

Registration and Alignment

Justin Solomon
MIT, Spring 2017

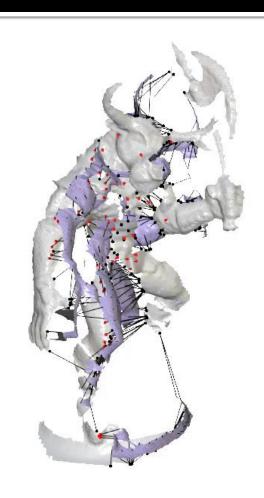
Acknowledgements

Many slides from

Szymon Rusinkiewicz, Princeton ICCV Course, 2005

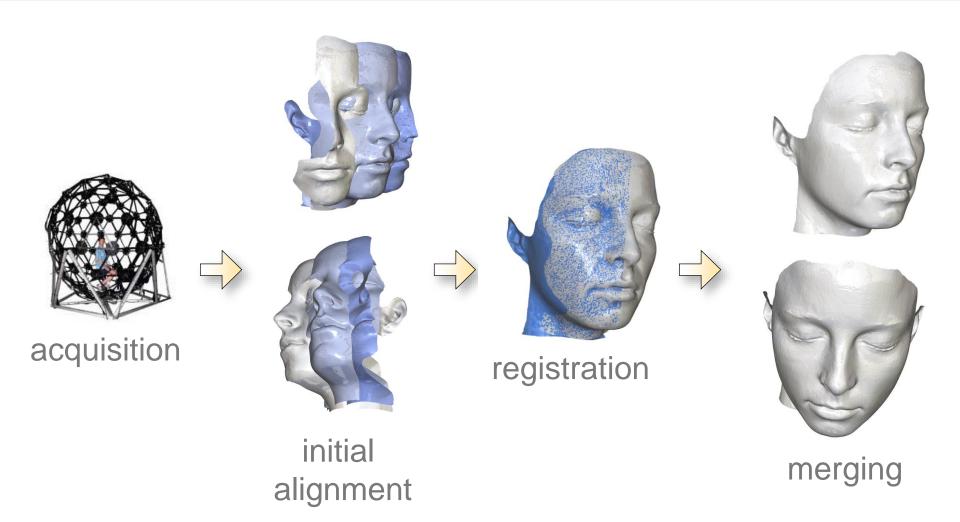
Hao Li, USC
 CSCI 599, 2015

Registration Problem



Align two overlapping objects

3D Reconstruction Pipeline



Data provided by Paramount Pictures and Aguru Images

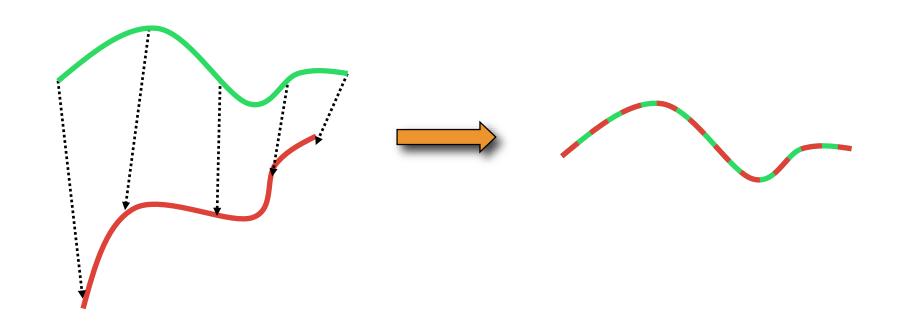
Rough Plan

- ICP algorithm *A classic!*

ICP variants

Related problems
Synchronization, non-rigid registration

Starting Point



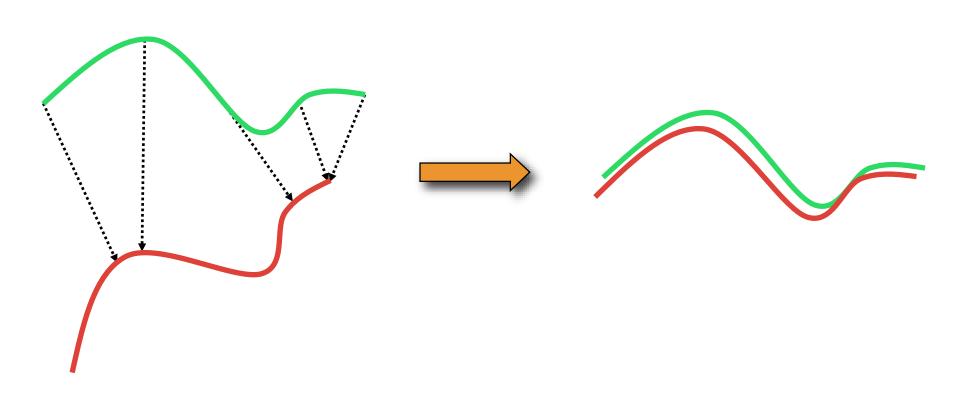
$$q_i = Rp_i + t$$

Can align given enough matches

How many correspondences determine R and t?

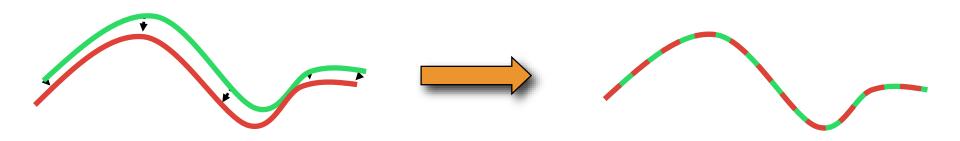
How do you get correspondences?

Rough Approximation



Closest points correspond

Try a Second Time...



Iterative Closest Point (ICP)

- Choose e.g. 1000 random points
- Match each to closest point on other scan
- Reject pairs with distance > k times median
- Minimize

$$E[R, t] := \sum_{i} ||Rp_i + t - q_i||^2$$

Iterate

On the Board

$$\min_{t \in \mathbb{R}^3, \ R^\top R = I} \sum_{i} ||Rp_i + t - q_i||^2$$

Closed-form formulas!

Many (!) Variants of ICP

- Source points from one or both meshes
 - Matching to points in the other mesh
 - Weighting correspondences
 - Rejecting outlier point pairs
 - Alternative error metrics

Point-to-Plane Error Metric

Flat parts can slide along each other



$$E[R, t] := \sum_{i} ((Rp_i + t - q_i)^{\top} n_i)^2$$

$$\approx \sum_{i} [(p_i - q_i)^{\top} n_i + r^{\top} (p_i \times n_i) + t^{\top} n_i)^2 \text{ after linearizing}$$

where $r := (r_x, r_y, r_z)$

Least-squares!

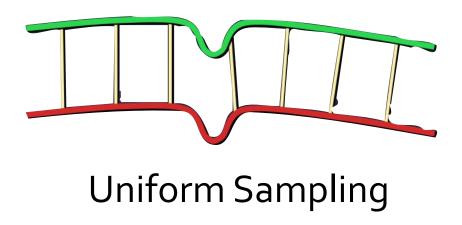
"Object modelling by registration of multiple range images"
Chen and Medioni, Image and Vision Computing 10.3 (1992); image courtesy N. Mitra

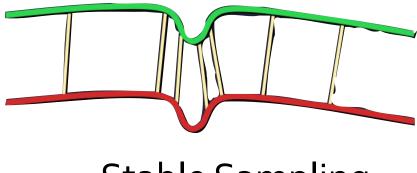
Closest Compatible Point

Can improve matching effectiveness by restricting match to compatible points

- Compatibility of colors [Godin et al. 94]
- Compatibility of normals [Pulli 99]
- Other possibilities: curvatures, higher-order derivatives, and other local features

Choose Points to Improve Stability

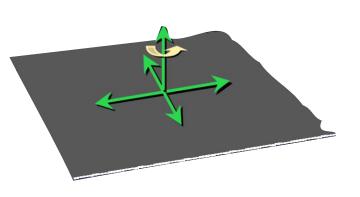




Stable Sampling

Sample discriminative points

Local Covariance



3 small eigenvalues

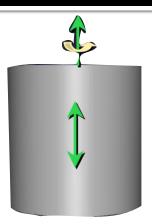
- 2 translation
- 1 rotation

1 small eigenvalue

1 rotation

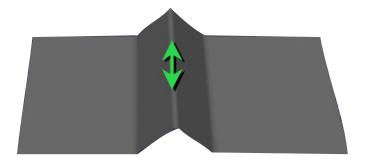
3 small eigenvalues

3 rotation



2 small eigenvalues

- 1 translation
- 1 rotation

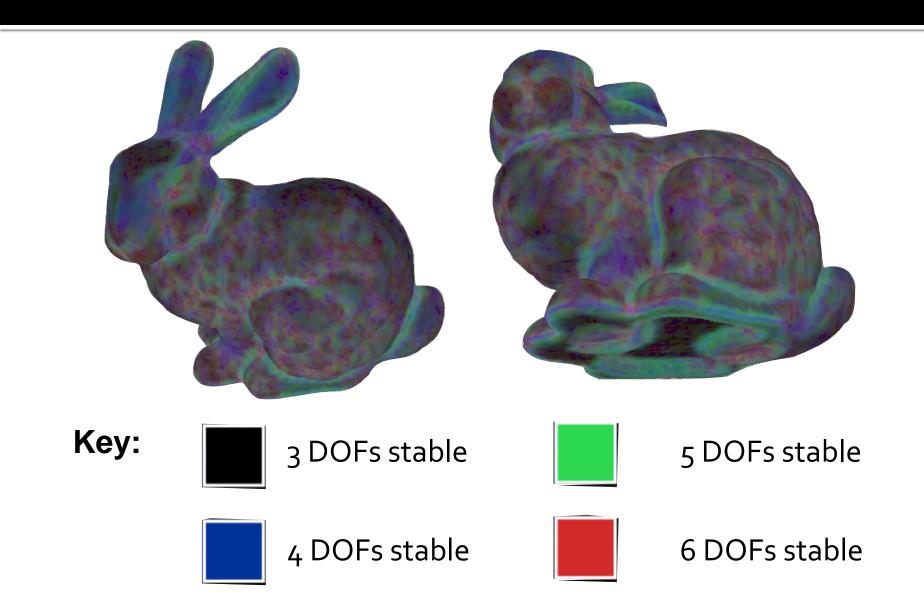


1 small eigenvalue

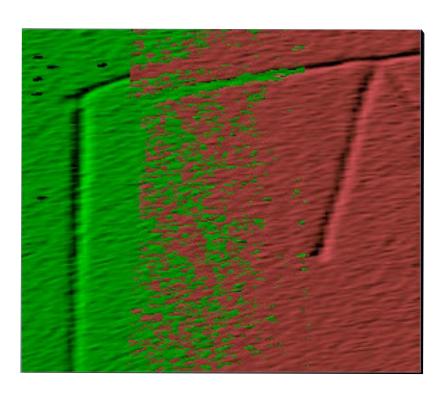
1 translation

[Gelfand et al. 2004]

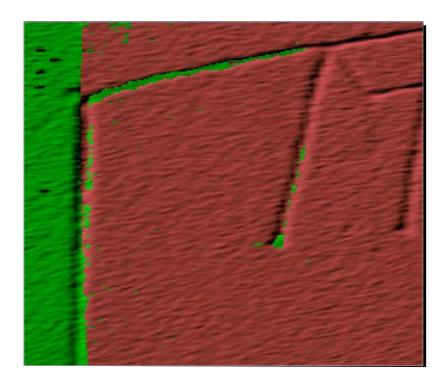
Stability Analysis



Alternative: Uniform Normals



Random Sampling

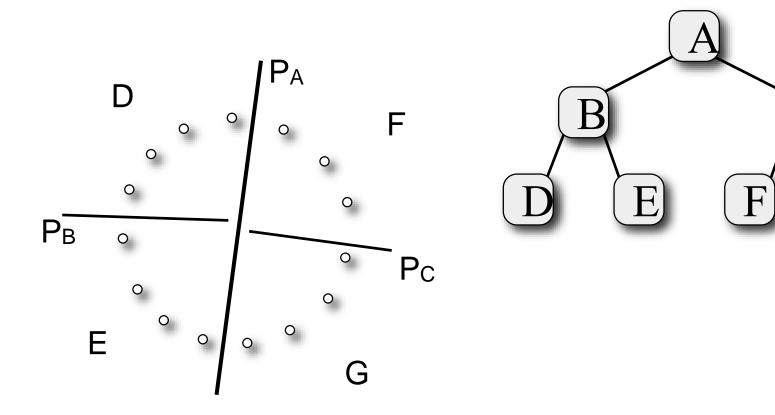


Normal-space Sampling

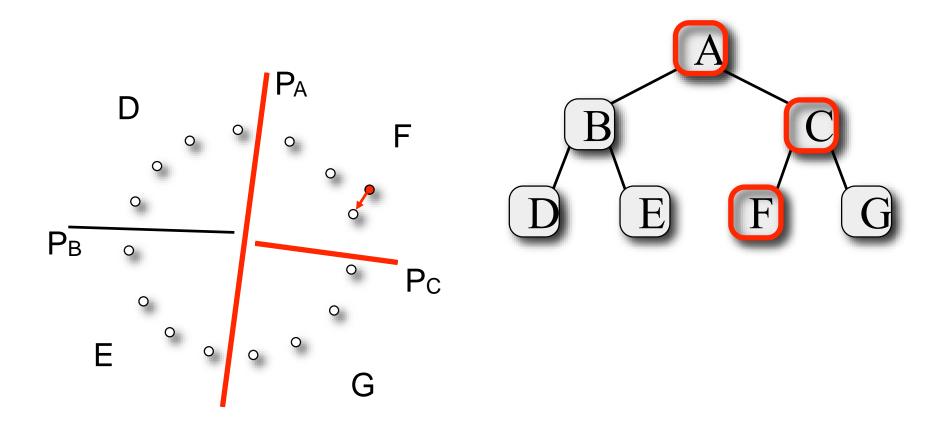


What is the bottleneck of ICP iteration?

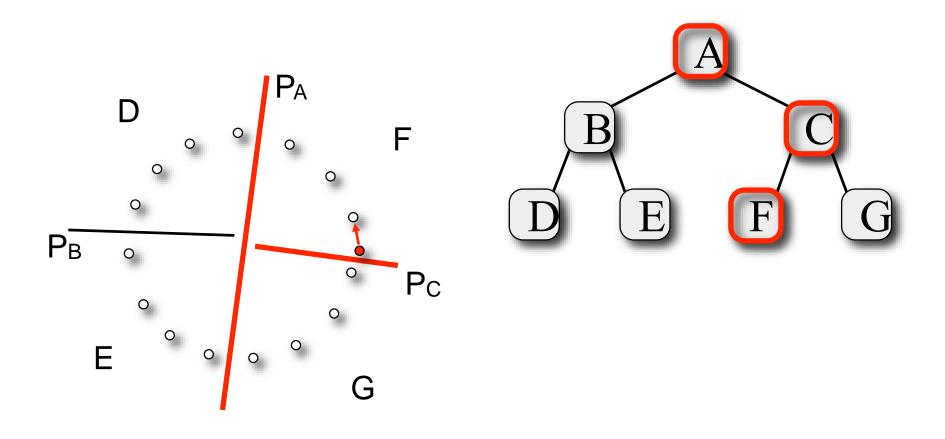
BSP Tree



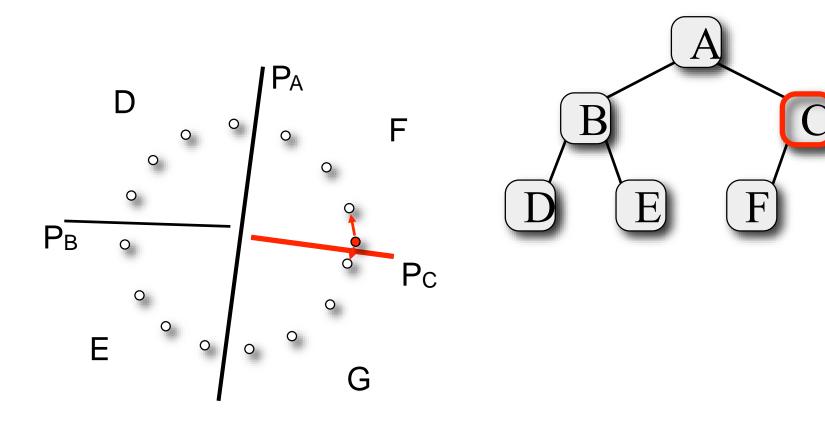
Tree Traversal



Subtlety: Is this right?



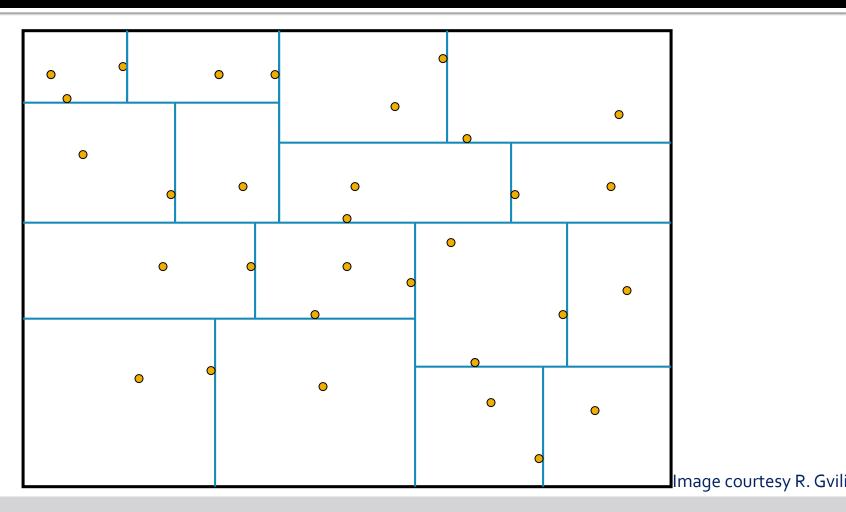
Two Possibilities



Pseudocode: Be Conservative!

```
BSPNode::dist(Point x, Scalar& dmin) {
  if (leaf node())
    for each sample point p[i]
      dmin = min(dmin, dist(x, p[i]));
  else {
    d = dist to plane(x);
    if (d < 0) {
      left child->dist(x, dmin);
      if (|d| < dmin) right child->dist(x, dmin);
    } else {
      right child->dist(x, dmin);
      if (|d| < dmin) left child->dist(x, dmin);
} } }
```

k-d Tree

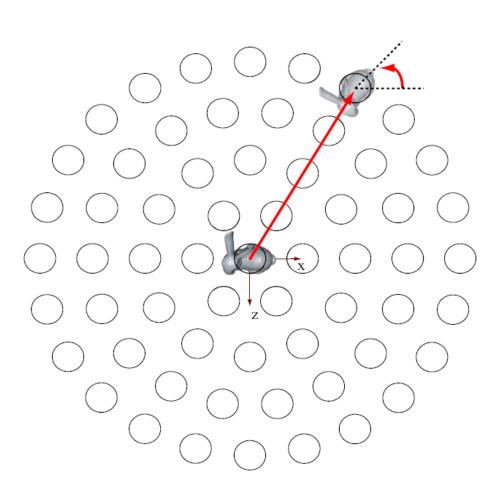


Axis-aligned tree

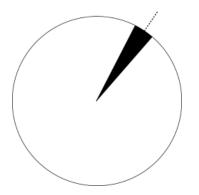


Speed aside, is ICP always successful?

Convergence Funnel Visualization

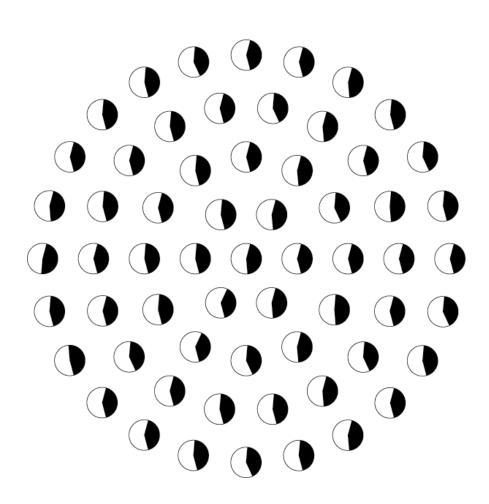


Translation in xz plane Rotation about y

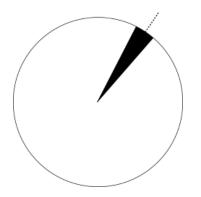


- Converges
- Does not converge

Distance Field Method

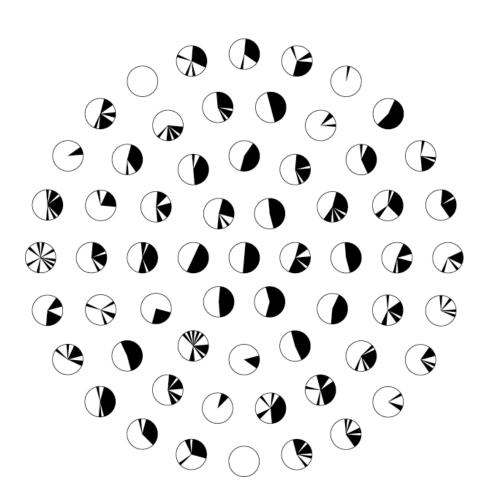


Translation in xz plane Rotation about y

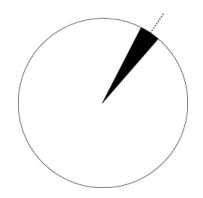


- Converges
- Does not converge

Point-to-Plane

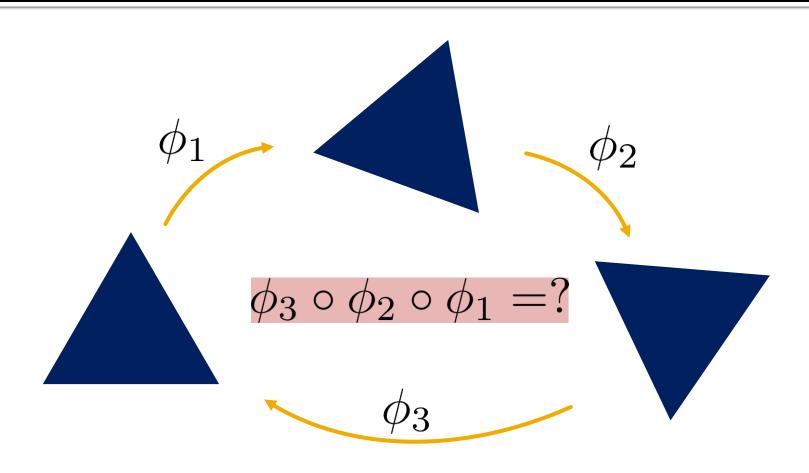


Translation in xz plane Rotation about y



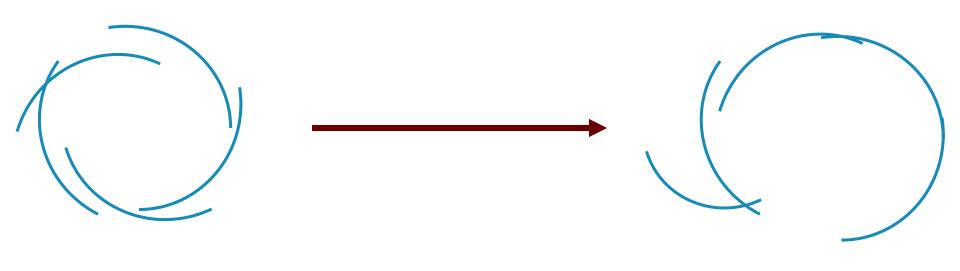
- Converges
- Does not converge

Issue: ICP Three Times



Usually have ≥ 2 scans

Improve Sequential Alignment?

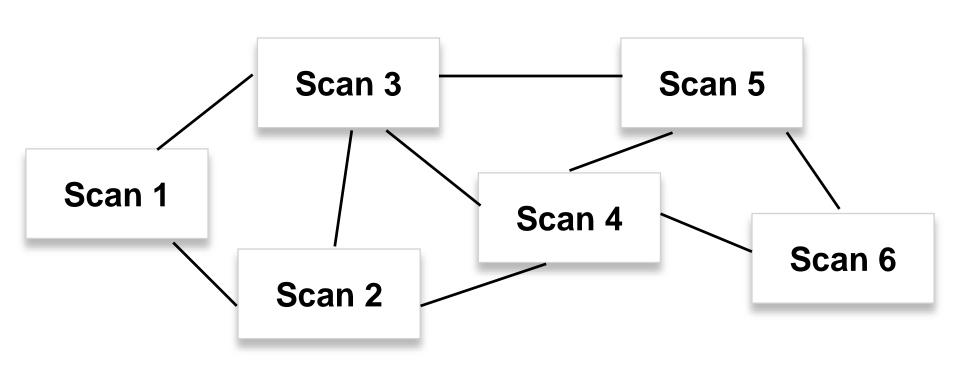


Prevent "drift"

Simple Methods

- Align everything to anchor scan Which to choose? Dependence on anchor?
- Align to union of previous scans Order dependence? Speed?
- Simultaneously align everything using ICP Local optima? Computational expense?

Graph Approach



Align similar scans, then assemble

Lu and Milios

Pairwise phaseCompute pairwise ICP on graph

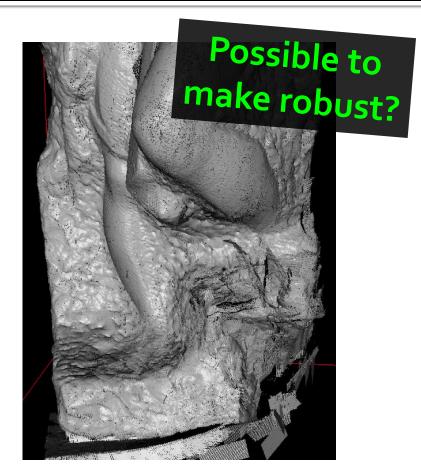
Global alignment

Least-squares rotation/translation

Linearize for global alignment

Failed ICP in Global Registration

Correct global registration



Global registration including bad ICP

Digression: Angular Synchronization

Given:
$$\delta_{ij} \approx \theta_i - \theta_j \pmod{2\pi}, (i,j) \in E$$

Find: $\{\theta_i\}$ up to constant shift

2D version without translation

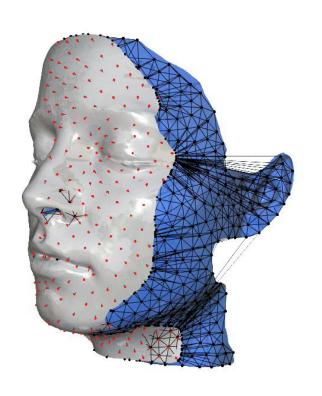
On the board: Eigenvalue and/or SDP relaxations

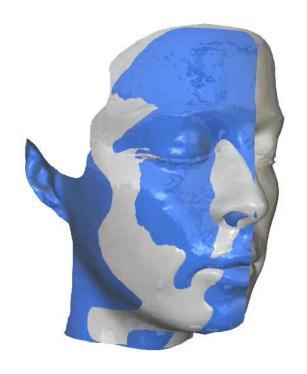
Open problem:

Synchronization on non-compact groups (e.g. SE(3)!)

"Angular synchronization by eigenvectors and semidefinite programming." Singer, ACHA 2010.

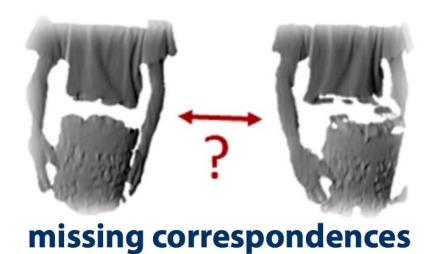
Non-Rigid Registration





Problems

- Noisy data
- Acquisition holes (incomplete)
 - No correspondence
 - Deformation



Example Paper

Eurographics Symposium on Geometry Processing 2008 Pierre Alliez and Szymon Rusinkiewicz (Guest Editors) Volume 27 (2008), Number 5

Global Correspondence Optimization for Non-Rigid Registration of Depth Scans

Hao Li

Robert W. Sumner

Mark Pauly

Applied Geometry Group ETH Zurich

Abstract

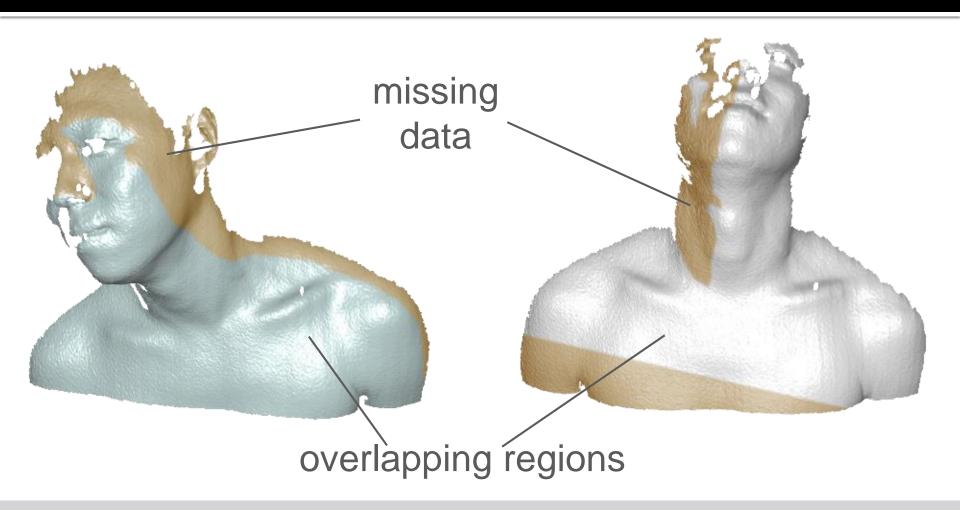
We present a registration algorithm for pairs of deforming and partial range scans that addresses the challenges of non-rigid registration within a single non-linear optimization. Our algorithm simultaneously solves for correspondences between points on source and target scans, confidence weights that measure the reliability of each correspondence and identify non-overlapping areas, and a warping field that brings the source scan into alignment with the target geometry. The optimization maximizes the region of overlap and the spatial coherence of the deformation while minimizing registration error. All optimization parameters are chosen automatically; hand-tuning is not necessary. Our method is not restricted to part-in-whole matching, but addresses the general problem of partial matching, and requires no explicit prior correspondences or feature points. We evaluate the performance and robustness of our method using scan data acquired by a structured light scanner and compare our method with existing non-rigid registration algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

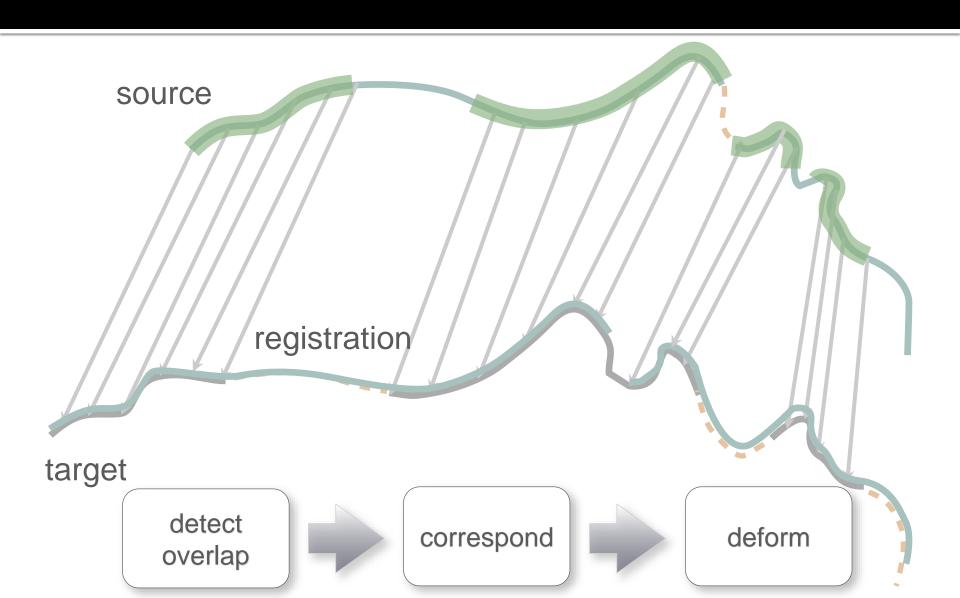
Surface registration is a fundamental problem in geometric modeling and 3-D shape acquisition. Most scanning systems provide partial surface data that must be aligned and merged

Concrete Example



In addition to deformation

Reasonable Approach

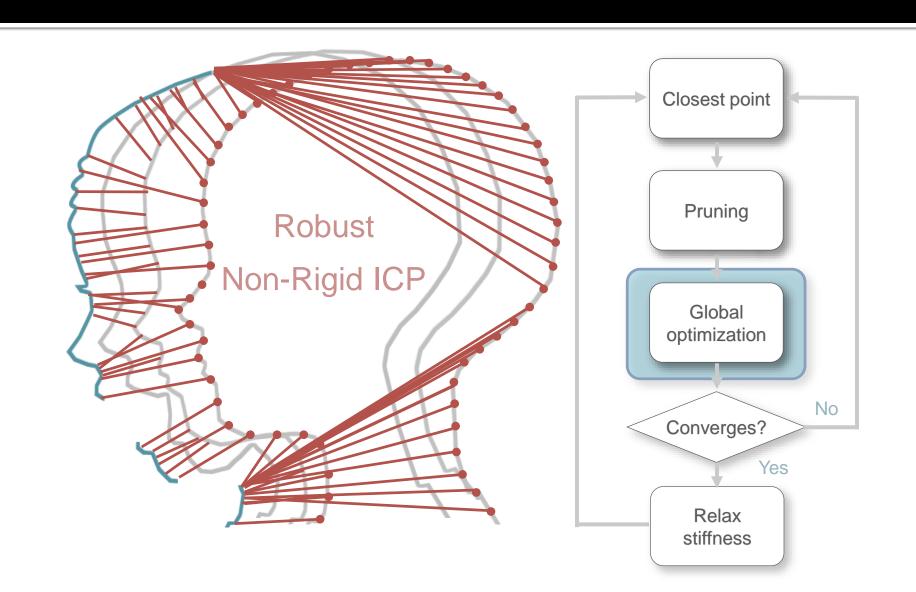


Global Optimization

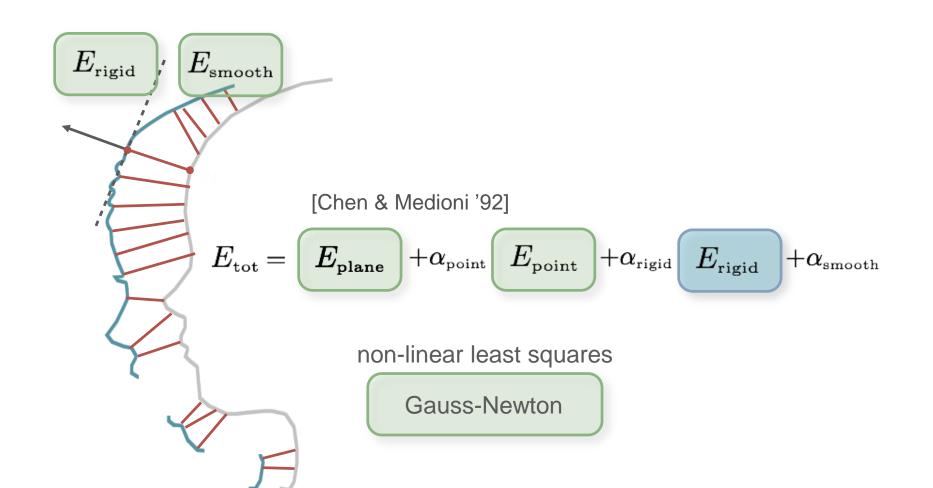


Tasks support each other

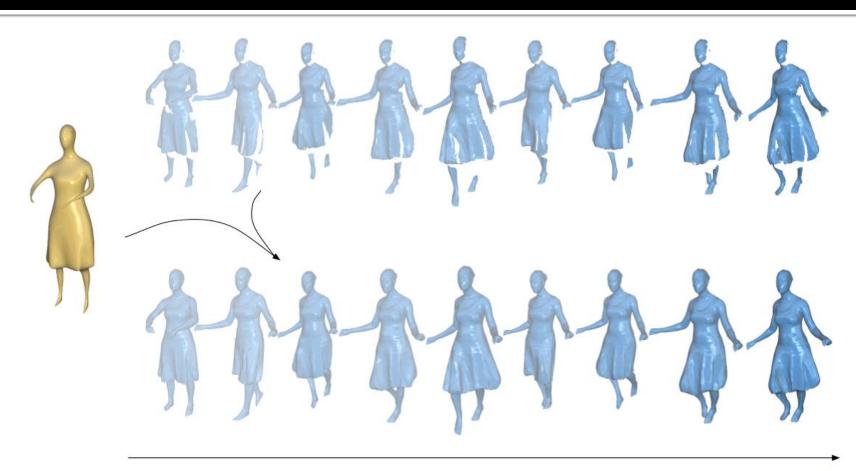
Pipeline



Rough Summary



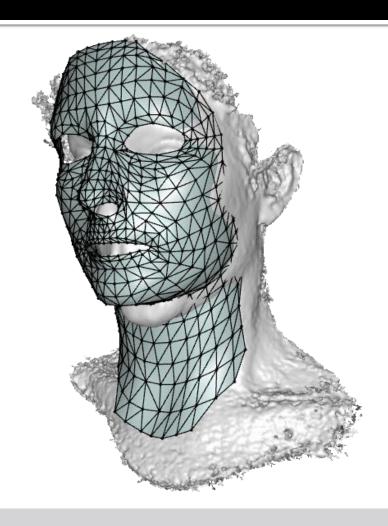
Alternative Approaches



Data provided by Stanford and MPI Saarbrücken

Template-based matching

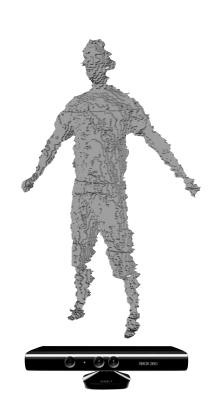
Alternative Approaches



Template alignment, blendshapes

Outstanding Challenges

Environment



Low-cost scanners



Registration and Alignment

Justin Solomon
MIT, Spring 2017

