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Announcements

Nanoquiz on Thursday
It will be easy!

Yes, this course is a TQE!



Homework 1 Posted

(demo in browser)



Course Project

Instructions on course website

Individual or groups of two
Implement and extend a relevant technique

Milestones:
Proposal (500 words)
Checkpoint (<2 pages)
Writeup (6-10 pages)
Presentation (8-10 minutes)




</announcements>
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Motivation

Numerical problems abound

In modern geometry applications.

Quick summary!
Mostly for common ground: You may already know this material.
First half is important; remainder summarizes interesting recent tools.



Client

Which optimization tool is relevant?

Designer

Can I design an algorithm for this problem?



Our Bias

Patterns, algorithms, & examples
common in geometry.

~ =
Numerical analysis is a huge field.
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Vector Spaces and Linear Operators

LT+ y] = L|Z]+ Ly
Llct| = cL|T]



Abstract Example

0™ (R)
LIf) = /e

Eigenvectors?




In Finite Dimensions

A x
| N

matrix vector

r— Axr
R/_/

linear operator



Linear System of Equations

A 71 =10b

Simple “inverse problem”




Common Strategies

Gaussian elimination
O(n3) time to solve Ax=b or to invert

But: Inversion is unstable and slower!

Never ever compute At if you can avoid it.



Interesting Perspective
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Simple Example

d2
d—;;:g,f(o)zf(l)z()
—2 1
1 -2 1 J1 g1

1 -2 1 J2 g2

=2 1 Jn 9n






Linear Solver Considerations

Never construct A1 explicitly
(if you can avoid it)

Added structure helps
Sparsity, symmetry, positive definiteness,
bandedness

inv(A)*b < (A’*A)\ (A’xb) < A\Db



Two Classes of Solvers

Direct (explicit matrix)
Dense: Gaussian elimination/LU, QR for least-squares
Sparse: Reordering (SuiteSparse, Eigen)

Iterative (apply matrix repeatedly)
Positive definite: Conjugate gradients
Symmetric: MINRES, GMRES
Generic: LSQR



Very Common: Sparsity

Induced by the connectivity of
e the triangle mesh.

¥ ek
1) T A

el

Iteration of CG has local effect
= Precondition!




For 6.838

No need to implement a linear solver

If a matrix is sparse, your code should
store It as a sparse matrix!

@ Sparse matrices (scipy.spa.. X +

€ Oa sdpy.org Search w B8 ¥ & O 0

Scpyors 1 Docs 1 Sopyv0-12.1 Reerence Guise J ncex | mocwies | moovies ] new 1 previous |

Sparse matrices (scipy.sparse) Table Of Contents

+ Sparse matrices

SciPy 2-0 sparse matrix package for numeric data (scipy.sparse)
o Contents

Contents = Sparse
Sparse matrix classes lasees

= Functions

» Submodules

Ber matrielaroll ehare divee conv Blockzizeld Block Snarce Row matriys
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Optimization Terminology

mina}ER” f(ilf)
s.t.g(x) =0
h(xz) > 0

Objective (“Energy Function”)



Optimization Terminology

mina}ER” f(ZIZ’)
s.t.g(x) =0
h(xz) > 0

Equality Constraints



Optimization Terminology

mina}ER” f(ZIZ’)
s.t.g(x) =0
h(z) > 0

Inequality Constraints



Notions from Calculus

Gradient



Notions from Calculus

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Jacobian



Notions from Calculus

http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif

Hessian



Optimization to Root-Finding

Vfi(x)=0

(unconstrained)

Saddle point Local max

Local min

Critical point



Encapsulates Many Problems

minx ER” ( )

s.t.g(z) =0
h(z) >0

Ax =b < f(z) = ||Ax — b||2
Ar=Ar < f(x)=|Az|]2, g(x)=||z|]2—1

Roots of g(x) < f(x) =0



How effective are
generic
optimization tools?



How effective are
generic
optimization tools?



Try the
simplest solver first.



Quadratic with Linear Equality

min,, %a?TAa: —b'x+c

s.t. Mx =

(assume A is symmetric and positive definite)

(a0 )(3)=(0)



Useful Document

The Matrix Cookbook

Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274 .pdf



Special Case: Least-Squares

1
min 5 | Az — b||5

1
— min §:L'TATA.:U —b' Az + ||b||3

— A" Az =A"b

Normal equations
(better solvers for this case!)



Example: Mesh Embedding

Combinatorial

/|
P2\

AR
/
AR

al

i N\
oAy
IND
«r,

Conformal

G. Peyré, mesh processing course slides



Linear Solve for Embedding

minxl,,,,,x|v| Z(’L,j)GE w’LJHZC’L _ ajJH%
s.t. x, fixed Yv € V}

w;; = 1: Tutte embedding
w;; from mesh: Harmonic embedding

Assumption: w symmetric.



Returning to Parameterization

minwl,m,mw Z(’L,j)EE w’LJHZC’L — ':CJH%
s.t. x, fixed Yv € V}

What if
Vo = 17




Nontriviality Constraint

S.t. ZEHQ — 1]

{ ming || Az|2 } — A Ax = \x

Prevents trivial solution x = 0.

Extract the smallest eigenvalue.



Back to Parameterization

Mullen et al. “Spectral Conformal Parameterization.” SGP 2008.

m&n w' Lou  <——  L.u = \Bu

’U,T B e=(0<+—Easyfix
u' Bu=1




Basic Idea of Eigenalgorithms

AU = C1 A’F1 + 0+ C-n_.A'f-n,

— i\ T+ -+ e\, since AX; = \;T;

)\Q )\-'n
— )\1 (Clxl + )\_02132 + - )\_C-n,q:-'n,
1 1
2 2
2—} — )\2 — Aﬂ» —
AU = )\ C1’Il-|-<)\—) CoX2 T -|-<)\—) Crndn
1 1



Combining Tools So Far

Roughly:
1.Extract Laplace-Beltrami eigenfunctions:

Lo; = N\iAg;
2.Find mapping matrix (linear solve!):

min [[AFy — Fllfy, + o ADg — AA|lz,
ACRnXn

s N .
14 16 18 20

Ovsjanikov et al. “"Functional Maps.” SIGGRAPH 2012.



Rough Plan
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Unconstrained optimization

Equality-constrained
optimization

Variational problems



Unconstrained Optimization

min f(x
xr |

Unstructured.



Basic Algorithms

L+l =— Tk — Oéka(.CUk)
Gradient descent



Basic Algorithms

1
Ao =0\ = 5(1+ \/1 F AN ),y =

Ys+1 = Ls 6vf($8)

Ls+1 = (1 — 78)98%—1 T VsVYs

Accelerated gradient descent




Basic Algorithms

Tiy1 = o — [Hf(x)] 7 V(xg)

2
®
3

Newton’s Method




Basic Algorithms

L+l — Lk — M1;1Vf(£€k)

(Often sparse) approximation from previous
samples and gradients
Inverse in closed form!

Quasi-Newton: BFGS and friends



Example: Shape Interpolation

Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights 0, 0.25, 0.5, 0.75, 1.0.

Frohlich and Botsch. “Example-Driven Deformations Based on Discrete Shells.” CGF 2011.



Interpolation Pipeline

Roughly:
1. Linearly interpolate edge lengths and dihedral
angles.

0 = (1 — )0 + o2
p* = (1 —1)6° + 6!

2. Nonlinear optimization for vertex positions.

min A we(le(z) — £5)

---’




Matlab: £fminunc orminfunc
C++: 1ibLBFGS, d1ib, others

Typically provide functions for function and
gradient (and optionally, Hessian).

Try several!



Some Tricks

Lots of small elements:
Lots of zeros:

Uniform norm:

Low rank:

Mostly zero columns:

Smooth:
Piecewise constant:
777 BEarly stopping

Regularization

u[\D
|
S, .
Q
(]
S
S[\'J




Some Tricks

Original Blurred

Multiscale/graduated optimization



Rough Plan

Linear problems
Unconstrained optimization

Equality-constrained
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Variational problems



Lagrange Multipliers: Idea

9@‘)% 111, f([L‘)
s.t. g(x) =0




Lagrange Multipliers: Idea

min, f(x)
TN s.t. g(x) =0

- Decrease f: —Vf
- Violate constraint: £Vg



Lagrange Multipliers: Idea

min, f(x)
s.t. g(x) =0




Example: Symmetric Eigenvectors

flz)=z' Az = Vf(z) =24z
g(x) = ||zl = Vg(z) =2z
— Ax = A\x



Use of Lagrange Multipliers

Turns constrained optimization into

unconstrained root-finding.
Vi(z) = AVg(x)
g(z) =0



Many Options

Reparameterization

Eliminate constraints to reduce to unconstrained case

Newton’s method

Approximation: quadratic function with linear constraint

Penalty method

Augment objective with barrier term, e.g. f(x) + p|g(x)]



Trust Region Methods

ming., §5ZCTH5£C +w' T
s.t. |05 < A

Example: Levenberg-Marquardt



Example: Polycube Maps

miny ) ;-

S.t. Zb@- A(b@, X) — Zb- .A(b/,,, X())

Note: Final method includes more terms!




Convex Optimization Tools

versus

Sometines work faﬁ HOH—~CONVEN /ﬁﬂi/m&. .

Try lightweight options



Iteratively Reweighted Least Squares

: T L mingy, >, yi( ' a; +b;)°
m{gnz ¢z aitbi) H{ sty = d(xa;+b;) (@ a; + b;)7?

1 2
< U — M
min E HZC—Z%HQ — {:13 111111, Zz_yibnm p’LH2
C yi < llz—pills

Repeatedly solve linear systems



Alternating Projection

Po min d(pap())
® p

st.peCiNCyN---NCg




Iterative Shrinkage-Thresholding

Tip1 = 2 — NV ()

_ 1
< 41 = argmin [f(a:t) + Vi(z) (x—xp) + %H:]; — xtH%]

o1
< Zi41 = argmin o |z — (x¢ — 0V fz4))]5

To minimize f(z)+ g(x):
Tyl = arg ming {g(m) + % |z — (xt — ?’]Vf(a:t))Hg}
FISTA combines with Nostoror descent!

https://blogs.princeton.eduf/imabandit/2013/04/11/orf523-ista-and-fista/



Augmented Lagrangians

Add constraint to objective



Alternating Direction

Method of Multipliers (ADMM)

min, . f(z)+ g(2)
s.t. Ax + Bz =c

Ay(z, 23 0) = f(z) +9(2) + )\T(A:U—I—Bz —c)+ gHA:c—I—Bz — CH%
r < argmin A, (z, z, \)
X
z <—argmin A, (z, 2, )
V.

A4 A+ p(Ax + Bz — ¢)

https://web.stanford .edu/~boyd/papers /pdfifadmm_slides.pdf



The Art of ADMM "“Splitting”

s.t. MJ=0b> st MJ = 0

' - . PINT. — T.112) )
{minJ Z@ ||J’LH2}4> miny y Zz_(HJZHQ+ 2”‘]’6 Jz”z)
J=J

e 72&-? some /0/%0 t/&&,/
v ﬁa/n//e af /,2/‘0}6/;/(61/ ! aZ;/aﬁ/tém.

Solomon et al. “Earth Mover’s Distances on Discrete Surfaces.” SIGGRAPH 2014.

Want two easy subproblems



Frank-Wolfe

To minimize f(z) s.t. x € D:

: T
argming s' V f(xg)
A { s.t. s&€D

2
k -+ 2
Th41 < Tk T ’Y(Sk — ZUk)

v <

https://en.wikipedia.org/wiki/Frank%E2%80%93Wolfe_algorithm

Linearize objective, preserve constraints
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Variational Calculus: Big Idea

Sometimes your unknowns
are not numbers!

Can we use calculus to optimize anyway?



min / [i(z) — Vf(2)|3dz



Gateaux Derivative

d
dF [u; ] := o Flu+ hp]|n=0
Vanishes for alfl\tp at a critical point!

Analog of derivative at v in ¢ direction
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