathbf{q}) = \begin{cases} \min_{T \in \mathbb{R}^{n \times n}} & \sum_{i=1}^{n} \sum_{j=1}^{n} T_{ij} D_{ij} \\ \text{subject to} & T_{ij} \ge 0, \quad \forall i, j \in \{1, \dots, n\} \\ & \sum_{j} T_{ij} = p_i, \quad \forall i \in \{1, \dots, n\} \\ & \sum_{i} T_{ij} = q_j, \quad \forall j \in \{1, \dots, n\}. \end{cases}$$
(1)

Explain what $W(\mathbf{p}, \mathbf{q})$ measures about the difference between \mathbf{p} and \mathbf{q} . Compare it to other discrepancy measures between probability distributions such as the Kullback-Leibler divergence.

(b) EMD is difficult to compute when *n* is large. An alternative is the *entropy-regularized EMD* introduced by Marco Cuturi in **Sinkhorn Distances: Lightspeed Computation of Optimal Transport Distances**. The Sinkhorn distance between **p** and **q** is given by

$$W_{\alpha}(\mathbf{p}, \mathbf{q}) = \begin{cases} \min_{T \in \mathbb{R}^{n \times n}} & \sum_{i=1}^{n} \sum_{j=1}^{n} T_{ij} D_{ij} + \alpha \left(\sum_{ij} T_{ij} \ln T_{ij} - 1 \right) \\ \text{subject to} & T_{ij} \geq 0, \quad \forall i, j \in \{1, \dots, n\} \\ & \sum_{j} T_{ij} = p_{i}, \quad \forall i \in \{1, \dots, n\} \\ & \sum_{i} T_{ij} = q_{j}, \quad \forall j \in \{1, \dots, n\}. \end{cases}$$

$$(2)$$

Define a matrix K_{α} in terms of D and α so that the objective for computing $W_{\alpha}(\mathbf{p}, \mathbf{q})$ can be written as $\alpha \cdot \mathrm{KL}(T | K_{\alpha})$, where the KL divergence between $A, B \in \mathbb{R}^{n \times n}_+$ is

$$KL(A||B) = \sum_{ij} A_{ij} \ln \frac{A_{ij}}{B_{ij}}$$

- (c) Show that the optimal matrix T in the minimization for W_{α} can be written as $T = \text{diag}(\mathbf{v})K_{\alpha}\text{diag}(\mathbf{w})$ for some $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.
 - *Hint:* Use Lagrange multipliers; it may be useful to argue that the $T_{ij} \ge 0$ constraint is no longer necessary after entropic regularization.
- (d) So far, we have assumed that we have a pairwise distance matrix D. Let's specialized to a triangle mesh, and define $D_{ij} = d(x_i, d_j)^2$ where x_i and x_j are vertices of the mesh and d denotes geodesic distance. Computing the full pairwise geodesic matrix D is very expensive. In Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains, Solomon et al. propose an alternative solution.

The heat kernel $\mathcal{H}_t(x, y)$ gives the amount of heat diffusion between $x, y \in M$ after time t > 0. In particular $\mathcal{H}_t(x, y)$ solves $\partial_t f_t = \Delta f_t$ with initial condition f_0 through the map

$$f_t(x) = \int_M f_0(y) \mathcal{H}_t(x, y) dy.$$
 (3)

We have provided an implementation of heat diffusion in the function heatDiffusion which you will use in the final part of this problem.

Varadhan's formula states that the distance on the manifold d(x, y) can be recovered by transferring heat from x to y over a short time interval:

$$d(x,y)^{2} = \lim_{t \to 0} [-2t \ln \mathcal{H}_{t}(x,y)].$$
(4)

Argue that K_{α} can be approximated as $\mathcal{H}_{\alpha/2}$.

- (e) The Sinkhorn algorithm for computing W_{α} proceeds as follows:
 - 1 Initialize $T^0 \equiv H_{\alpha/2}$.
 - 2 For i = 1, 2, 3, ...
 - i. If *i* is odd, compute

$$T^{(i)} \equiv \begin{cases} \arg\min_{T \in \mathbb{R}^{n \times n}} & \text{KL}(T || T^{(i-1)}) \\ \text{subject to} & \sum_{j} T_{ij} = p_i \quad \forall i \in \{1, \dots, n\}. \end{cases}$$
 (5)

ii. If *i* is even, compute

$$T^{(i)} \equiv \begin{cases} \arg\min_{T \in \mathbb{R}^{n \times n}} & \text{KL}(T || T^{(i-1)}) \\ \text{subject to} & \sum_{i} T_{ij} = q_{j} \quad \forall j \in \{1, \dots, n\}. \end{cases}$$
 (6)

Show that each $T^{(i)}$ can be written $T^{(i)} = \operatorname{diag}(\mathbf{v}^{(i)})H_{\alpha/2}\operatorname{diag}(\mathbf{w}^{(i)})$ for some vectors $\mathbf{v}^{(i)}$, $\mathbf{w}^{(i)} \in \mathbb{R}^n$. Write the steps of the Sinkhorn algorithm in terms of these vectors. Your algorithm should involve only matrix-vector multiplication and per-element operations on vectors (multiplication/division).

(f) Implement the Sinkhorn algorithm in emd.m (emd.jl) including reasonable stopping criteria. Try several probability distributions on multiple meshes. The example in the starter code should compute geodesic distances from point 1 to all other points on the mesh assuming you have coded everything correctly.

Problem 5 (10 points extra credit). Reproduce Figure 1 in **Convolutional Wasserstein Distances**: **Efficient Optimal Transportation on Geometric Domains**.