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Dimensionality reduction
Embedding
Parameterization

Manifold learning



Given pairwise distances
extract an embedding.

Is it always possible?
What dimensionality?



Metric Space

Ordered pair (M, d) where Mis asetand d: M X M — R satisfies




Many Examples of Metric Spaces

R™, d(z,y) == ||z — ZUHp

S C R®, d(z,y) := geodesic



Isometry [ahy-som-i-tree]:

A map between metric spaces
that preserves pairwise
distances.

—




Can you always embed
a metric space
iIsometrically in R"?



Can you always embed
a finite metric space
iIsometrically in R"?



Disappointing Example

X :={a,b,c,d}
d(a,d) =d(b,d) =1
d(a,b) = d(a,c) = d(b,c) = 2
d(c,d) = 1.5

d b
Cannot be embedded ir Laclidean $p ace! a
C

https://chiasme.wordpress.com/2013/10/07/when-does-a-finite-metric-space-embed-isometrically-into-an-euclidean-space/



Contrasting Example

Uoo(R™) -

%[00 -

(R [+ lloo)

IMax | X
; X},

Proposition. Every finite metric space embeds
isometrically into £, (R") for some n.

Extends to infinite-dimensional spaces!




Frechet Embedding

Definition 7.3 (Fréchet embedding). Suppose (M, d) is a metric space that Sq,...,S; C M. We define
the Fréchet embedding of M with respect to {Sq,...,S;} to be the map ¢ : M — R" given by

p(x):= (d(x,51),d(x,S2),...,d(x,S:)), (7.2)

where d(x,S) := min,csd(x,y).



Approximate Embedding

expansion — max f (@), F(y))
’ L oy
p(z,y)

contraction(f) := max

vy u(f(z), f(y))

distortion( f) := expansion(f) x contraction(f)

http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf



Well-Known Result

Proposition 7.2 (Bourgain’s Theorem). Suppose (M, d) is a metric space consisting of n points, that is,
|M| = n. Then, for p > 1, M embeds into {,(IR™) with O(logn) distortion, where m = O(log*n).

Matousek improved the distortion bound to logn/p [14].

m = b76logn)
for 1 =1 to logn do /* levels of density */
for i =1 to m do /* repeat for high probability */
choose set S;; by sampling each node in X
independently with probability 277

end
end
j}j {;1:.*] = d(zx, Sij;)
logn m
@ 5 @?Zl fl]‘

http://ttic.uchicago.edu/~harry/teaching/pdf/lecture3.pdf



Euclidean Problem

Given:

Pi; = ||x; — %45, P € R™*"

Reconstruct:

X1,...,Xp € R

Alternative notation:

X E M XN




Gram Matrix [gram mey-triks]:

A matrix of inner products




Classical Multidimensional Scaling

1. Double centering: G := —2J " PJ
Centering matrix J := I,,«, — 511T

2. Find m largest eigenvalues/eigenvectors

G =QAQ"
3. X =vVAQT
Extension: Landmark MDS

Torgerson, Warren S. (1958). Theory & Methods of Scaling.



Visuvalization

Figure 10: Nanotube Embedding. One of Asimov’s graphs for a nanotube is rendered with

MDS in 3-D (Stress=0.06). The nodes represent carbon atoms, the lines represent chemical
bonds. The right hand frame shows the cap of the tube only.

The highlighted points show
some of the pentagons that are necessary for forming the cap.

http://www.stat.yale.edu/~Ic436/papers/JCGS-mds.pdf



Stress Majorization

m)%nz (Doij — ||xi — Xj||2)2

) Nonconvext

SMACOF:

Scaling by Majorizing a Complicated Function

de Leeuw, J. (1977), “"Applications of convex analysis to multidimensional scaling” Recent
developments in statistics, 133-145.



SMACOF Potential Terms

Z(DOM)Q = const.

(]
Z 1% — Xj”% = tl“(XVXT), where V = 2nJ
]
_QZDOz’jHXi — Xj||l2 = —Qtr(XB(X)XT)
3]
2D0;;

moxs X A XA

where BZJ(X) = 0 if X; = Xj,’i %]



SMACOF Lemma

Z(DOij)Q = const.

1J
D i — x5 = tr(XVXT), where V = 2nJ
j

—2 " Dojjllx; — x;[2 = —2tr(XB(X)X ")

J

where B;;(X) = if x; =Xj,1 7 J

2Dy . .

“Toxs | X F X1 F ]

0
— By ifi=j

Lemma. Define
7(X,Z) = const. + tr(XVX ") — 2tr(XB(2)Z ")
Then,
(X, X)<71(X,Z)VZ
with equality exactly when X « Z.

Proof on board using Cauchy-Schwarz.

See Modern Multidimensional Scaling (Borg, Groenen)



SMACOF: Single Step

XFHL min 7(X, X")

7(X,Z) :=const. + tr(XVX ") — 2tr(XB(Z)Z ")
— (0 = Vx[T(X, Xk)]
= 2XV — 2X"B(X")

11"
— X"t = X*B(XF) (Inxn - —>
(L

Objective convergence:
T( XL XF) < 7 (XF, XF)




Visuvalization

Figure 9: A Telephone Call Graph, Layed Out in 2-D. Left: classical scaling (Stress=0.34);
right: distance scaling (Stress=0.23). The nodes represent telephone numbers, the edges
represent the existence of a call between two telephone numbers in a given time period.

http://www.stat.yale.edu/~Ic436/papers/JCGS-mds.pdf



Recent SMACOF Application

DOI: 10.1111/cgf 12558
EUROGRAPHICS 2015/ O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Shape-from-Operator: Recovering Shapes
from Intrinsic Operators

Davide Boscaini, Davide Eynard, Drosos Kourounis, and Michael M. Bronstein

Universita della Svizzera Italiana (USI), Lugano, Switzerland
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Shape-from-difference

Shape-from-Laplacian

Shape-from-eigenvectors

Figure 1: Examples of three different shape-from-operator problems considered in the paper. Left: shape analogy synthesis as
shape-from-difference operator problem (shape X is synthesized such that the intrinsic difference operator between C,X is as
close as possible to the difference between A, B). Center: stvle transfer as shape-from-Laplacian problem. The Laplacian of the
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Classical MDS

http://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_mds_combined.pdf

Sammon (1969). “A nonlinear
mapping for data structure
analysis.” IEEE Transactions on
Computers 18.



Intrinsic-to-Extrinsic: Theory

Theorem 7.1 (Whitney embedding theorem). Any smooth, real k-dimensional manifold maps smoothly
into R?*,

Theorem 7.2 (Nash-Kuiper embedding theorem, simplified). Any k-dimensional Riemannian mani-
fold admits an isometric, differentiable embedding into R,

QUMM

“Hu,,”””
(7

Image: HEVEA Project/PNAS



Intrinsic-to-Extrinsic: ISOMAP

Construct neighborhood graph
k-nearest neighbor graph or e-neighborhood graph

Compute shortest-path distances
Floyd-Warshall algorithm or Dijkstra

Classical MDS

Eigenvalue problem

15 X R TN 4« —— S S /

7~ 1
/'A i b 1

Tenenbaum, de Silva, Langford.
“A Global Geometric Framework for Nonlinear Dimensionality Reduction.” Science (2000).



Floyd-Warshall Algorithm

for each vertex v
dist[v][Vv] « O
for each edge (u,v)
dist[u]l [v] « w(u,Vv) // the weight of the edge (u,v)
for kK from 1 to |V|
for i from 1 to |V]|
for j from 1 to |V]
if dist[i][j] > dist[i][k] + dist[k][7]
dist[i][J] « dist[i][k] + distl[k][7]
end if

let dist be a |V| x |V| array of minimum distances initialized to = (infinity)

https://en.wikipedia.org/wiki/Floyd%E 2%680%93Warshall_algorithm



Landmark ISOMAP

Construct neighborhood graph
k-nearest neighbor graph or e-neighborhood graph

Compute some shortest-path distances
Dijkstra: O(kn N log N), nlandmarks, N points

MDS on landmarks

Smaller n X n problem

Closed-form embedding formula
6(x) vector of squared distances from x to landmarks

: U ( ( )_5avera,ge)

o el

Embedding(zx); =




Locally Linear Embedding (LLE)

Construct neighborhood graph
k-nearest neighbor graph or e-neighborhood graph

Analysis step: Compute weights W ;;

minwlewk ‘ X; —.Zj wjnjHQ
subject to )} ;jw/ =1
Embedding step: Minimum eigenvalue problem
miny Y — YWTH%TO

subject to YY! = Ipxp




omparison: ISOMAP vs. LLE

Global distances
k-NN graph distances
Largest eigenvectors

Dense matrix

Local averaging
k-NN graph weighting
Smallest eigenvectors

Sparse matrix

104 40
20
04
(13
-104 =20+
30\]\0x\ POV TN - e =40 i, f + s =20 s " .
-10 0 10 -40 =20 0 20 40 5 —40 0 40
IAM: 9.001 s ISOMAP: 541.38 s
. 0.04}
Ir =3 '
2
0.02+
0r
0.00F
-1+ -0.02F
-0.04+ &
=21 ) | T — NSOV T OREE J——
40 -0.04 -0.02 000 002 0.04
LLE: 11.49s RML: 150.458 s LMDS: 21.248 s

10— — o T—— =201 i £ G s s
1o 0 10 20 0 40 —40 0 40
IAM: 9.32's ISOMAP: 659.764 5
0.()4i-
0.02 [- 3 A(‘Y-— )
0.00+ 2
-0.02t %, %
-0.041» =5

2004 —002 000 002 004
LMDS: 30.447 s

-60 —40 =20 0 20 40
RML: 182.535s

LLE: 12.784 s

Image from “Incremental Alignment Manifold Learning.” Han et al. JCST 26.1 (2011).




Diffusion Maps

Construct similarity matrix
2
Example: K (z,y) := e e vlI"/¢

Normalize rows
M:=D 'K

Embed from k largest eigenvectors

(A101, Ao, . ooy ARr)

Coifman, R.R.; S. Lafon. (2006). “Diffusion maps.” Applied and
Computational Harmonic Analysis. 21: 5—3o0.



Embedding from Geodesic Distance

On reconstruction of non-rigid shapes with intrinsic regularization

Yohai S. Devir Guy Rosman

Alexander M. Bronstein

Michael M. Bronstein

Ron Kimmel

{yd | rosman | bron |mbron | ron}-@cs .technion.ac.il
Department of Computer Science
Technion - Israel Institute of Technology

Abstract

Shape-trom-X is a generic type of inverse problems in
computer vision, in which a shape is reconstructed from
some measurements. A specially challenging setting of this
problem is the case in which the reconstructed shapes are
non-rigid. In this paper, we propose a framework for in-
trinsic regularization of such problems. The assumption is
that we have the geometric structure of a shape which is
intrinsically (up to bending) similar to the one we would
like to reconstruct. For that goal, we formulate a variation
with respect o vertex coordinates of a triangulated mesh
approximating the continuous shape. The numerical core
of the proposed method is based on differentiating the fust

marching update step for geodesic distance computation.

1. Introduction

In many tasks, both in human and computer vision, one
tries to deduce the shape of an object given an observa-

many other problems, in which an object is reconstructed
based on some measurement, are known as shape recon-
struction problems. They are a subsel of what is called
inverse problems. Most such inverse problems are under-
determined, in the sense that measuring different objects
may yield similar measurements. Thus, in the above illus-
tration, the essence of the shadow theater 1s that 1t 15 hard to
distinguish between shadows cast by an amimal and shad-
ows cast by hands. Therefore prior knowledge about the
unknown object is needed.

Of particular interest are reconstruction problems involv-
ing non-rigid shapes. The world surrounding us is full with
objects such as live bodies, paper products, plants, clothes
elc., which may be deformed o different postures. These
objects may be deformed 1o an infinite number of different
postures. While bending, though, objects tends to preserve
their internal geometric structure. Two objects differing by
a bending are said to be intrinsically similar. In many cases,
while we do not know the measured object, we have a prior
on its intrinsic geometry. For example, in the shadow the-
ater, though we do not know which exact posture of the hand



LELGR ALY

Huge zoo
of embedding techniques.

Each with different theoretical properties: Try them all!

But what if the distance matrix is incomplete or noisy?



More General: Metric Nearness

j X — D||;
oy | [Fro

TRIANGLE _FIXING(D ,€) In other words, the vector e is projected orthogonally onto
. recimilar 1 - the constraint set {e’ : .. — €., — e}.. < b;.; }. This is tantamount to solvin
Input: Input dissimilarity matrix 1), tolerance ¢ ij — €k T Chi J g
Output: M = argminy . 4, | X — DlJ. ming: 1[(el — ei)? + (g — e38)? + (b — ei)?)]
forl<i<j<k<n ¢ 2\~ Ci) Ak T Eik)T T (i T ki)l (32)
- ’ - subjectto €. — e/ — ep; = bijk. '
(Zigkes Zjkei 2keij) < O o
forl <1< j <n It is easy to check that the solution is given by
ejj — 0
- tJ (3,;,- — €45 — Mijk, (if-k — €kt Hijks and (i!k'i — Cki + Mijk, (3.3)
0« 1+¢ ! !
while (0 > ¢) {convergence test} where 11,55 = %(€ij — €jk — €ri — bijr) > 0.

foreach triangle (7, 7, k)
b« dh.ﬂ + dj_l‘ — ffgj
[ — %(eij — ejk — €g; — b)

0 «— min{—pu, ik } {Stay within half-space of constraint}
€55 + €45 — l(), €k < €5k + O.} €pi +— Cpi + 7,
Zijk — Zijk — 0 {Update correction term}

end foreach

d — sum of changes in the e Dhillon, Sra, Tropp. “Triangle F|X|ng Algorlthms
d while :
return M — D + E for the Metric Nearness Problem.” NIPS.




Euclidean Matrix Completion

min [|H o (D(G) ~ Dinput) |vo

s.t. G =0 -

Alfakih, Khandani, and Wolkowicz. “Solving Euclidean distance matrix completion
problems via semidefinite programming.” Comput. Optim. Appl., 12 (1999).




Maximum Variance Unfolding

(on the board)



Network Embedding

Distributed Representations of Words and Phrases Well-known example: Word2Vec

and their Compositionality

Input projection  output
w(t-2)
Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc. w(t-1)
Mountain View Mountain View Mountain View k' m h - .
mikolovRgoogle.com ilyasu@google.com kaif@google.com S Ip gra arc IteCture'
U Predict neighborhood of
Greg Corrado Jeffrey Dean \ w(tH) g
Google Inc. Google Inc. a Word
Mountain View Mountain View
gcorradofigoogle.com jefflgoogle.com
w(t+2)
Abstract

. . . . . . Country and Capital Vectors Projected by PCA

The recently introduced continuous Skip-gram model is an efficient method for 2 - — ‘ ‘ ‘ . ‘
. . " . . " ina<
learning high-quality distributed vector representations that capture a large num- Beijing
ber of precise syntactic and semantic word relationships. In this paper we present 15 Russiac 1
several extensions that improve both the quality of the vectors and the training Japarx Aloscow
speed. By subsampling of the frequent \.?'urd:s' we obtain sigrlliﬁcam.l speedup and 'r Turoye Ankara Tokyo |
also learn more regular word representations. We also describe a simple alterna-
tive to the hierarchical softmax called negative sampling. osr Poland |
An inherent limitation of word representations is their indifference to word order ol Germanye i
and their inability to represent idiomatic phrases. For example, the meanings of France arsaw
“Canada” and “Air” cannot be easily combined to obtain “Air Canada”. Motivated 05| ltaly s —
by this example, we present a simple method for finding phrases in text, and show Greecer s« hens
. . ~ - T . . Rome
that learning good vector representations for millions of phrases is possible. A Seaim 1
15 - Portugal st Medrid —
1 Introduction




Challenging Computational Problems

Is my data embeddable?

Can you compute intrinsic dimensionality?
Are two metric spaces isometric?

How similar are two metric spaces?

What is the average of two metric spaces?

Can | embed into non-Euclidean spaces?



NP-Hardness Result

Robust Euclidean Embedding

Lawrence Cayton
Sanjoy Dasgupta

Department of Computer Science and Engineering, University of California, San Diego

9500 Gilman Dr. La Jolla, CA 92093

Abstract

We derive a robust Euclidean embedding pro-
cedure based on semidefinite programming
that may be used in place of the popular
classical multidimensional scaling (¢cMDS) al-
gorithm. We motivate this algorithm by ar-
guing that cMDS is not particularly robust
and has several other deficiencies. General-
purpose semidefinite programming solvers
are too memory intensive for medium to large
sized applications, so we also describe a fast
subgradient-based implementation of the ro-
bust algorithm. Additionally, since ¢cMDS is
often used for dimensionality reduction, we
provide an in-depth look at reducing dimen-
sionality with embedding procedures. In par-
ticular, we show that it is NP-hard to find
optimal low-dimensional embeddings under a
variety of cost functions.

LCAYTON@CS.UCSD.EDU
DASGUPTA@QQS.UCSD.EDU

{1 EUCLIDEAN EMBEDDING
Input: A dissimilarity matrix D = (d;;).
QOutput: An embedding into the line: xy,25,... € R

. Goal: Minimize S . . |d;; — |z; — 3]l
choice for embedding seems to be Zi*-”' | “ i 3l

sional scaling (¢cMDS). Its populafWe show that this problem is NP-hard by reducing

ing relatively fast, parameter-freeffrom a variant of not-all-equal 3SAT.

and optimal for its cost function. In this work, we
look carefully at the algorithm and a ——
has some problematic features as we
we argue that the cost function is n
conceptually awkward.

The hardness result can be extended to distortion
functions of the form }, ; g(f(dij) — f(lzi — J:J—|)) We
assume that f, g are

We propose a robust alternative to c)J 1. symmetric;
clidean embedding (REE), that rete
desirable features of ¢cMDS, but av
pitfalls. We show that the global
REE cost function can be found u
nite program (SDP). Though this is
dard SDP-solvers can only manage th
gram for around 100 points. So th
used on more reasonably sized data
a subgradient-based implementation

2. monotonically increasing in the absolute values of}
their arguments;

3. Lipschitz on [0, 1] with constant Ay, that is, for
z,y € [0,1], [f(z) — f(y)| < Av|z — y[; and

4. similarly lower-bounded: for some Ay > 0, for any
z,y € (0,1, [f(z) = f(y)] Z Azlz — y| max{z, y}.

Notice that f(z),g(z) € {x,2?} satisfy these condi-
tions with Ay = 2, A;, = 1, meaning that |D — D*||
and ||D — D*||z are both hard to minimize over one-

. . ] ) . . dimensional embeddings.
DlIIleIlSlOIl‘dllty I'ed‘LlCtlUIl 15 an mmporvant P pPrCatTort
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What are some
applications of this
machinery?



Applications

Reduce algorithmic runtime
Compression
Visualize data
Interpolate

Sample
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