http://www.erflow.eu/brain-segmentation-science-case




A Confusing Distinction

For “Customer Data and Engagement:”

“Segmenting is the process of putting customers into
groups based on similarities, and clustering is the
process of finding similarities in customers so that they
can be grouped, and therefore segmented.”

http://www2.agilone.com/blog/blog/segmentation-vs-clustering



Our Objective

Divide a geometric domain
Into pleces.



Many Applications

Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering
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What is a good
segmentation?



What i1s a Good Segmentation?

Application dependent!

Not an end in itself
Unsolicited advice: Be suspicious!

http://www.cs.rug.nl/svcg/Shapes/PDE



According to Facebook

Ve @ Aaron Hertzmann
October 9, 2018 -

One bit of sloppy writing that has permeated the computer graphics and
vision literature is the use of the word "semantic." Here's why | think that
you should avoid using it, or, at least, use it very carefully.

"Semantic" is a pretentious weasel-word. The word "semantic” is used in a
way that means almost nothing, which is ironic. However, it sounds like it's
implying some sort of insight about Al or human intelligence. | think that

researchers use it when they want to indicate that there's some high-level
knowledge or context involved, but they're too lazy to be concrete about it.

Instead of using the word "semantic," | suggest thinking more concretely
about what you really mean, and saying that instead. You will probably find
that your paper is clearer. It's a bit of extra work, but clear writing takes
work.

As an example, our SIGGRAPH 2010 paper was the first paper to apply
learned "semantic labeling" to 3D surfaces. | insisted that we avoid using
the word "semantic" as much as possible. Instead, we wrote that our
method learns to label object parts, such as "hand" or "wheel", and that the
labels can be chosen by a user. Saying that we learn to apply these labels
is much clearer than saying that our labeling is "semantic" or that we label
"semantic parts", whatever that means.

Other typical uses (I am making these examples up) is to say "We let the
user group regions based on semantic concerns" or "The video can be
broken into parts based on semantics." What do these sentences add?

Doug DeCarlo first pointed this issue out to me about a decade ago. He
pointed out that "semantics" is the study of meaning, like dictionary
definitions; how the phrase "l like it" means something different from "It likes
me." Objects in images do not have meanings in the same way. A hand or
wheel does not have a meaning. He said that reading this usage of
"semantic" was like "nails on a chalkboard,” and now | feel that way too.

There's a descriptivist argument one can make: our community's language
naturally evolves over time. However, this doesn't license arbitrary misuse
of language; we shouldn't use "plus" to mean "minus". Misusing technical
terms from other fields can cause lots of problems. Doug said that using
"semantic" in this way makes you sound stupid to, say, a computational
linguist who might review your grant proposal.

Whenever | see the word "semantic,” | think that the author hasn't thought
carefully about what they mean, and is only using this pretentious word
because they think it sounds cool. Avoid being that person.

| do make one exception: for better or for worse, the term "semantic
labeling" has come to mean a specific task in vision and in graphics. So |
think it's fair to use the term in this case: this is the name of a task, and one
must use shortcuts in names. The problem is that the word "semantic” is
used all over in lots of other contexts where it means very little.

D Fredo Durand, Alec Jacobson and 41 others 22 Comments
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Many Attempts to Standardize

A Benchmark Dataset and Evaluation Methodology for

Video Object Segmentation
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A Benchmark for 3D Mesh Segmentation

Xiaobai Chen, Alcksey Golovinskiy, Thomas Funkhouser
Princeton University

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 10, OCTOBER. 2015

The Multimodal Brain Tumor Imag;
Segmentation Benchmark (BRATYS)
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Our Approach

A few Interesting
geometric methods.



Simplest Possible

mmY S e — pl?

1=1 €S,

ttttt ://upload.wikimedia.org/wikipedia/commons/d/d2/K_Means_Example_Step_4.svg

k-means clustering



Alternating Algorithm
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Voronoi Diagram

http://blog.alexbeutel.com/voronoi/v4.png
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Application to Color Space

4% 8%

http://cs.nyu.edu/~dsontag/courses/mli2/slides/lecture14.pdf



Can Apply to Features

results in a pose invariant segmentation.

“Laplace-Beltrami Eigenfunctions for Deformation Invariant
Shape Representation.”
Rustamov; SGP 2007



Dependence on Initial Guess

* Initialize K segment seeds, iterate:
* Assign faces to closest seed
* Move seed to cluster center
* Randomization: random initial seeds

" “Randomized Cuts for 3D Mesh Analysis.”
Golovinskiy and Funkhouser; SIGGRAPH Asia 2008

Bug ... or feature?



Dependence on Initial Guess
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“Randomized Cuts for 3D Mesh Analysis.”
Golovinskiy and Funkhouser; SIGGRAPH Asia 2008

Bug ... or feature?



Issue: Choice of k

J. R. Siatist. Soc. B (2001)
63, Part 2, pp. 411423

Estimating the number of clusters in a data set via
the gap statistic

Robert Tibshirani, Guenther Walther and Trevor Hastie
Stanford University, USA

[Received February 2000. Final revision November 2000]

Summary. We propose a method (the ‘gap statistic”) for estimating the number of clusters (groups)
in a set of data. The technique uses the output of any clustering algorithm (e.g. K-means or
hierarchical), comparing the change in within-cluster dispersion with that expected under an
appropriate reference null distribution. Some theory is developed for the proposal and a simulation
study shows that the gap statistic usually outperforms other methods that have been proposed in the
literature.

Keywords: Clustering; Groups; Hierarchy; K-means; Uniform distribution

1. Introduction

Cluster analysis is an important tool for ‘unsupervised’ lecarning— the problem of finding
groups in data without the help of a response variable. A major challenge in cluster analysis is
the estimation of the optimal number of ‘clusters’. Fig. 1(b) shows a typical plot of an error
measure W (the within-cluster dispersion defined below) for a clustering procedure versus the
number of clusters k employed: the error measure W, decreases monotonically as the number
of clusters k increases, but from some k& onwards the decrease flattens markedly. Statistical
folklore has it that the location ol such an ‘elbow’ indicates the appropriaie number ol
clusters. The goal of this paper 1s to provide a statistical procedure to lormalize that heuristic.

For recent studies ol the elbow phenomenon, see Sugar (1998) and Sugar et al. (1999). A
comprehensive survey of methods for estimating the number of clusters is given in Milligan
and Cooper (1985), whereas Gordon (1999) discusses the best performers. Some of these
methods are described in Scctions 5 and 6, where they are compared with our method.

In this paper we proposc the ‘gap’ method for estimating the number of clusters. It is

Arctarnod ta bha amealicabls 0 siefirallyy any clhaetertino methoad Feoae cimmlictiy the thomestieal



Semidiscrete Transport

Lo = Z&Oiéggm ﬂl(S) = fspl(x) dx

Never a reason to “leapfrog” mass!

LA




Semidiscrete Transport

https //WWWJaS'OHdaVIES com/power-diagram/



Question for Machine Learning

Semidiscrete transport makes it feasible!

Transport given sample access



Derived Question

Semidiscrete transport makes it feasible!

Wasserstein barycenter



Problem

Approximate barycenter by a discrete measure:

m
1 Z
m -

1=1

Solve for positions of the points x; assuming
only sample access to input measures.

Claici, Chien, and Solomon. "Stochastic Wasserstein Barycenters." ICML 2018.



Kantorovich Dual Problem

Flf,z1,...,Zm ZfﬁZ/ d(zi,y)? — fi) dpa(y)

weights / Power diagram regions

Alternating algorithm:

: oF 1
1. Update weights S —f dpa(y)
™m V.,

Stochastic gradient descent afz

_ - OF
2. Update points =z, fv dpa(y) - /V ydp2(y)

Fixed-point iteration 8515‘2

Lq Tq



Geometry of k-Means

Assignment step
Assign point to its closest cluster center

Update step
Average all points in a cluster

Doesn’t have to be Euclidean



Geometry of k-Means

Assignment step /

Assign point to its closest cluster center
Updatestep 72
Average all points in a cluster

In a metric space



What does it mean to
average pointsin a
metric space?



Frechet Mean

“Frechet variance”

On the board:
Generalizes Euclidean notation of *mean.”



Example from Last Lecture

% “Fast Computation of Wasserstein Barycenters.” W2

Cuturi and Doucet, ICML 2014




Extension to Regions on a Surface

Lloyd’s Algorithm

Alternate between
1. Fitting primitive
parameters
2. Assign points to
patches

“Variational Shape Approximation.”
Cohen-Steiner, Alliez, and Desbrun; SIGGRAPH 2004



k-Medioids

Assignment step
Assign point to its closest cluster center

Update step

Replace cluster center with most central
data point

When Frechet means won’t work



Example Task

https://ps.is.tuebingen.mpg.de/research_projects/3d-mesh-registration

Clustering in a shape collection



Gromov-Hausdorff Distance

Distance between metric spaces X, Y

dcu(X,Y) ¢}€an$iu£X ldx (z,2") — dy (¢(x), d(2"))]

h —

o 1,




Gromov-Hausdorff Clustering

Eurographics Symposium on Point-Based Graphies (2007)
M. Botsch, R. Pajarola (Editors)

On the use of Gromov-Hausdorff Distances for Shape
Comparison

Facundo Mémoli'’

IDepartment of Mathematics, Stanford University, California, USA.

Abstract
It is the purpose of this paper to propose and discuss certain modificafions of the ideas cond
Hausdor[f distances in order to tackle the problems of shape matching and comparison. Thes
render these distances more amenable to practical computations without sacrificing theoretical
second goal of this paper 15 to establish links to several other practical methods proposed in
comparing/matching shapes in precise terms. Connections with the Quadratic Assignment Pri
also established, and computational examples are presented.
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Agglomerative Clustering

OROROROXO

Y

https://upload.wikimedia.org/wikipedia/commons/a/ad/Hierarchical_clustering_simple_diagram.svg

Merge from the bottom up




Agglomerative Clustering in Geometry

“Hierarchical mesh segmentation based on fitting primitives.”
Attene, Falcidieno, and Spagnuolo; The Visual Computer 2006

Fit a primitive and measure error



Related Technique

Reglion Growling Algorithm
Initialize a priority queue ( of elements
Loop until all elements are clustered
Choose a seed element and insert to (
Create a cluster C from seed
Loop until O is empty
Get the next element s from (Q
If s can be clustered into C
Cluster s into C
Insert s neighbors to (¢
Merge small clusters into neighboring ones

“Segmentation and Shape Extraction of 3D Boundary Meshes.”
Shamir; EG STAR 2006.

Region growing algorithm




Typical Features

Figure 4: Example of mesh attributes used for partitioning. Left: minimum curvature, middel: average geodesic distance, right:
shape diameter function.

“Segmentation and Shape Extraction of 3D Boundary Meshes.”
Shamir; EG STAR 2006.




Additional Desirable Properties

* Cardinality

— Not too small and not too large or a given number (of segment
or elements)

— Overall balanced partition

* Geometry
— Size: area, diameter, radius

— Convexity, Roundness

— Boundary smoothness

* Topology

— Connectivity (single component)

— Disk topology
— a given number (of segment or elements)

“Segmentation and Shape Extraction of 3D Boundary Meshes.”

Shamir; EG STAR 2006.
via Q. Huang, Stanford CS 468, 2012



Issue So Far

No notion of optimality.

No use of
local relationships.



Global Optimality Unlikely

The Planar k-means Problem is NP-hard™

Meena Mahajan®, Prajakta Nimbhorkar®, Kasturi Varadarajan®

“The Institule of Mathemalical Sciences, Chennai 600 113, India.
" The University of lowa, lowa City, TA 52242-1419 USA.

Abstract

In the k-means problem, we are given a finite set S of points in R™, and integer
k = 1, and we want to find k points (centers) so as to minimize the sum of the
square of the Euclidean distance of each point in S to its nearest center. We
show that this well-known problem is NP-hard even for instances in the plane,
answering an open question posed by Dasgupta [7].

1. Introduction

In the k-means problem, we are given a finite set S of points in ®™, and
integer k > 1, and we want to find k points (centers) so as to minimize the sum
of the square of the Euclidean distance of each point in S to its nearest center.
This is a well-known and popular clustering problem that has also received a
lot of attention in the algorithms community.

Lloyd [17] proposed a very simple and elegant local search algorithm that
computes a certain local (and not necessarily global) optimum for this problem.



Spectral Clustering

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture16.pdf

K-means Spectral clustering

. . twocircles, 2 clusters
two circles, 2 clusters (K-means) '
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Assembles local relationships



Normalized Cuts for Two Cuts

Symmetric similarity matrix W

Cut score C(A, B) := > ica wj;
jEB

Volume V(A) := ZieA Zj Wi

Normalized cut score

N(A,B):=C(A,B)(V(A) ' +V(B)™ 1
“Normalized Cuts and Image Segmentation.”
Shi and Malik; PAMI 2000



Normalized Cuts

B ._{ V(A ifieA

-V(B)™* ifieB

On the board:
w' Lo =Y wy(V(A)™ +V(B)™)?
€A
jeB
' Dr = V(A)_1 + V(B)_1
x' Lz
N4, B) = xr ! Dx

' D1 =0



Eigenvalue Problem

A
min

r x!' Dx
s.t. ' D1 =0

On the board:
Relaxation of normalized cuts

Eigenvalue problem




Example on kNN Graph

6 T T T T 6 T T
5k o | 5L & i
R{]
(s o] 't
,!
ar o © o 7 ar I\\h o 1
: AUy
3 P ° ©0° 3 e {"*'
- — - - ‘ -
(o] [a] '__-' \lf’ \\l
[+] Q o 4 ’i‘---}
2 2 .f': ‘:\ "
o] o ¥
o -
o ° ° - N ¥
1 oo 1 - . %_
o o o © Ss. L L
o o o %o = e-*t
0 0 "M 1
[ 1! I“
o 1,0, 1
-1 o o° -1 ~w. A
o e
_2 L 1 1 1 _2 L ]
-3 -2 -1 0 1 2 3 4 5 —4 -2 0 2 4 6

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture16.pdf



For > 2 Clusters

Recursive bi-partitioning (Hagen et al. 1991)
Analogy: Agglomerative clustering
Potentially slow/unstable

Cluster multiple eigenvectors
Analogy: k-means after dimension reduction
More popular appraoch

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture16.pdf



Second-Smallest Eigenvector

oy

.y

Fiedler vector (“algebraic connectivity”)



Back to the Laplacian

Computers & Graphics 33 (2009) 381-390

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section
Discrete Laplace-Beltrami operators for shape analysis and segmentation

Martin Reuter*", Silvia Biasotti ©*, Daniela Giorgi %, Giuseppe Patané®, Michela Spagnuolo®

* Mossachusetis Institute of Technology, Combridge, MA, LI5A
®AA. Martinos Center for Blomedical Imaging, Massachusetts General Hospital. Harvard Medical School, Boston, MA, USA
v Istituto di Matematica Applicata e Tecnologie Informatiche - Consiglio Nozionale delle Ricerche, Cenowa, Iraly

ARTICLE INFO ABSTRACT

Article history: Shape analysis plays a pivotal role in a large number of applications, ranging from traditional geometry

Received 12 December 2008
Received in revised form

2 March 2009

Accepted 3 March 2009

Keywords:
Laplace- Beltrami operatog

processing to more recent 3D content management. In this scenario, spectral methods are extremely
promising as they provide a natural library of tools for shape analysis, intrinsically defined by the shape

Figure 12:

Derived

segmentations

itself. In particular, the eigenfunctions of the Laplace-Beltrami operator yield a set of real-valued
functions that provide interesting insights in the structure and morphology of the shape. In this paper.
we first analyze different discretizations of the Laplace-Beltrami operator {geometric Laplacians, linear
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Figure 7: Segmentations induced by the nodal domains of some eigenfunctions selected among the first 15 eigenfunctions (in order of increasing eigenvalues). Blue|
regions correspond to regions where the eigenfunctions have negative values, while red regions correspond to positive values.
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Nodal domain
[nohd-| doh-meyn]:

A connected region where
a Laplacian eigenfunction

has constant sign E




Courant’s Theorem

The k-th Laplacian eigenfunction has
at most k nodal domains.

https://i.stack.imgur.com/JJIFP.png



Image courtesy Q. Huang

Inconsistent!



Is segmentation a
purely geometric
problem?



Obvious Counterexample

http://www.erflow.eu/brain-segmentation-science-case

Shape provides only a clue




Supervised Learning
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“Learning 3D Mesh Segmentation and Labeling.”
Kalogerakis, Hertzmann, and Singh; SIGGRAPH 2010

Use example data to help
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Before Someone Asks

3D Shape Segmentation with Projective Convolutional Networks

Evangelos Kalogerakis' Melinos Averkiou®

'University of Massachusetts Amherst

Abstract

This paper introduces a deep architeciure for segmenting
3D objects into their labeled semantic parts. Our architec-
ture combines image-based Fully Convolutional Networks
(FCNs) and surface-based Conditional Random Fields
(CRFs) to vield coherent segmentations of 3D shapes. The
image-based FCNs are used for efficient view-based rea-
soning about 3D object paris. Through a special projec-
tion layer, FCN outputs are effectively aggregated across
multiple views and scales, then are projected onto the
3D object surfaces. Finally, a surface-based CRF com-
bines the projected outputs with geometric consistency
cues to yield coherent segmentations. The whole archi-
tecture (miulti-view FCNs and CRF) is trained end-to-end.
Our approach significantly outperforms the existing state-
of-the-art methods in the currently largest segmentation
benchmark (ShapeNet). Finally, we demonstrate promis-
ing segmentation results on noisy 3D shapes acquired from
consumer-grade depth cameras.

1. Introduction

In recent years there has been an explosion of 3D shape
data on the web. In addition to the increasing number of
community-curated CAD models, depth sensors deployed
on a wide range of platforms are able to acquire 3D ge-

Ammatris ranroecaniatiane af abdante 1 tha Foarmm A sl onrmas

Subhransu Maji' Siddhartha Chaudhuri®

“University of Cyprus  *IIT Bombay

The shape segmentation task, while fundamental, is chal-
lenging because of the variety and ambiguity of shape parts
that must be assigned the same semantic label; because ac-
curately detecting boundaries between parts can involve ex-
tremely subtle cues; because local and global features must
be jointly examined; and because the analysis must be ro-
bust to noise and undersampling.

We propose a deep architecture for segmenting and label-
ing 3D shapes that simply and effectively addresses these
challenges, and significantly outperforms prior methods.
The key insights of our technique are to repurpose image-
based deep networks for view-based reasoning, and aggre-
gate their outputs onto the surface representation of the
shape in a geometrically consistent manner. We make no
geometric or topological assumptions about the shape, nor
exploit any hand-tuned geometric descriptors.

Our view-based approach is motivated by the success of
deep networks on image segmentation tasks. Using ren-
dered shapes lets us initialize our network with layers that
have been trained on large image datasets, allowing better
generalization. Since images depict shapes of pholographe

objects (along with texture), we expect such pre-tr:
ers to already encode some information about parts
relationships. Recent work on view-based 3D sh
sification [13, 35] and RGB-D recognition [13,

| have
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Unsupervised Learning

single-shape segmentation joint shape segmentation

“Joint Shape Segmentation with Linear Programming.”
Huang, Koltun, and Guibas; SIGGRAPH Asia 2011



http://www.erflow.eu/brain-segmentation-science-case




