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In-Memory Databases
• Terabyte Working Sets 

- AWS 12 TB VM 

• Binary Search  
 SAP Hana 

• Binary Tree (partitioned)  
 VoltDB 

• Skip List (shared) 
 RocksDB, MemSQL
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Little’s Law
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Little’s Law

 
W

Bandwidth

Arrival =  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LatencyConcurrency  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Three Improvement Paths

W
A) Latency



13Cimple

Three Improvement Paths

W
A) Latency

B) Spatial locality

L

milk [Kiriansky et al, PACT'16]
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Three Improvement Paths

W
A) Latency C) Memory Level  

Parallelism (MLP)

B) Spatial locality

L
L
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Memory Wall 

• Speculative out-of-order processors:  
automatically discover MLP 

• Non-blocking caches - 
Miss Status Handling Registers 
(MSHRs) 

• Large Instruction Windows  

152
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Memory Wall  
Conquered?

• Speculative out-of-order processors:  
automatically discover MLP 

• Non-blocking caches - 
Miss Status Handling Registers 
(MSHRs) = 10 misses 

• Large Instruction Windows  
~200 instructions

172
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Branch Mispredictions

18http://www.dreamstime.com/abluecup

https://www.dreamstime.com/abluecup_info
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Memory Wall
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Re-execution of correct path of  
independent tasks❌
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❌  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ILP / MLP Vicious cycle

Low  
ILP

Low 
MLP
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ILP / MLP Vicious cycle

Low  
ILP

Low 
MLP

Branch  
Misprediction

High Cache  
Miss Penalty
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% Cimple 
Alternative

• Avoid speculation for MLP -  
harness Request Level Parallelism (RLP) 

• Tasks pipelined on one thread 

• Cooperatively context switch on  
likely cache miss
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Outline
• Cimple Co-Routines Overview 

• Static and Dynamic Schedulers 

• Related Work 

• Cimple DSL and Code Generation 

• Performance Evaluation 

• Conclusion & Q/A
25
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1 2 3R1

Traditional  
One task per thread

• Traditional dependence chain 

• Request 1 executed to completion
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Binary Tree

28

18



Cimple

Binary Tree

29

18

1

2

3

R1



30Cimple

Traditional  
One task per thread

• Traditional dependence chain 

• When Request 1 is complete, start  Request 2

1 2 3R1

1 2 3R2
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Traditional  
One task per thread

• Traditional dependence chain 

• When Request 2 is complete, start  Request 3
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Traditional  
Limited HW Reordering

• Traditional dependence chain 

• HW out-of-order execution only if predictable&short

1 2 3R1

1 2 3R2

1 2 3R3
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1R1

1R2

1R3

• Voluntary context switches after memory access 

Cimple Co-routines  
Co-operative Scheduling
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• Voluntary context switches after memory access 

• No wait for completion - assume latency is hidden

1R1

1R2

1R3

2

Cimple Co-routines  
Co-operative Scheduling
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Cimple Co-routines  
Co-operative Scheduling

1R1

1R2

1R3

2

2

2

• Voluntary context switches after memory access 

• No wait for completion - assume latency is hidden
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Cimple Co-routines  
Co-operative Scheduling

1 2 3R1

1 2 3R2

1 2 3R3

• Mark explicitly with Yield

• Voluntary context switches after memory access 
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Co-routine 
Yield

• Mark voluntary context switches with Yield 

• Must fit all in instruction window

1 2 3R1

1 2 3R2

1 2 3R3
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Co-routine  
+ Prefetch

• Prefetch - Overlaps loads and computation 

• More requests fit the instruction window

1 2 3R1

2 3R2

2 3R3

1

1

1

1
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Co-routine  
Static Scheduling

• Execute a group at a time 

• Wait until all tasks complete

1 2 3R1

1 2 3R2

1 2 3R3

4 5 6 R4

R5

R6

bubble

bubble4
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Co-routine  
Dynamic Scheduling

1 2 3R1

1 2 3R2

1 2 3R3

4

4

1R4

• Refill one task at a time 

• Refill R4 as soon as R2 completesR4 R2
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Co-routine  
Dynamic Scheduling

1 2 3R1

1 2 3R2

1 2 3R3

4 5
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1 2 3R4

• Refill one task at a time 

• Refill R4 as soon as R2 completesR5 R3

R5 1
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Co-routine  
Dynamic Scheduling

• Refill one task at a time 

• Refill R4 as soon as R2 completes

1 2 3R1

1 2 3R2

1 2 3R3

4 5
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2 3
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Static vs Dynamic
• Is Dynamic always better?

1 2 3R2 1R4 2 3

1 2 3R2 R5bubble

R7

Static

Dynamic
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Co-routine Vectorization

• Static Scheduling

1 2R1

1 2R2

1 2R2
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Co-routine Vectorization

• Hybrid Static+Dynamic Scheduling

1 2 3R1

1 2 3R2

1 2 3R2
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Three Keys to High MLP

! Cooperative scheduling of co-routines  
     Yield at memory requests 

! Non-blocking loads overlap with computation 
     Prefetch avoids instruction window overflow  

! Branch misprediction penalty minimized  
     If/Switch grouping, and branchless code

46
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Binary Tree Lookup
node* BinaryTree::find(node* n, Key key){  
    while (n) {  
        if ( n->key == key )  
            return n;  
 
        if ( n->key < key )  
            n = n->right;  
        else  
            n = n->left;  
    }  
    return n;  
}

47
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Binary Tree Hotspots
node* BinaryTree::find(node* n, Key key){  
    while (n) {  
        if ( n->key == key )  
            return n;  
 
        if ( n->key < key )  
            n = n->right;  
        else  
            n = n->left;  
    }  
    return n;  
}

48

// 1. cache miss
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Binary Tree Hotspots
node* BinaryTree::find(node* n, Key key){  
    while (n) {  
        if ( n->key == key )  
            return n;  
 
        if ( n->key < key )  
            n = n->right;  
        else  
            n = n->left;  
    }  
    return n;  
}

49

// 1. cache miss

// 2. branch  
// misprediction
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Binary Tree Branchless
node* BinaryTree::find(node* n, Key key){  
    while (n) {  
        if ( n->key == key )  
            return n;  
 
        
        n = n->child[n->key < key];  
        
            
    }  
    return n;  
}

50
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Today: Cimple DSL 
for Experts 

51

If it is fast and ugly, they will use it and curse you; 

if it is slow, they will not use it.  
   - David Cheriton

[Jain, The Art of Computer Systems Performance Analysis]
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• Performance critical database indices:  
Replace LLVM IR builders in JIT query engines 

• C++ Standard Template Library replacement

52

If it is fast and ugly, they will use it and curse you; 

if it is slow, they will not use it.  
   - David Cheriton

Today: Cimple DSL 
for Experts 
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Past:  
Related Work

• GP: Group prefetching - [Chen et al'04]  
manual static scheduling for hash-join 

• AMAC: Asynchronous Memory Access Chaining 
[Kocberber et al, VLDB’15]  
manual dynamic scheduling

53
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Concurrent:  
C++20 co_routines

• SAP Hana [Psaropoulos et al, VLDB'18] 

• Microsoft SQLServer [Jonathan et al, VLDB'18] 

• Slower than manual GP! 
Pretty front-end, high-overhead backend 

• Dynamic schedule only, no vectorization

54

automated dynamic scheduling
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Binary Tree Lookup
node* BinaryTree::find(node* n, Key key){  
    while (n) {  
        if ( n->key == key )  
            return n;  
 
        
        n = n->child[n->key < key];  
        
            
    }  
    return n;  
}

55
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Cimple DSL: Binary Tree
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Cimple DSL: Binary Tree
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Cimple DSL: Binary Tree
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Co-routine State

59

• Arguments,  
Variables
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Co-routine State
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• Result
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Co-routine State
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• Dynamic Schedule  
Finite State Machine 
_state
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Dynamic Schedule: 
Co-routine with switch
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Dynamic Schedule: 
Co-routine with switch
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Duff’s device 
co-routine
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Scheduler Width
• Width high to hide latency, low to fit state in L1

64
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Static Schedule: for

65

Vectorization friendly Struct-of-Arrays
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Static Schedule: for
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Vectorization friendly Struct-of-Arrays
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Binary Search

68



Cimple

Binary Search
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Binary Search
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Skip List Lookup
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Skip List Lookup
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Down Right
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Skip List Iteration

• Pointer chasing

73
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Hash Table Lookup  
(Linear Probing)

• SIMD 

• One 
cache 
line

74
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Thread Level Parallelism

•  Multi-core 

•  SMT hardware thread 

•  Single-thread OS context switching?

78

✅
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❌
50x slower
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Cimple Throughput Gains 
on Multicore
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Cimple Throughput Gains 
vs Hyper-threading
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Cimple Throughput Gains 
vs Hyper-threading
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IPC Analyzed

• SkipList Range:  
scheduler overhead  

• HashTable:  
SIMD vectorization
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ILP Analyzed
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MLP Analyzed
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MLP Analyzed

• HashTable -  
OoO HW extracts MLP  

• SkipList - speedup  
matching MLP gains
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MLP: Ineffective or Low
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MLP: Ineffective or Low

Pe
rf

or
m

an
ce

 G
ai

ns

0x

2x

4x

6x

8x

10x

Speedup MLP Gain

Binary 
Search

Binary 
Tree

Skip 
List 
Range

M
LP

0

2

4

6

8

10

MLP Base MLP Cimple

Binary  
Search

Binary 
Tree

Skip 
List 
Range



Cimple

MLP Improvement Paths

• Increased Efficiency  
- Static scheduling 
- Vectorization 

• Increased Effectiveness  
- Dynamic scheduling: no bubbles  
- Branchless code

88
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Conclusion

• Fast 
- up to 6.4× speedup 

• Portable DSL (for Stephanies)  
- template libraries 
- database query engines 

• Next: C++ standards (for Joes)

3

%

%

%

%
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Thanks

90

Vladimir Kiriansky 
vlk@csail.mit.edu


