Applications of the Laplacian

RPEECS




Rough Intuition: Spectral Geometry

http://pngimg.com/upload/hammer_PNG3886.png

You can learn a lot
about a shape by
hitting it (lightly)
with a hammer!



Rough Definition

What can you learn about its shape from
vibration frequencies and

oscillation patterns?

Af =\f



THE COTANGENT LAPLACIAN
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Useful properties of the Laplacian
Applications in graphics/shape analysis
Applications in machine learning
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One Object, Many Interpretations

1 if v ~w

Lyw=A—D =< —degree(v) ifv=w
0 otherwise

Labeled graph Degree matrix Adjacency matrix Laplacian matrix

/200000\(010010\(2—100—1 U\

e 030000 101010 -1 3 -1 0 -1 0

oeo 0 02 00 0 01 010 0 -1 2 -1 0 0

.‘ 0 00 3 0O 0 01 011 0 0 -1 3 -1 -1

ee 0000 30 11010 -1 -1 0 -1 3 0

\0 0 0 0 01//\ooo100/ \'o 0o o0 -1 0 1/

https://en.wikipedia.org/wiki/Laplacian_matrix

Deviation from neighbors



One Object, Many Interpretations

Decreasing E

Blf] = /S V|2 dA = /S F(2)Af(z) dA(2)

Images made by E. Vouga

Dirichlet energy: Measures smoothness



One Object, Many Interpretations

http://alice.loria.fr/publications/papers/2008/ManifoldHarmonics//photo/dragon_mhb.png

Vibration modes



Key Observation (in discrete case)
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After (More) Trigonometry

[ — D e s when v = w
L) u@ e, -2 - 2)
va:_< v v o when v ~ w
8 +u(T) M, — b7 — £37)
0 otherwise

Image/formula in “Functional Characterization of Instrinsic and Extrinsic Geometry,” TOG 2017 (Corman et al.)

Laplacian only depends on edge lengths



Isometry

[ahy-som-i-tree]:
Bending without stretching.

Y




Lots of Interpretations




Intrinsic Techniques

http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/

Isometry invariant




Isometry Invariance: Hope

http://www.flickr.com/photos/melvinvoskuijl/galleries/721576242361684 59



Isometry Invariance: Reality

“ngldlty"

Few shapes can deform isometrically



Isometry Invariance: Reality

Few shapes can deform isometrically



Useful Fact

Graphical Models 74 (2012) 121-129
Contents lists available at SciVerse ScienceDirect e
Graphical Models

Graphical Models

Journal homepage: www_glsevier.com/locate/gmod

Discrete heat kernel determines discrete Riemannian metric

Wei Zeng ™*, Ren Guo®, Feng Luo€, Xianfeng Gu?

* Department of Compufer Science, Stony Brook Universily, Stony Brook, NY 11794, LUSA
® Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA
* Department of Mathematics, Rutgers University, Piscataway, NJ 08854, U154

ARTICLE INFO ABSTRACT
Article history: The Laplace-Beltrami operator of a smooth Riemannian manifold is determined by the
Received 5 March 2012 Riemannian metric, Conversely, the heat kernel constructed from the eigenvalues and

Accepied 28 March 2012

) : eigenfunctions of the Laplace-Beltrami operator determines the Riemannian metric, This
Available online 12 April 2012

waork proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the dis
crete heat kernel and the discrete Riemannian metric (unigque up to a scaling) are mutually
determined by each other. Given a Euclidean polyhedral surface, its Riemannian metric is
D R o et i ge g, cuiing ol et on M s The apioe
Laplace—Beltrami operator N . > '

Legendre duality principhe defined as the sum of the cotangent of angles against the edge. We prove that the edge

Keywords:

Discrete heat kernel



But calculations
on a volume are
expensive!

(changing!)

Figure 1: Deformations of a glove (left) and a solid
hand (right) are an illustration of the difference be-
tween boundary and volume isometries.

Image from: Raviv et al. “Volumetric Heat Kernel Signatures.” 3DOR 2010.

Not the same.



Why Study the Laplacian?

Encodes intrinsic geometry

Edge lengths on triangle mesh, Riemannian metric on manifold

Multi-scale

Filter based on frequency

Geometry through linear algebra

Linear/eigenvalue problems, sparse positive definite matrices

Connection to physics

Heat equation, wave equation, vibration, ...
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Example Task: Shape Descriptors

Pointwise quantity



Descriptor Tasks

Characterize local geometry
Feature/anomaly detection

Describe point’s role on surface
Symmetry detection, correspondence



Descriptors We've Seen Before

1 1
K = R1K9 = det I H = 5(1‘{1 + KQ) = §tI‘I[

Gaussian and mean curvature



Desirable Properties

Distinguishing

Provides useful information about a point

Stable

Numerically and geometrically

Intrinsic times

- irable!
No dependence on embedding vrdes"™"



Intrinsic Descriptors

Invariant under

Rigid motion

Bending without stretching



Intrinsic Descriptor

Theorema Egregium

(“Totally Awesome
Theorem”):

Gaussian curvature
Is Intrinsic.

K = K1Rko = det I

Gaussian curvature



End of the Story?

K = K1Kk9

Second derivative quantity



End of the Story?

Non-unique



Desirable Properties

Incorporates neighborhood
information in an intrinsic fashion

Stable under small deformation



Connection to Physics

ou _
ot

Heat equation

—Au



Intrinsic Observation

Heat diffusion patterns are not
affected if you bend a surface.



Global Point Signature

1 1 1

GPS(p) := (—\/—A—lqbl(p),——cbz(p),——cbs(p),'--)

“Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation”
Rustamov, SGP 2007



Global Point Signature

2 3 A 5 6 7 8 9 10

GPS(p) := (—\/%—1051(19),—\/%—2052(19)3—\/%3%(19),---)

If surface does not self-intersect, neither
does the GPS embedding.

Proof: Laplacian eigenfunctions span L? (2); if GPS(p)=GPS(q), then all functions
on X would be equal at p and g.



Global Point Signature

_ S A - -

| » - . - .

| T as ’..‘ -

2 3 4 5 6 7 8 9 10
GPS(p) i= (~—p=1(0). = a(p), ~—=dalp). -

GPS is isometry-invariant.

Proof: Comes from the Laplacian.



Drawbacks of GPS

Assumes unique A’s

Potential for eigenfunction
“switching”

Nonlocal feature



PDE Applications of the Laplacian

http://graphics.stanford.edu/courses/cs4 68-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation



PDE Applications of the Laplacian

Wave equation



PDE Applications of the Laplacian

TN — = —1Au
( 2} o

Image courtesy G. Peyré

Wave equatlon



Solutions in the LB Basis

ou

— = —Au
ot
Heat equation

O

U = Z ane Mo, (x)

n=0

an:/Euo(a:).qﬁn(a:) dA



Heat Kernel Signature (HKS)

O

ki(z,2) =) e Mo (x)’

n=0
Continuous function of t € [0, o)

How much heat
diffuses from x to
itself in time t?



Heat Kernel Signature (HKS)

“A concise and provably informative multi-scale signature based on heat diffusion”
Sun, Ovsjanikov, and Guibas; SGP 2009



Heat Kernel Signature (HKS)

O

ki(z,2) =) e Mo (x)’

n=>0
Good properties:

Isometry-invariant

Multiscale

Not subject to switching

Easy to compute

Related to curvature at small scales



Heat Kernel Signature (HKS)

O

ki(z,2) =) e Mo (x)’

n=0

Bad properties:
Issues remain with repeated

eigenvalues
Theoretical guarantees require
(near-)isometry



Wave Kernel Signature (WKS)

WKS(FE,z) = lim —/ Ve (x, )| dt = Z¢n > fe(\

T T—>oo T

Initial energy
distribution

Average probability over
time that particle is at x.

“The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis”
Aubry, Schlickewei, and Cremers; ICCV Workshops 2012



Wave Kernel Signature (WKS)

WKS(FE,z) = lim —/ Ve (x, )| dt = Z¢n > fe(\

T—>oo T




Wave Kernel Signature (WKS)

WKS(FE,z) = lim —/ Ve (x, )| dt = Z¢n *fe(An)?

T—>oo T

Good properties:
[Similar to HKS]
Localized in frequency
Stable under some non-isometric
deformation
Some multi-scale properties



Wave Kernel Signature (WKS)

WKS(FE,z) = lim —/ Ve (x, )| dt = Z¢n > fe(\

T — 00 T

Bad properties:
[Similar to HKS]

Can filter out large-scale features



Many Others

Lots of spectral descriptors in
terms of Laplacian
eigenstructure.



Combination with Machine Learning

p(x) = f(\)dr()
k

Learn f rather than defining it

Fig. 3. Correspondences computed on TOSCA shapes using the spectral
matching algorithm [30]. Shown are the matches with geodesic distance distortion
below 10 percent of the shape diameter, from left to right: HKS (34 matches), WKS
(30 matches), and trained descriptor (54 matches).

Learning Spectral Descriptors for Deformable Shape Correspondence
Litman and Bronstein; PAMI 2014



Application: Feature Extraction

Maxima of k,(x,x) over x for large t.

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion
Sun, Ovsjanikov, and Guibas; SGP 2009

Feature points



Preview: Correspondence

http://graphics.stanford.edu/projects/lgl/papersfommg-opimhk-10/ommg-opimhk-10.pdf
http://www.cs.princeton.edu/~funk/sig11.pdf
http://gfx.cs.princeton.edu/pubs/Lipman_2009_MVF/mobius.pdf



Descriptor Matching

Simply match closest points In
descriptor space.
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Heat Kernel Map

3
t

.= kt(pv ZIZ')

How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010



Heat Kernel Map
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HKM,(z,t) := k¢(p, x)

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel /f/V/V

Ovsjanikov et al. 2010




Self-Map: Symmetry

Intrinsic symmetries
become extrinsic in
GPS space!

Global Intrinsic Symmetries of Shapes
Ovsjanikov, Sun, and Guibas 2008

“Discrete Intrinsic” symmetries



All Over the Place

Laplacians appear everywhere
In shape analysis and
geometry processing.



Biharmonic Distances

“Biharmonic distance”
Lipman, Rustamov & Funkhouser, 2010



Geodesic Distances

“Geodesics in heat”
Crane, Weischedel, and Wardetzky; TOG 2013



Alternative to Eikonal Equation

Algorithm 1 The Heat Method

I. Integrate the heat flow ©« = Aw for time ¢.
[1. Evaluate the vector field X = —Vu/|Vul.
III. Solve the Poisson equation A¢ = V - X.

Crane, Weischedel, and Wardetzky. “Geodesics in Heat.” TOG, 2013.



Implicit Fairing: Mean Curvature Flow

“Implicit fairing of irreqgular meshes using diffusion and curvature flow”
Desbrun et al., 1999



Useful Technique

0
8—{ = —Af (heat equation)
0 f . L.
— M Frie L f{ after discretization in space
— M fT; Jo = L fr after time discretization
1

Choice: Evaluate attimeT

Unconditionally stable, but not necessarily accurate for large T!

Implicit time stepping



Parameterization: Harmonic Map

(a) Original mesh tile (5) Tarmonic embedding
Recall: .
Mean value principle

“Multiresolution analysis of arbitrary meshes”
Eck et al., 1995 (and many others!)



Others

Shape retrieval from

Laplacian eigenvalues
“Shape DNA" [Reuter et al., 2006]
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Quadrangulation

Nodal domains [Dong et al., 2006]

Surface deformation

“As-rigid-as-possible” [Sorkine & Alexa, 2007]
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Semi-Supervised Learning

“Semi-supervised learning using Gaussian fields and harmonic functions”
Zhu, Ghahramani, & Lafferty 2003



Semi-Supervised Technique

Given: £ labeled points (x1,¥1),. .., (xe,ye);y; € {0,1}
u unlabeled points xpi1,..., Tl < u

min = 3w (£) = £)°

s.t. f(k) fixed Vk < /

Dirichlet energy - Linear system of equations (Poisson) 4 -2 0 2 4

© =N W s oo

Lo
w o =



Related Method

Step 1:
Build k-NN graph

Step 2:
Compute p smallest Laplacian eigenvectors

Step 3:
Solve semi-supervised problem in subspace

“Using Manifold Structure for Partially Labelled Classification”
Belkin and Niyogi; NIPS 2002



Buyer Beware: lll-Posed in Limit?

Semi-Supervised Learning with the Graph Laplacian:
The Limit of Infinite Unlabelled Data

Higher-order

Boaz Nadler Nathan Srebro
Dept. of Computer Science and Applied Mathematics Toyota Technological Institute
Weizmann Institute of Science Chicago, IL 60637 o p e rato s
Rehovot, Israel 76100 nati@uchicago.edu

boaz.nadler@weizmann.ac.1i1l

Common Misconception

Xueyuan Zhou

Dept. of Computer Science min E|[f] s.t. f(p) = const.

University of Chicago ;
Chicago, IL 60637

zhouxy@cs.uchicago.edu

Abstract

Point constraints are ill-advised

-

We study the behavior of the popular Laplacian Regularization method for Semi-
Supervised Learning at the regime of a fixed number of labeled points but a large



Manifold Reqgularization

¢
1
Regularized learning: argm n Z flas),yi) + 0 f11°

1

Loss functlon Regularizer

Dmchlet energy

17112 = / )P e~ FTLS

“Manifold Regularization:

A Geometric Framework for Learning from Labeled and Unlabeled Examples”
Belkin, Niyogi, and Sindhwani; JMLR 2006



Examples of Manifold Regularization

Laplacian regularized least squares (LapRLS)

2

arg min — Z —y;)° + + Other

min - v)? + 17113 i

LapIaC|an support vector machine (LapSVM)

0
1
argmin — » max(0, 1 — y; f(z:)) + v fI|7 + Other[f]
feH L —
. ifold Regularization” ' i | i i
i o s ¢ ¢ Wy




Diffusion Maps

Embedding from first k eigenvalues/vectors:

Uy () == (A1 (2), Ag¥a (), - . ., A ()

Roughly:
|P;(x) — W, (y)| is probability that x, y diffuse to the same point in time t.
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“Diffusion Maps”

Coifman and Lafon; Applied and Computational Harmonic Analysis, 2006

Image from http://users.math.yale.edu/users/gw289/CpSc-445-545/Slides/CPSC45%20-%20Topic%2010%20-%20Diffusion%20Maps.pdf (nice slides!)



http://users.math.yale.edu/users/gw289/CpSc-445-545/Slides/CPSC445 - Topic 10 - Diffusion Maps.pdf

Applications of the Laplacian
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