

Surface Correspondence

Justin Solomon MIT, Spring 2017

Correspondence Problems

Which points on one object correspond to points on another?

How is this different from registration?

Typical Distinction

Seek shared structure instead of alignment

Texture transfer

Ovsjanikov et al. 2012

Segmentation transfer

Solomon et al. 2016

Layout

Paleontology

Desirable Properties

Given two (or more) shapes Find a map f, that is:

Automatic

Fast to compute

Bijective

(if we expect global correspondence)

Low-distortion

Adapted from slides by Q. Huang, V. Kim

Example: Consistent Remeshing

Kraevoy 2004

Adapted from slides by Q. Huang, V. Kim

G. Peyré, mesh processing course slides

Recall: Linear Solve for Embedding

$$\min_{\substack{x_1, \dots, x_{|V|} \\ \text{s.t.} \quad x_v \text{ fixed } \forall v \in V_0 } } \sum_{ij \in E} w_{ij} \|x_i - x_j\|_2^2$$

w_{ij} ≡ 1: Tutte embedding
w_{ij} from mesh: Harmonic embedding

Assumption: w symmetric.

Tutte Embedding Theorem

$$\min_{\substack{x_1, \dots, x_{|V|} \\ \text{s.t.} \quad x_v \text{ fixed } \forall v \in V_0 } } \sum_{\substack{(i,j) \in E \\ v \in V_0}} w_{ij} \| x_i - x_j \|_2^2$$

Tutte embedding bijective if w nonnegative and boundary mapped to a convex polygon.

"How to draw a graph" (Proc. London Mathematical Society; Tutte, 1963)

Tradeoff: Consistent Remeshing

Pros:

- Easy
- Straightforward applications
- Cons:
 - Need manual landmarks
 - Hard to minimize distortion

Recently Revisited

"Orbifold Tutte Embeddings" (Aigerman and Lipman, SIGGRAPH Asia 2015)

Automatic Landmarks

- Simple algorithm:
 - Set landmarks
 - Measure energy
 - Repeat

- Possible metrics
 - Conformality
 - Area preservation
 - Stretch

E.g. small conformal distortion, large area distortion:

Schreiner et al. 2004

Local Distortion Measure

target $\phi(t)$ $\phi_t(x) \approx J_t x + c$ source $t \in T$

Distortion :=
$$\sum_{t \in T} A_t \mathcal{D}(J_t)$$

Triangle distortion measure

Notation from Rabinovich et al. 2017

How do you measure distortion of a triangle?

Typical Distortion Measures

Name	$\mathfrak{D}(\mathbf{J})$	$\mathfrak{D}(\sigma)$
Symmetric Dirichlet	$\ \mathbf{J}\ _F^2 + \ \mathbf{J}^{-1}\ _F^2$	$\sum_{i=1}^{n} (\sigma_i^2 + \sigma_i^{-2})$
Exponential		
Symmetric		
Dirichlet	$\exp(s(\ \mathbf{J}\ _F^2 + \ \mathbf{J}^{-1}\ _F^2))$	$\exp(s\sum_{i=1}^{n}(\sigma_i^2+\sigma_i^{-2}))$
Hencky strain	$\frac{\exp(s(\ \mathbf{J}\ _F^2 + \ \mathbf{J}^{-1}\ _F^2))}{\left\ \log \mathbf{J}^{T}\mathbf{J}\right\ _F^2}$	$\frac{\exp(s\sum_{i=1}^{n}(\sigma_i^2 + \sigma_i^{-2}))}{\sum_{i=1}^{n}(log^2\sigma_i)}$
AMIPS	$\exp(s \cdot \frac{1}{2}(\frac{\mathrm{tr}(\mathbf{J}^{T}\mathbf{J})}{\mathrm{det}(\mathbf{J})}$	$\exp(s(\frac{1}{2}(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1})$
	$+\frac{1}{2}(\det(\mathbf{J}) + \det(\mathbf{J}^{-1})))$	$+\frac{1}{4}(\sigma_1\sigma_2+\frac{1}{\sigma_1\sigma_2}))$
Conformal AMIPS 2	$2\mathrm{D}rac{\mathrm{tr}(\mathbf{J}^{ op}\mathbf{J})}{\mathrm{det}(\mathbf{J})}$	$\frac{\sigma_1^2 + \sigma_2^2}{\sigma_1 \sigma_2}$ Open chal
Conformal AMIPS 3	$BD \frac{\operatorname{tr}(\mathbf{J}^{\top}\mathbf{J})}{\operatorname{det}(\mathbf{J})^{\frac{2}{3}}}$	$\begin{array}{c c} \sigma_1 \sigma_2 & \text{Open-chal} \\ \hline \frac{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}{(\sigma_1 \sigma_2 \sigma_3)^{\frac{2}{3}}} & \text{Optin} \end{array}$
		direc

Table from "Scalable Locally Injective Mappings" (Rabinovich et al., 2017)

Related Problem

Image from "Scalable Locally Injective Mappings" (Rabinovich et al., 2017)

Parameterization

New Idea

Not all calculations have to be at the triangle level!

Long-distance interactions can stabilize geometric computations.

Gromov-Hausdorff Distance

Recall: Classical Multidimensional Scaling

- 1. Double centering: $B := -\frac{1}{2}JDJ$ Centering matrix $J := I - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}$
- 2. Find m largest eigenvalues/eigenvectors

3.
$$X = E_m \Lambda_m^{1/2}$$

Torgerson, Warren S. (1958). *Theory & Methods of Scaling*.

Generalized MDS

 $d_{\text{int}}(X,Y) := \min_{\{y_1,\dots,y_n\} \subset Y} \|d_X(x_i,x_j) - d_Y(y_i,y_j)\|$

Bronstein, Bronstein, and Kimmel; PNAS 2006

Problem: Quadratic Assignment

$$\begin{array}{ll} \min_{T} & \langle M_0 T, T M_1 \rangle \\ \text{s.t.} & T \in \{0, 1\}^{n \times n} \\ & T \mathbf{1} = p_0 \\ & T^\top \mathbf{1} = p_1 \end{array} \\ \\ \hline \text{Nonconvex quadratic program!} \\ & \text{NP-hard!} \end{array}$$

What's Wrong?

Hard to optimizeMultiple optima

Tradeoff: GMDS

Pros:

Good distance for non-isometric metric spaces

Cons:

- Non-convex
- HUGE search space (i.e. permutations)

Adapted from slides by Q. Huang, V. Kim

GMDS in Practice

- Heuristics to explore the permutations
 - Solve at a very coarse scale and interpolate
 - Coarse-to-fine
 - Partial matching

Bronstein'o8

Adapted from slides by Q. Huang, V. Kim

GMDS in Practice

- Heuristics to explore the permutations
 - Solve at a very coarse scale and interpolate
 - Coarse-to-fine
 - Partial matching

GMDS in Practice

- Heuristics to explore the permutations
 - Solve at a very coarse scale and interpolate
 - Coarse-to-fine
 - Partial matching

A. Bronstein, M. Bronstein, A. Bruckstein, R. Kimmel, IJCV 2008

correspondence φ^*, ψ^* subject to $\lambda(u^*, v^*) \leq \lambda_0$

Returning to Desirable Properties

Given two (or more) shapes Find a map f, that is:

Automatic

Fast to compute

- Bijective

(if we expect global correspondence)

Low-distortion

Adapted from slides by Q. Huang, V. Kim

Recent idea: Gromov-Wasserstein Distance

Entropic Regularization

Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport" (NIPS 2013)

Gromov-Wasserstein Plus Entropy

Entropic Metric Alignment for Correspondence Problems Justin Solomon* Gabriel Peyré Vladimir G. Kim Suvrit Sra CNRS & Univ. Paris-Dauphine MIT Adobe Research MIT Abstract Many shape and image processing tools rely on computation of correspondences between geometric domains. Efficient methods that stably extract "soft" matches in the presence of diverse geometric structures have proven to be valuable for shape retrieval and transfer of labels or semantic information. With these applications in mind, we present an algorithm for probabilistic correspondence that opti-Source Targets mizes an entropy-regularized Gromov-Wasserstein (GW) objective. Figure 1: Entropic GW can find correspon Built upon recent developments in numerical optimal transportation, surface (left) and a surface with similar our algorithm is compact, provably convergent, and applicable to shared semantic structure, a noisy 3D pc any geometric domain expressible as a metric measure matrix. We hand drawing. Each fuzzy map was comp provide comprehensive experiments illustrating the convergence and applicability of our algorithm to a variety of graphics tasks. are violated these algorithms suffer from Furthermore, we expand entropic GW correspondence to a framelocal elastic terms into a single global ma work for other matching problems, incorporating partial distance matrices, user guidance, shape exploration, symmetry detection, and In this paper, we propose a new corres return Γ joint analysis of more than two domains. These applications expand minimizes distortion of long- and shortthe scope of entropic GW correspondence to major shape analysis study an entropically-regularized version of problems and are stable to distortion and noise. (GW) mapping objective function from [

Keywords: Gromov-Wasserstein, matching, entropy

Concepts: •Computing methodologies \rightarrow Shape analysis;

Introduction 1

A basic component of the geometry processing toolbox is a tool for mapping or correspondence, the problem of finding which points on a target domain correspond to points on a source. Many variations of this problem have been considered in the graphics literature, e.g.

the distortion of geodesic distances. The o matching expressed as a "fuzzy" correspon of [Kim et al. 2012; Solomon et al. 2012] the correspondence via the weight of an e

Although [Mémoli 2011] and subsequent bility of using GW distances for geometric tional challenges hampered their practical these challenges, we build upon recent me timal transportation introduced in [Benar et al. 2015]. While optimal transportation

ent optimization problem from regularized GW computation (linear

function GROMOV-WASSERSTEIN($\mu_0, \mathbf{D}_0, \mu, \mathbf{D}, \alpha, \eta$) // Computes a local minimizer Γ of (6) $\Gamma \leftarrow \text{ONES}(n_0 \times n)$ for $i = 1, 2, 3, \ldots$ $\mathbf{K} \leftarrow \exp(\mathbf{D}_0 \llbracket \boldsymbol{\mu}_0 \rrbracket \boldsymbol{\Gamma} \llbracket \boldsymbol{\mu} \rrbracket \mathbf{D}^\top / \alpha)$ $\Gamma \leftarrow \text{SINKHORN-PROJECTION}(\mathbf{K}^{\wedge \eta} \otimes \Gamma^{\wedge (1-\eta)}; \mu_0, \mu)$

function SINKHORN-PROJECTION(**K**; μ_0, μ) // Finds Γ minimizing $KL(\Gamma|\mathbf{K})$ subject to $\Gamma \in \overline{\mathcal{M}}(\mu_0, \mu)$ $\mathbf{v}, \mathbf{w} \leftarrow \mathbf{1}$ for $j = 1, 2, 3, \ldots$ $\mathbf{v} \leftarrow \mathbf{1} \oslash \mathbf{K}(\mathbf{w} \otimes \boldsymbol{\mu})$ $\mathbf{w} \leftarrow \mathbf{1} \oslash \mathbf{K}^{\top} (\mathbf{v} \otimes \boldsymbol{\mu}_0)$ return [v]K[w]

Algorithm 1: Iteration for finding regularized Gromov-Wasserstein distances. \otimes, \oslash denote elementwise multiplication and division.

Convex Relaxation

Continuum

$\operatorname{HKM}_p(x,t) := k_t(p,x)$

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010

Tradeoff: Heat Kernel Map

Pros:

- Tiny search space
- Some extension to partial matching

Cons:

 (Extremely) sensitive to deviation from isometry

Continuum

Observation About Mapping

Angle and area preservingAngle preserving $isometries \subseteq conformal maps$ Hard!Easier

Möbius Voting for Surface Correspondence Lipman and Funkhouser 2009

O(n³) Algorithm for Perfect Isometry

 $http://www.mpi-inf.mpg.de/resources/deformableShapeMatching/EG2011_Tutorial/slides/4.3\%2oSymmetryApplications.pdf$

Map triplets of points

Möbius Voting

1. Map surfaces to complex plane 2. Select three points 3. Map plane to itself matching these points 4. Vote for pairings using distortion metric to weight 5. Return to 2

Möbius Voting for Surface Correspondence Lipman and Funkhouser 2009

Möbius Transformations

Bijective conformal maps of the extended complex plane

Observation

Hard work is per-surface, not per-map

Mid-Edge Flattening

Cannot scale triangles to flatten

Voting Algorithm

```
Input: points \Sigma_1 = \{z_k\} and \Sigma_2 = \{w_\ell\}
         number of iterations I
         minimal subset size K
Output: correspondence matrix C = (C_{k,\ell}).
/* Möbius voting
                                                                     */
while number of iterations < I do
     Random z_1, z_2, z_3 \in \Sigma_1.
     Random w_1, w_2, w_3 \in \Sigma_2.
     Find the Möbius transformations m_1, m_2 s.t.
           m_1(z_i) = y_i, m_2(w_i) = y_i, j = 1, 2, 3.
     Apply m_1 on \Sigma_1 to get \overline{z}_k = m_1(z_k).
     Apply m_2 on \Sigma_2 to get \bar{w}_{\ell} = m_2(w_{\ell}).
     Find mutually nearest-neighbors (\bar{z}_k, \bar{w}_\ell) to formulate
     candidate correspondence c.
     if number of mutually closest pairs \geq K then
          Calculate the deformation energy \mathbf{E}(c)
          /* Vote in correspondence matrix
                */
          foreach (\bar{z}_k, \bar{w}_\ell) mutually nearest-neighbors do
              C_{k,\ell} \leftarrow C_{k,\ell} + \frac{1}{\varepsilon + \mathbf{E}(c)/n}.
          end
     end
end
```

Tradeoff: Möbius Voting

Pros:

- Efficient
- Voting procedure handles some non-isometry
- Cons:
 - Does not provide smooth/continuous map
 - Does not optimize global distortion
 - Only for genus o

Blended Intrinsic Maps Kim, Lipman, and Funkhouser 2011

Use for Dense Mapping

Combine good parts of different maps!

Blended Intrinsic Maps Kim, Lipman, and Funkhouser 2011

Algorithm:

- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Algorithm:

- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Algorithm:

- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Candidate Maps Map similarity matrix

Algorithm:

- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Algorithm:

- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Algorithm:

- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps

Some Examples

Evaluation

Tradeoff: Blended Intrinsic Maps

Pros:

- Can handle non-isometric shapes
- Efficient
- Cons:
 - Lots of area distortion for some shapes
 - Genus o manifold surfaces

Subtlety: Representation

Points on M_o to points on M

Functions on M to functions on M_o

[Ovsjanikov et al. 2012]

Functional map:

Matrix taking Laplace-Beltrami (Fourier) coefficients on *M* to coefficients on *M*_o

Example Maps

- Simple Algorithm
 - Compute some geometric functions to be preserved: A, B
 - Solve in least-squares sense for C: B = C A
- Additional Considerations
 - Favor commutativity
 - Favor orthonormality (if shapes are isometric)

Ovsjanikov'12

 Efficiently getting point-to-point correspondences

Tradeoff: Functional Maps

Pros:

- Condensed representation
- Linear
- Alternative perspective on mapping
- Many recent papers with variations

Cons:

Hard to handle non-isometry Some progress in last few years!

Example extension: Coupled Quasi-Harmonic Basis

Coupled quasi-harmonic bases

Bronstein'12

Ovsjanikov'13

Example extension: Analyze Deformation

Rustamov '13

Kim'12, Solomon'12, Solomon'13

Surface Correspondence

Justin Solomon MIT, Spring 2017

