
Homework 2: Surfaces and Curvature
Due March 20, 2019

Problem 1 (15 points). In this problem, you’ll do a bit of calculus to see how the operators we talk
about in class work on a simple manifold. Consider the map f : R2 → R3 defined by

f (u, v) =
1

u2 + v2 + 1
(2u, 2v, u2 + v2 − 1).

(a) Verify that for all (u, v) ∈ R2, f (u, v) lies on the unit sphere.

(b) Let p = (u0, v0) be a point in R2, and let γ : (−ε, ε) → R2 be a curve with γ(0) = p, and
γ′(0) = w. Recall that the differential of a function f at a point p is a linear map d fp(v) =
( f ◦ γ)′(0). Compute the differential map d fp at w = e1w1 + e2w2.

Hint: The differential d fp should be a 3× 2 matrix.

Hint: Write γ in coordinates, and use chain rule on d
dt f (γ1(t), γ2(t))|t=0.

(c) Recall that the Gauss map of a surfaceM is a function n :M→ S2. Given a parameterization
of a surface, there is a simple way to obtain the Gauss map n(p). What is the Gauss map
induced by f ?

Hint: In what space do the derivatives ∂ f
∂u (p) and ∂ f

∂v (p) live.

(d) Compute the differential dnp(v) of the Gauss map.

Problem 2 (15 points). Recall the Taubin matrix defined in class for approximating mesh curvature

Mp =
1

2π

∫ π

−π
κθtθtᵀθ dθ.

(a) Prove that the surface normal at p is an eigenvector of Mp. What is the corresponding eigen-
value?

(b) Show that the other two eigenvectors are the principal curvature directions. What are the
corresponding eigenvalues?

For the coding assignments, we’ve provided you with helper functions for
loading and plotting triangle meshes. Before starting the homework, take a
look at utils/ for MATLAB code or utils.jl for Julia code to familiarize your-
self with the syntax.

Problem 3 (20 points). In this problem, you will compute and display (pointwise, not integrated)
Gaussian curvature on a triangle mesh. Since there are many approximations for discrete Gaussian
curvature, choose any two and fill in the relevant portions of gaussCurvature.m (gaussCurvature.jl).
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In one or two sentences, compare your two choices of curvature. Are there situations in which they
behave differently?

Note: You may want to find additional meshes online or generate some in a tool like MeshLab
to test your curvature measure; coarse meshes are often the easiest examples to illustrate differ-
ences between curvature measures.

Problem 4 (40 points). In this problem, you will develop a notion of pointwise mean curvature on
a triangle mesh. Take a look at meanCurve.m (meanCurve.jl) for starter code.

Note: Storing a dense |V| × |V|matrix or a matrix inverse will result in zero credit.

(a) Complete the function surfaceArea which computes the surface area of a triangle mesh from
the vertices and triangles.

(b) Complete the function cotLaplacian that computes a sparse matrix L such that ∇p A = 1
2 L ·

p ∈ R|V|×3, where A is the surface area from the previous part, p ∈ R|V|×3 contains vertex
positions, and L ∈ R|V|×|V| depends on p and the topology of the mesh.

Hint: If θ is the angle between vectors v and w, then cot θ = v·w
‖v×w‖2

.

(c) Suppose we want to check that our cotangent Laplacian is indeed approximating the gradient
of area. One way is to compute ∇p A via divided differences on A with respect to point
positions. Complete the function dividedDifferences and show that the error between this
approximation and the true gradient you computed in part (b) is small.

Hint: Use the approximation f ′(x) = 1
2h ( f (x + h)− f (x− h)).

(d) The barycentric area associated to a vertex is 1/3 times the sum of triangle areas adjacent to
that vertex (why 1/3?). Complete the function barycentricArea, and argue that the sum of
barycentric areas over all vertices is the surface area.

(e) Combine code from the previous parts to approximate a per-vertex pointwise mean curvature
on the mesh. Fill in the meanCurvature function.

Problem 5 (Challenge problem: 10 points). Now, you will use code from problem 4 to implement
the mean curvature flow algorithm described in “Implicit Fairing of Irregular Meshes using Dif-
fusion and Curvature Flow.” See the relevant portions of meanCurve.m (meanCurve.jl) for starter
code.

Note: Storing a dense |V| × |V|matrix or a matrix inverse will result in zero credit.

(a) Take M ∈ R|V|×|V| to be a diagonal matrix of barycentric areas from problem 4(c). Notice that
M and L are functions of p: M(p), L(p) : R|V|×3 → R|V|×|V|. Based on our discussion of the
mean curvature normal, how do you expect the following ODE to evolve p in time t ≥ 0:

dp
dt

= −M(p)−1 · L(p) · p

(b) Suppose we wish to approximate p(t + τ) given p(t). One simple way is to solve the follow-
ing divided difference approximation for p(t + τ):

p(t + τ)− p(t)
τ

≈ −M(p(t))−1 · L(p(t)) · p(t).

Implement this approximation in curvatureFlowEuler. What happens if τ is too large?
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(c) An alternative (semi-)implicit integrator uses a different approximation:

p(t + τ)− p(t)
τ

≈ −M(p(t))−1 · L(p(t)) · p(t + τ).

Implement this approximation in curvatureFlowImplicit. What happens if τ is too large?

(d) A fully-implicit integrator would use the following approximation:

p(t + τ)− p(t)
τ

≈ −M(p(t + τ))−1 · L(p(t + τ)) · p(t + τ).

Speculate in words why this formula is not used as often as the previous two.

Problem 6 (Extra credit: 10 points). In the previous problem, you might have seen that mean
curvature flow produces singularities and sharp features when it is run for too long. The paper
“Can Mean-Curvature Flow be Modified to be Non-Singular?” (Kazhdan, Solomon, and Ben-
Chen) proposes a solution to this problem. Implement their approach and report on the results.

Hint: This is a very small modification of your code for problem 4, but since this problem is
extra credit we will let you read the paper to figure out what the modification should be!

Note: The author of this paper is a different J. Solomon than your instructor!
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