

Discrete Laplacians

Justin Solomon MIT, Spring 2019

Our Focus

$f \in C^{\infty}(M) \longrightarrow \Delta f \in C^{\infty}(M)$

Computational version?

The Laplacian

Discretizing the Laplacian

?!

Problem

Laplacian is a *differential* operator!

Today's Approach

First-order Galerkin

Finite element method (FEM)

http://www.stressebook.com/wp-content/uploads/2014/08/Airbus_A320_k.jpg

Integration by Parts to the Rescue

Slightly Easier?

Slightly Easier?

Kinda-sorta cancels out?

Overview: Galerkin FEM Approach

$$g = \Delta f$$
$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = \int (\nabla \psi \cdot \nabla f) \, dA$$

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = \int (\nabla \psi \cdot \nabla f) \, dA$$
Approximate $f \approx \sum_{i} a_i \psi_i$ and $g \approx \sum_{i} b_i \psi_i$

$$\implies \text{Linear system } \sum_{i} b_i \langle \psi_i, \psi_j \rangle = \sum_{i} a_i \langle \nabla \psi_i, \nabla \psi_j \rangle$$

Overview: Galerkin FEM Approach

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = \int (\nabla \psi \cdot \nabla f) \, dA$$

Approximate $f \approx \sum_{i} a_i \psi_i$ and $g \approx \sum_{i} b_i \psi_i$

$$\implies \text{Linear system } \sum_{i} b_i \langle \psi_i, \psi_j \rangle = \sum_{i} a_i \langle \nabla \psi_i, \nabla \psi_j \rangle$$

Mass matrix: $M_{ij} := \langle \psi_i, \psi_j \rangle$ Stiffness matrix: $L_{ij} := \langle \nabla \psi_i, \nabla \psi_j \rangle$ $\Longrightarrow Mb = La$

Important to Note

Not the only way

to approximate the Laplacian operator.

- Divided differences
- Higher-order elements
- Boundary element methods
- Discrete exterior calculus

But this method is worth knowing, so we'll do it in detail!

L² Dual of a Function

Observation

Can recover function from dual

Dual of Laplacian

Space of test functions (no boundary!): $\{g \in C^\infty(M) : g|_{\partial M} \equiv 0\}$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each: **Function space Test functions** Often the same!

One Derivative is Enough

$\mathcal{L}_{\Delta f}[g] = \int_{M} \nabla g \cdot \nabla f \, dA$

First Order Finite Elements

Image courtesy K. Crane, CMU

One "hat function" per vertex

Representing Functions

One scalar per face

$$\|\nabla f\| = \frac{1}{\ell_3 \sin \theta_3} = \frac{1}{h}$$

Recall: Single Triangle: Complete

Recall: Single Triangle: Complete

What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = \int_{M} \nabla g \cdot \nabla f \, dA$$

What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = \int_{M} \nabla g \cdot \nabla f \, dA$$

$$\nabla f = \frac{e_{23}^{\perp}}{2A} \qquad \int_{T} h$$

Case 1: Same vertex

$$\langle \nabla f, \nabla f \rangle \, dA = A \| \nabla f \|_2^2$$
$$= \frac{A}{h^2} = \frac{b}{2h}$$
$$= \frac{1}{2} (\cot \alpha + \cot \beta)$$

What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = \int_{M} \nabla g \cdot \nabla f \, dA$$

Case 2: Different vertices

$$\int_{T} \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle \, dA = A \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle$$
$$= \frac{1}{4A} \langle e_{31}^{\perp}, e_{32}^{\perp} \rangle = -\frac{\ell_{1}\ell_{2}\cos\theta}{4A}$$
$$= -\frac{1}{2h_{1}}\ell_{2}\cos\theta = -\frac{\cos\theta}{2\sin\theta}$$
$$= -\frac{1}{2}\cot\theta$$

Summing Around a Vertex

$$p \qquad \beta_i \\ \alpha_i \\ \alpha_i \\ \langle \nabla h_p, \nabla h_p \rangle = \frac{1}{2} \sum_i (\cot \alpha_i + \cot \beta_i)$$

$$\begin{array}{c} \theta_{1} \\ \theta_{2} \\ q \end{array} \langle \nabla h_{p}, \nabla h_{q} \rangle = -\frac{1}{2} (\cot \theta_{1} + \cot \theta_{2}) \end{array}$$

Recall: Summing Around a Vertex

$$\nabla_{\mathbf{p}} A = \frac{1}{2} \sum_{j} (\cot \alpha_j + \cot \beta_j) (\mathbf{p} - \mathbf{q}_j)$$

$$\nabla_{\mathbf{p}} A = \frac{1}{2} ((\mathbf{p} - \mathbf{r}) \cot \alpha + (\mathbf{p} - \mathbf{q}) \cot \beta)$$

Same operator!

THE COTANGENT LAPLACIAN

$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$

J

Poisson Equation

$\Delta f = g$

Weak Solutions

FEM Hat Weak Solutions

$$\int_{M} h_i \Delta f \, dA = \int_{M} h_i g \, dA \,\,\forall \text{ hat functions } h_i$$

$$\int_{M} h_{i} \Delta f \, dA = \int_{M} \nabla h_{i} \cdot \nabla f \, dA$$
$$= \int_{M} \nabla h_{i} \cdot \nabla \sum_{j} a_{j} h_{j} \, dA$$
$$= \sum_{j} a_{j} \int_{M} \nabla h_{i} \cdot \nabla h_{j} \, dA$$
$$= \sum_{j} L_{ij} a_{j}$$

Stacking Integrated Products

 $\begin{pmatrix} \int_{M} h_{1} \Delta f \, dA \\ \int_{M} h_{2} \Delta f \, dA \\ \vdots \\ \int_{M} h_{|V|} \Delta f \, dA \end{pmatrix} = \begin{pmatrix} \sum_{j} L_{1j} a_{j} \\ \sum_{j} L_{2j} a_{j} \\ \vdots \\ \sum_{j} L_{|V|j} a_{j} \end{pmatrix} = L\mathbf{a}$

Multiply by Laplacian matrix!

Problematic Right Hand Side

$$\int_{M} h_i \Delta f \, dA = \int_{M} h_i g \, dA \,\,\forall \text{ hat functions } h_i$$

Product of hats is quadratic

A Few Ways Out

Just do the integral

"Consistent" approach

Approximate some more

Redefine g

A Few Ways Out

Just do the integral "Consistent" approach Approximate some more

Redefine g

The Mass Matrix

 $A_{ij} := \int_{M} h_i h_j \, dA$

Diagonal elements: Norm of h_i

Off-diagonal elements:
 Overlap between h_i and h_j

Consistent Mass Matrix

 $A_{ij}^{\text{triangle}} = \begin{cases} \frac{\text{area}}{6} \\ \frac{\text{area}}{12} \end{cases}$ if i = jif $i \neq j$

Non-Diagonal Mass Matrix

Properties of Mass Matrix

Rows sum to one ring area / 3

Involves only vertex and its neighbors

Partitions surface area

Issue: Not diagonal!

Use for Integration

 $\int_{M} f = \int_{M} \sum_{i} a_{j} h_{j}(\cdot 1)$ $= \int_{M} \sum_{i} a_{j} h_{j} \sum_{i} h_{i}$ $=\sum A_{ij}a_j$ $= \mathbf{1}^{ op} A \mathbf{a}$

Lumped Mass Matrix

$$\tilde{a}_{ii} := \operatorname{Area}(\operatorname{cell} i)$$

Won't make big difference for smooth functions

http://users.led-inc.eu/~phk/mesh-dualmesh.html

Approximate with diagonal matrix

Simplest: Barycentric Lumped Mass

http://www.alecjacobson.com/weblog/?p=1146

Area/3 to each vertex

Ingredients

Cotangent Laplacian L Per-vertex function to integral of its Laplacian against each hat

Area weights A

Integrals of pairwise products of hats (or approximation thereof)

Solving the Poisson Equation

Important Detail: Boundary Conditions

$$\Delta f(x) = g(x) \ \forall x \in \Omega$$
$$f(x) = u(x) \ \forall x \in \Gamma_D$$
$$\nabla f \cdot n = v(x) \ \forall x \in \Gamma_N$$

$$\begin{split} \int_{\Omega} \nabla f \cdot \nabla \phi &= \int_{\Gamma_N} v(x) \phi(x) \, d\Gamma - \int_{\Omega} f(x) \phi(x) \, d\Omega \\ f(x) &= u(x) \, \, \forall x \in \Gamma_D \\ \end{split}$$

 Weak form

Eigenhomers

Higher-Order Elements

https://www.femtable.org/

Point Cloud Laplace: Easiest Option

$$W_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{t}\right) \quad \text{Tricky} \\ D_{ii} = \sum_j W_{ji} \\ L = D - W \\ Lf = \lambda Df$$

"Laplacian Eigenmaps for Dimensionality Reduction and Data Representation" Belkin & Niyogi 2003

Discrete Laplacians

Justin Solomon MIT, Spring 2019

