Image from “Entropic Metric Alignment for Correspondence Problems.” Solomon et al., SIGGRAPH 2016.




Correspondence Problems

Which points on one object
correspond to points on another?



How is this different
from registration?



Typical Distinction

Seek shared structure
instead of alignment




Applications
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Applications
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Boyer, Costeur, and Lipman 2012

Paleontology



Desirable Properties

Given two (or more) shapes
Find a map f, that is:

Automatic
Fast to compute
Bijective
(if we expect global correspondence)

Low-distortion

Adapted from slides by Q. Huang. V. Kim



Example: Consistent Remes
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Adapted from slides by Q. Huang. V. Kim



Example: Mesh Embedding
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G. Peyré, mesh processing course slides



Linear Solve for Embedding

minxl,,,,,x|v| Z(’L,j)GE w’LJHZC’L _ ajJH%
s.t. x, fixed Yv € V}

w;; = 1: Tutte embedding
w;; from mesh: Harmonic embedding

Assumption: w symmetric.



Tutte Embedding Theorem

minxl,,,,,x|v| Z(’L,j)GE w’LJHZC’L _ ajJH%
s.t. x, fixed Yv € V}

Tutte embedding bijective if w nonnegative and
boundary mapped to a convex polygon.

“How to draw a graph” (Proc. London Mathematical Society; Tutte, 1963)



Tradeoff: Consistent Remeshing

base domain

Pros:

Easy

Straightforward
applications

Cons:
Need manvual landmarks

input meshes with features

Hard to minimize distortion

L ]
semi-regular remeshes

Praun et al. 2001
Adapted from slides by Q. Huang, V. Kim



Recently Revisited

“Orbifold Tutte Embeddings” (Aigerman and Lipman, SIGGRAPH Asia 2015)



Automatic Landmarks

Simple algorithm: Possible metrics
Set landmarks Conformality
Measure energy Area preservation
Repeat Stretch

E.g. small conformal distortion, large area distortion:

o s

Schreiner et al. 2004

Adapted from slides by Q. Huang, V. Kim



Local Distortion Measure

5 (;{;) ~ Joptc target ¢(t)
t ~ Ji

source t €T

Distortion := Z A D(Jy)

tel

Triangle distortion measure

Notation from Rabinovich et al. 2017



How do you measure
distortion of a triangle?



Typical Distortion Measures

Name D(T) D(o)
Symmetric Dirichlet || J||% + [|[T~1]|% S (024 072)
Exponential
Symmetric
Dirichlet exp(S(HJH% + HJ‘lH%)) exp(s Z?:l((f? + U?L_z))
Hencky strain Hlog J'J H; > q(log®ay)
1 tr(J'J 1,01 02
exp(s - 2 (L exp(s(z (2 + 22)
AMIPS ) 2" det(J) L
-1 _
+ 5 (det(I) +det(371))  +ploroa+ )
2 2
Conformal AMIPS 2D g(g( j] )) g;;;g;
2 2 2
Conformal AMIPS 3D-2(23). 1Toe e
det(J) 3 (c10203)3

Table from “Scalable Locally Injective Mappings” (Rabinovich et al., 2017)



Related Problem

Initialization 10 iterations 20 iterations Converged (196)

Image from "Scalable Locally Injective Mappings” (Rabinovich et al., 2017)

Parameterization



Not all calculations have to be at the triangle level!

Long-distance interactions

can stabilize geometric computations.



Gromov-Hausdorff Distance

Distance between metric spaces X, Y

dcu(X,Y) ¢}€an$iu£X ldx (z,2") — dy (¢(x), d(2"))]

h —

o 1,




Classical Multidimensional Scaling

1. Double centering: B := —%JDJ

Centering matrix J := I — %11T

2. Find m largest eigenvalues/eigenvectors

3. X = EmAf,er -

Torgerson, Warren S. (1958). Theory & Methods of Scaling.



Generalized MDS

d (;I,Tl...‘l'fz") , 7
X EZ: r/\\\,”/’/Y(’/l-!/_’)
7Ly
dint (X, Y) 1= min ldx (x:,25) — dy (ys, y5) ||

{yla"-ayn}cy

Bronstein, Bronstein, and Kimmel; PNAS 2006



Problem: Quadratic Assignment

minT <]\401ﬂ7 TM1>
s.t. T - {O, 1}’n><fn,
1'1 = po
T'1= P1

Nonconver yaac/ﬁa tie /om/wa/n/

N P-hard!




What's Wrong?
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Hard to optimize /*
Multiple optima =~ |




Tradeoff: GMDS

Pros:

Good distance for non-isometric metric spaces
Cons:

Non-convex
HUGE search space (i.e. permutations)

Adapted from slides by Q. Huang, V. Kim



GMDS In Practice

Heuristics to explore the permutations
Solve at a very coarse scale and interpolate
Coarse-to-fine
Partial matching

9 )
Wy

Adapted from slides by Q. Huang, V. Kim

Bronstein’o8



GMDS In Practice

Heuristics to explore the permutations
Solve at a very coarse scale and interpolate
Coarse-to-fine SV Levelkr T
Partial matching

Adapted from slides by Q. Huang, V. Kim Sahillioglu'12



GMDS In Practice

Heuristics to explore the permutations

Solve at a very coarse scale and interpolate
Coarse-to-fine V" (y)

Partial matching

® Find correspondence % ;%" minimizing distortion between
* *
current parts u , v

® Select parts ", v minimizing the distortion with current
correspondence ¢, " subjectto A(u",v™) < Ag

Adapted from slides by Q. Huang, V. Kim A Bronstein, M. Bronsteln, A. Brucksteln, R. Kimmel, 1/CV 2008



Returning to Desirable Properties

Given two (or more) shapes
Find a map f, that is:

Automatic

Fastto-compute
Biiecti

(if we expect global correspondence)

Low-distortion

Adapted from slides by Q. Huang. V. Kim



Gromov-Wasserstein Distance

[Mémoli 2007]

GWQ((/.LO,dQ :
min // [do(z, 2" ’)]Qd’)/(ﬂfay) dy(z',y")
YEM(po,p) J Jxy x5



Entropic Regularization
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vy=0 ~=0.0001=0.001 vy=0.01 ~=0.1
miny ), Tijd(zi, x5) — vH(T)
S.T. Zj Tij — D;

SN T =g,
20TV e S,

Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)



Gromov-Wasserstein Plus Entropy

Entropic Metric Alignment for Correspondence Problems

Justin Solomon* Gabriel Peyré

MIT CNRS & Univ. Paris-Dauphine

Abstract

Many shape and image processing tools rely on computation of cor-
respondences between geometric domains. Efficient methods that
stably extract “soft” matches in the presence of diverse geometric
structures have proven to be valuable for shape retrieval and transfer
of labels or semantic information. With these applications in mind,
we present an algorithm for probabilistic correspondence that opti-
mizes an entropy-regularized Gromov-Wasserstein (GW) objective.
Built upon recent developments in numerical optimal transportation,
our algorithm is compact, provably convergent, and applicable to
any geometric domain expressible as a metric measure matrix. We
provide comprehensive experiments illustrating the convergence
and applicability of our algorithm to a variety of graphics tasks.
Furthermore, we expand entropic GW correspondence to a frame-
work for other matching problems, incorporating partial distance
maltrices, user guidance, shape exploration, symmetry detection, and
joint analysis of more than two domains. These applications expand
the scope of entropic GW correspondence to major shape analysis
problems and are stable to distortion and noise.

Keywords: Gromov-Wasserstein, matching, entropy

Concepts: eComputing methodologies — Shape analysis;

1 Introduction

A basic component of the geometry processing toolbox is a tool for

mapping or correspondence, the problem of finding which points on
a target domain correspond to points on a source. Many variations

of this problem have been considered in the graphics literature, e.g.

Vladimir G. Kim
Adobe Research
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Figure 1: Entropic GW can find correspo
surface (left) and a surface with similar
shared semantic structure, a noisy 3D pe
hand drawing. Each fuzzy map was comp.

are violated these algorithms suffer from
local elastic terms into a single global ma

In this paper, we propose a new corres|
minimizes distortion of long- and short-
study an entropically-regularized version ¢
(GW) mapping objective function from [
the distortion of geodesic distances. The ¢
matching expressed as a “fuzzy™ correspo
of [Kim et al. 2012; Solomon et al. 2012
the correspondence via the weight of an e

Although [Mémoli 2011] and subsequent
bility of using GW distances for geometric
tional challenges hampered their practical
these challenges, we build upon recent m
timal transportation introduced in [Benar
etal. 2015]. While optimal transportation

function GROMOV-WASSERSTEIN(fty, Do, o, D, v, 1)
/ Computes a local minimizer T of (6)

I' «+ ONES(1n0 X n)
fori =1.2.3,...

K «+ exp(D[p,|0[p]D T /o)

I + SINKHORN-PROJECTION(K"" @ T =) o )
return I'

function SINKHORN-PROJECTION(K; 1, p2)

// Finds T minimizing KL(T|K) subject to T € M(p,. )
v, w1
forj =1.2,3,...
v—loK(wap)
we—10oK'(vepu,)
return [v]K[w]

Algorithm 1: lteration for finding regularized Gromov-Wasserstein
distances. ¢

, @ denote elementwise multiplication and division.

ent ontimization nroblem from reeularized GW comnutation (linear




Convex Relaxation

Tight Relaxation of Quadratic Matching

Itay Kezurer! Shahar Z. KovalskyJr Ronen Basri Yaron Lipman

Weizmann Institute of Science

Figure 1: Consistent Collection Matching. Results of the proposed one-stage procedure for finding consistent corres
between shapes in a collection showing strong variability and non-rigid deformations.

Abstract

Establishing point correspondences between shapes is extremely challenging as it involves both finding se
semantically persistent feature points, as well as their combinatorial matching. We focus on the latter and con:
the Quadratic Assignment Matching (QAM) model. We suggest a novel convex relaxation for this NP-hard pro
that builds upon a rank-one reformulation of the problem in a higher dimension, followed by relaxation ir
semidefinite program (SDP). Qur method is shown to be a certain hybrid of the popular spectral and doy
stochastic relaxations of QAM and in particular we prove that it is tighter than both.

Experimental evaluation shows that the proposed relaxation is extremely tight: in the majority of our experir
it achieved the certified global optimum solution for the problem, while other relaxations tend to produce
optimal solutions. This, however, comes at the price of solving an SDP in a higher dimension.
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qu_yfg 0, lf?’:f.q#b

min {Xgr, X5}, otherwise




Continuum

Weak assumptions Strong assumptions
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Heat Kernel Map

Heat K 1 Map kM (p, x)
\\

t

HKM,(z,t) := ki(p, )

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel /f/l//l/

Ovsjanikov et al. 2010




Tradeoff: Heat Kernel Map

kP
Pros: (B
Tiny search space i

Some extension to partial matching
Cons:

(Extremely) sensitive to
deviation from isometry

Adapted from slides by Q. Huang, V. Kim
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Observation About Mapping

Angle and area preserving Angle preserving
isometries C conformal maps
Hard! Easier

Mobius Voting for Surface Correspondence
Lipman and Funkhouser 2009



O(n3) Algorithm for Perfect Isometry

http://www.mpi-inf.mpg.de/resources/deformableShapeMatching/EG2011_Tutorial/slides/4.3%20SymmetryApplications.pdf

Map triplets of points



Mobius Voting

1. Map surfaces to

Tl complex plane
x(ﬁf A D '
= O ‘> 2.Select three points

(T\/ 3. Map plane to itself

vl matching these points
| 4.Vote for pairings using
distortion metric to

weight

5. Return to 2

Mobius Voting for Surface Correspondence
Lipman and Funkhouser 2009



Mobius Transformations

Bijective conformal maps of the
extended complex plane



Observation
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Hard work is per-surface, not per-map



Mid-Edge Flattening
| WA
/

Cannot scale triangles to flatten



Voting Algorithm

Input: points £; = {z;} and Z, = {w;}
number of iterations /
minimal subset size K

Output: correspondence matrix C = (Cj ¢ ).

/* M&bius wvoting * /
while number of iterations < I do
Random z;,22,23 € E;.
Random wy.wo, w3 € Es.
Find the Mbius transformations my ., m> s.t.

mi(zj) =yj.ma(wj) =yj, j=1,2,3.
Apply m; on I, to get 3 = my(z; ).
Apply my on I; to get wy = ma(wy).

Find mutually nearest-neighbors (Z;,wy) to formulate

candidate correspondence c.

it number of mutually closest pairs = K then

Calculate the deformation energy E(c)

/* Vote in correspondence matrix
X/

foreach (z;. Wy ) mutually nearest-neighbors do
C_,{_,- A C_,{, + ]

e+Eic)/n”




Tradeoff: Mobius Voting

Pros:
Efficient

Voting procedure handles some non-isometry
Cons:

Does not provide smooth/continuous map
Does not optimize global distortion
Only for genus o

Adapted from slides by Q. Huang, V. Kim



Blended Intrinsic Maps

Distortion of m, Distortion of m;

Different conformal maps distorted in different places.

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011



Use for Dense Mapping

Blending Weights for m, 1., and m;, Distortion of t/he Blended Map
Combine good parts of different maps!

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

- {'.\ ' |
! Set of

M o / consistent
' candidate
M, maps

Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map

Blend maps
a m; I
S e
S 'A
- N
© | L=
7 \"\J\L

Candidate Maps
Map similarity matrix
Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

Q00

800 |

. First

500 ¢ .
g - I

+.. Eigenvalue

Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

/\ Area-distortion
<

D\ l\iV%/
NS kLri/

Candidate Map Blending Weight
&)

(p)

Adapted from slides by Q. Huang, V. Kim Kim'11



Blended Intrinsic Maps

Algorithm:
Generate consistent maps
Find blending weights per-point on each map
Blend maps

\\?H ’

Adapted from slides by Q. Huang, V. Kim Kim'11




Some Examples

Symmetric flip

Adapted from slides by Q. Huang, V. Kim Kim'11



Evaluation
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Tradeoff: Blended Intrinsic Maps

Pros:

Can handle non-isometric shapes

Efficient
Cons:

Lots of area distortion for some shapes
Genus o manifold surfaces

Adapted from slides by Q. Huang, V. Kim
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Functional Maps

u ’ \ [Ovsjanikov et al. 2012]
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Points on M, to points on M




Functional Maps

u ' \ [Ovsjanikov et al. 2012]
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Functions on M to functions on M,




Functional Maps

[Ovsjanikov et al. 2012]

o~ - -

= i azwz(af)

Functional map:




Example Maps
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(¢) left to right map (d) head to tail map

Adapted from slides by Q. Huang, V. Kim



Functional Maps

Simple Algorithm

Compute some geometric functions to be
preserved: A, B

Solve in least-squares sense forC: B=CA
Additional Considerations

Favor commutativity

Favor orthonormality (if shapes are isometric)

Efficiently getting point-to-point

correspondences

Adapted from slides by Q. Huang, V. Kim Ovsjanikov'12



Tradeoff: Functional Maps

Pros:
Condensed representation
Linear
Alternative perspective on mapping

Many recent papers with variations
Cons:

Hard to handle non-isometry
Some progress in last few years!

Adapted from slides by Q. Huang, V. Kim



Coupled Quasi-Harmonic Basis
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Bronstein’12



Leverage Symmetry

X ; AJ &/ AJ K ¥ g s

Ovsjanikov'13



Analyze Deformation

5
0.4 = .
) S g | v 20 8
$ 0.3 *93 o21 .208 S 99 21 ol
) o a
= 02 = 7
2y, R ) s
201 g 6
E 0 0r 12
S} e 18 3 1
; 13 . ¢ or
= 805
£02 s g ol3 4
£ £ : .
£-0.3 9 I 16
- 17° 4 -1

15e 3 19

-0.5 - -1.5
08 06 04 02 0 02 04 06 A5 -1 05 0 05 1 15 2 25
1st Principal Component (50.9%) 1st Principal Component (60.7%)

Rustamov ‘13



Soft/Fuzzy Maps
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Image from “Entropic Metric Alignment for Correspondence Problems.” Solomon et al., SIGGRAPH 2016.




