
Homework 4: Vector Fields and Optimal Transport
Due April 24, 2019

Problem 1 (20 points). Suppose that γ : (−1, 1) → S is a geodesic segment on a two-dimensional
surface S ⊆ R3. For every s ∈ (0, 1), let N(s) be a unit vector in Tγ(s)S that is orthogonal to
γ̇(s); you can assume N(s) is a differentiable function. In this problem, you will prove that the
mapping φ(s, t) := expγ(s)(tN(s)) for s ∈ (−1, 1) and small t is an orthogonal parameterization of
a neighborhood of γ(0).

(a) Draw an informative picture. What could go wrong if t is allowed to become too large?
(b) Let E1 := ∂φ

∂s and E2 := ∂φ
∂t . Show that ∇E2 E2 = 0 for all s, t.

Hint: Recall the connection between geodesics, the geodesic equation, and the exponential
map. If it is easier, prove (c) before (b).

(c) Show that ‖E2‖ = 1 for all (s, t).
Hint: why is this true when s is arbitrary and t = 0? Now hold s fixed and show that
∂
∂t‖E2‖2 = 0 for all t.

(d) Show that 〈E1, E2〉 = 0 for all (s, t).
Hint: why is this true when s is arbitrary and t = 0? Now hold s fixed and show that
∂
∂t 〈E1, E2〉 = 0 for all t.

Problem 2 (10 points). Suppose f : R3 → R is a function and that F : R3 → R3 is a vector field.
Verify the following exterior calculus identities:

(a) ∇ f = (d f )]

(b) ∇ · F = ?d ? (F[)
(c) ∇× F = (?d(F[))]

(d) ∆ f = ?d ? d f

Problem 3 (20 points). The divergence theorem says that for any smooth vector field X on a surface
S with boundary ∂S, we have ∫

S
div(X)dA =

∫
∂S
〈X, N〉ds .

where dA is the Riemannian area form, N is a unit vector tangent to S but an outward pointing
normal to ∂S, and we must use an arc-length parametrization for ∂S for this equation to hold.
Stokes’ Theorem says that for any differential k-form ω and (k + 1)-dimensional submanifold
c ⊆ S we have ∫

∂c
ω =

∫
c

dω .

In this problem, you will show that Stokes’ Theorem implies the divergence theorem, using a
well-chosen ω. For this problem, you can assume that the identity you proved in 2(b) holds on
surfaces.
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(a) Explain why div(X)dA can be put in the form dω for some form ω, and what is ω?
(b) Apply Stokes’ Theorem to dω and S itself. We thus get

∫
S div(X)dA =

∫
∂S ω. To develop the

right hand side further, you must know how to evaluate the “line integral”
∫

∂S ω. Suppose
that we can parametrize the boundary ∂S by arc-length as a curve γ : [0, `]→ S with tangent
vector T(s) := γ̇(s). Now

∫
∂S ω is defined to be

∫ `
0 ω(T(s))ds. Show that ω(T) = 〈X, N〉

where N is the vector obtained by rotating T counterclockwise by π/2.
Hint: For this problem, you might want to use that in 2 dimensions the Hodge star operates
of a one form ω acts on vectors as ?ω(v) = ω(Rotπ/2v).

For the coding assignment, we’ve provided you with helper functions for load-
ing and plotting triangle meshes. Before starting the homework, take a look
at utils/ for MATLAB code or utils.jl for Julia code to familiarize yourself
with the syntax.

Problem 4 (40 points). In this problem you will implement the Sinkhorn method for approxi-
mating the “earth mover’s distance” (EMD) between two probability distributions on a triangle
mesh.

(a) Suppose we are given a pairwise squared distance matrix D ∈ Rn×n. Dij measures the dis-
tance between bins i and j of a histogram with n bins. For example, Dij = ‖xi − yj‖2

2 for given
point sets x1, . . . , xn and y1, . . . , yn. The EMD between histograms p and q is defined as

W(p, q) =


minT∈Rn×n ∑n

i=1 ∑n
j=1 TijDij

subject to Tij ≥ 0, ∀i, j ∈ {1, . . . , n}
∑j Tij = pi, ∀i ∈ {1, . . . , n}
∑i Tij = qj, ∀j ∈ {1, . . . , n}.

(1)

Explain what W(p, q) measures about the difference between p and q. Compare it to other
discrepancy measures between probability distributions such as the Kullback-Leibler diver-
gence.

(b) EMD is difficult to compute when n is large. An alternative is the entropy-regularized EMD
introduced by Marco Cuturi in Sinkhorn Distances: Lightspeed Computation of Optimal
Transport Distances. The Sinkhorn distance between p and q is given by

Wα(p, q) =


minT∈Rn×n ∑n

i=1 ∑n
j=1 TijDij + α

(
∑ij Tij ln Tij − 1

)
subject to Tij ≥ 0, ∀i, j ∈ {1, . . . , n}

∑j Tij = pi, ∀i ∈ {1, . . . , n}
∑i Tij = qj, ∀j ∈ {1, . . . , n}.

(2)

Define a matrix Kα in terms of D and α so that the objective for computing Wα(p, q) can be
written as α ·KL(T‖Kα), where the KL divergence between A, B ∈ Rn×n

+ is

KL(A‖B) = ∑
ij

Aij ln
Aij

Bij
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(c) Show that the optimal matrix T in the minimization for Wα can be written as T = diag(v)Kαdiag(w)
for some v, w ∈ Rn.
Hint: Use Lagrange multipliers; it may be useful to argue that the Tij ≥ 0 constraint is no
longer necessary after entropic regularization.

(d) So far, we have assumed that we have a pairwise distance matrix D. Let’s specialized to a
triangle mesh, and define Dij = d(xi, dj)

2 where xi and xj are vertices of the mesh and d de-
notes geodesic distance. Computing the full pairwise geodesic matrix D is very expensive.
In Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric
Domains, Solomon et al. propose an alternative solution.

The heat kernelHt(x, y) gives the amount of heat diffusion between x, y ∈ M after time t > 0.
In particularHt(x, y) solves ∂t ft = ∆ ft with initial condition f0 through the map

ft(x) =
∫

M
f0(y)Ht(x, y)dy. (3)

We have provided an implementation of heat diffusion in the function heatDiffusion which
you will use in the final part of this problem.

Varadhan’s formula states that the distance on the manifold d(x, y) can be recovered by trans-
ferring heat from x to y over a short time interval:

d(x, y)2 = lim
t→0

[−2t lnHt(x, y)]. (4)

Argue that Kα can be approximated asHα/2.
(e) The Sinkhorn algorithm for computing Wα proceeds as follows:

1 Initialize T0 ≡ Hα/2.
2 For i = 1, 2, 3, . . .

i. If i is odd, compute

T(i) ≡
{

arg minT∈Rn×n KL(T‖T(i−1))

subject to ∑j Tij = pi ∀i ∈ {1, . . . , n}.
(5)

ii. If i is even, compute

T(i) ≡
{

arg minT∈Rn×n KL(T‖T(i−1))

subject to ∑i Tij = qj ∀j ∈ {1, . . . , n}.
(6)

Show that each T(i) can be written T(i) = diag(v(i))Hα/2diag(w(i)) for some vectors v(i), w(i) ∈
Rn. Write the steps of the Sinkhorn algorithm in terms of these vectors. Your algorithm
should involve only matrix-vector multiplication and per-element operations on vectors (mul-
tiplication/division).

(f) Implement the Sinkhorn algorithm in emd.m (emd.jl) including reasonable stopping criteria.
Try several probability distributions on multiple meshes. The example in the starter code
should compute geodesic distances from point 1 to all other points on the mesh assuming
you have coded everything correctly.

Problem 5 (10 points extra credit). Reproduce Figure 1 in Convolutional Wasserstein Distances:
Efficient Optimal Transportation on Geometric Domains.
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