
Cimple: Instruction and
Memory Level Parallelism DSL

Vladimir Kiriansky, Haoran Xu,  
Martin Rinard, Saman Amarasinghe  

PACT'18
 

November 3, 2018
Limassol, Cyprus

Cimple

Cimple Performance Gains

2

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

[Haswell]

Cimple

Cimple Performance Gains

3

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

• Are we teaching the
wrong algorithms?

• Is STL using bad
implementations?

• Has hardware
changed?

[Haswell]

Cimple

Cimple Performance Gains

4

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

• Are we teaching the
wrong algorithms?

• Is STL using bad
implementations?

• Has hardware
changed?

STL
[Haswell]

Cimple

Cimple Performance Gains

5

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

• Are we teaching the
wrong algorithms?

• Is STL using bad
implementations?

• Has hardware
changed?

STL
[Haswell]

Cimple

Cimple Performance Gains

6

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

• Are we teaching the
wrong algorithms?

• Is STL using bad
implementations?

• Does our programming
model match hardware?

STL Folly
[Haswell]

Cimple

Cimple Performance Gains

7

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

• Are we teaching the
wrong algorithms?

• Is STL using bad
implementations?

• Does our programming
model match hardware?

SAP 
Hana

Rocks 
DB

Volt 
DB [Haswell]

8Cimple

In-Memory Databases
• Terabyte Working Sets 

- AWS 12 TB VM

• Binary Search  
 SAP Hana

• Binary Tree (partitioned)  
 VoltDB

• Skip List (shared) 
 RocksDB, MemSQL

Cimple

Cimple Performance Gains

9

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

• Are we teaching the
wrong algorithms?

• Is STL using bad
implementations?

• Does our programming
model match hardware?

[Haswell]

10Cimple

Little’s Law

 
λ

 
W

L = λW

Arrival
Rate

LatencyConcurrency  
L

11Cimple

Little’s Law

 
W

Bandwidth

Arrival =  
Departure

LatencyConcurrency  
L = 8

 
λ X 2= =

= 4

L = λW

12Cimple

Three Improvement Paths

W
A) Latency

13Cimple

Three Improvement Paths

W
A) Latency

B) Spatial locality

L

milk [Kiriansky et al, PACT'16]

14Cimple

Three Improvement Paths

W
A) Latency C) Memory Level  

Parallelism (MLP)

B) Spatial locality

L
L

Cimple

Memory Wall 

• Speculative out-of-order processors:  
automatically discover MLP

• Non-blocking caches - 
Miss Status Handling Registers
(MSHRs)

• Large Instruction Windows  

152

Cimple

Memory Wall 

• Speculative out-of-order processors:  
automatically discover MLP

• Non-blocking caches - 
Miss Status Handling Registers
(MSHRs)

• Large Instruction Windows  

162

Cimple

Memory Wall  
Conquered?

• Speculative out-of-order processors:  
automatically discover MLP

• Non-blocking caches - 
Miss Status Handling Registers
(MSHRs) = 10 misses

• Large Instruction Windows  
~200 instructions

172

Cimple

Branch Mispredictions

18http://www.dreamstime.com/abluecup

https://www.dreamstime.com/abluecup_info

Cimple 192

❌
"

Memory Wall  
Conquered?

Branch Misprediction❌

Cimple 202

❌
"

Memory Wall  
Conquered?

✅

✅

Branch Misprediction❌

Cimple

Memory Wall

212

❌
"

❌

❌

$

$

Re-execution of correct path of  
independent tasks❌

❌

❌  
❌

Branch Misprediction❌

22Cimple

ILP / MLP Vicious cycle

Low  
ILP

Low 
MLP

23Cimple

ILP / MLP Vicious cycle

Low  
ILP

Low 
MLP

Branch  
Misprediction

High Cache  
Miss Penalty

%

%

%

% Cimple 
Alternative

• Avoid speculation for MLP -  
harness Request Level Parallelism (RLP)

• Tasks pipelined on one thread

• Cooperatively context switch on  
likely cache miss

Cimple

Outline
• Cimple Co-Routines Overview

• Static and Dynamic Schedulers

• Related Work

• Cimple DSL and Code Generation

• Performance Evaluation

• Conclusion & Q/A
25

Cimple 
Overview

Cimple 27

1 2 3R1

Traditional  
One task per thread

• Traditional dependence chain

• Request 1 executed to completion

Cimple

Binary Tree

28

18

Cimple

Binary Tree

29

18

1

2

3

R1

30Cimple

Traditional  
One task per thread

• Traditional dependence chain

• When Request 1 is complete, start Request 2

1 2 3R1

1 2 3R2

31Cimple

Traditional  
One task per thread

• Traditional dependence chain

• When Request 2 is complete, start Request 3

1 2 3R1

1 2 3R2

1 2 3R3

32Cimple

Traditional  
Limited HW Reordering

• Traditional dependence chain

• HW out-of-order execution only if predictable&short

1 2 3R1

1 2 3R2

1 2 3R3

33Cimple

1R1

1R2

1R3

• Voluntary context switches after memory access

Cimple Co-routines  
Co-operative Scheduling

34Cimple

• Voluntary context switches after memory access

• No wait for completion - assume latency is hidden

1R1

1R2

1R3

2

Cimple Co-routines  
Co-operative Scheduling

35Cimple

Cimple Co-routines  
Co-operative Scheduling

1R1

1R2

1R3

2

2

2

• Voluntary context switches after memory access

• No wait for completion - assume latency is hidden

36Cimple

Cimple Co-routines  
Co-operative Scheduling

1 2 3R1

1 2 3R2

1 2 3R3

• Mark explicitly with Yield

• Voluntary context switches after memory access

37Cimple

Co-routine 
Yield

• Mark voluntary context switches with Yield

• Must fit all in instruction window

1 2 3R1

1 2 3R2

1 2 3R3

38Cimple

Co-routine  
+ Prefetch

• Prefetch - Overlaps loads and computation

• More requests fit the instruction window

1 2 3R1

2 3R2

2 3R3

1

1

1

1

1

39Cimple

Co-routine  
Static Scheduling

• Execute a group at a time

• Wait until all tasks complete

1 2 3R1

1 2 3R2

1 2 3R3

4 5 6 R4

R5

R6

bubble

bubble4

40Cimple

Co-routine  
Dynamic Scheduling

1 2 3R1

1 2 3R2

1 2 3R3

4

4

1R4

• Refill one task at a time

• Refill R4 as soon as R2 completesR4 R2

41Cimple

Co-routine  
Dynamic Scheduling

1 2 3R1

1 2 3R2

1 2 3R3

4 5

4

6

1 2 3R4

• Refill one task at a time

• Refill R4 as soon as R2 completesR5 R3

R5 1

42Cimple

Co-routine  
Dynamic Scheduling

• Refill one task at a time

• Refill R4 as soon as R2 completes

1 2 3R1

1 2 3R2

1 2 3R3

4 5

4

6

1R4

R5

R6

2 3

1 2

R6 R1

43Cimple

Static vs Dynamic
• Is Dynamic always better?

1 2 3R2 1R4 2 3

1 2 3R2 R5bubble

R7

Static

Dynamic

44Cimple

Co-routine Vectorization

• Static Scheduling

1 2R1

1 2R2

1 2R2

45Cimple

Co-routine Vectorization

• Hybrid Static+Dynamic Scheduling

1 2 3R1

1 2 3R2

1 2 3R2

Cimple

Three Keys to High MLP

! Cooperative scheduling of co-routines  
 Yield at memory requests

! Non-blocking loads overlap with computation 
 Prefetch avoids instruction window overflow

! Branch misprediction penalty minimized  
 If/Switch grouping, and branchless code

46

Cimple

Binary Tree Lookup
node* BinaryTree::find(node* n, Key key){  
 while (n) {  
 if (n->key == key)  
 return n;  
 
 if (n->key < key)  
 n = n->right;  
 else  
 n = n->left;  
 }  
 return n;  
}

47

18

Cimple

Binary Tree Hotspots
node* BinaryTree::find(node* n, Key key){  
 while (n) {  
 if (n->key == key)  
 return n;  
 
 if (n->key < key)  
 n = n->right;  
 else  
 n = n->left;  
 }  
 return n;  
}

48

// 1. cache miss

Cimple

Binary Tree Hotspots
node* BinaryTree::find(node* n, Key key){  
 while (n) {  
 if (n->key == key)  
 return n;  
 
 if (n->key < key)  
 n = n->right;  
 else  
 n = n->left;  
 }  
 return n;  
}

49

// 1. cache miss

// 2. branch  
// misprediction

Cimple

Binary Tree Branchless
node* BinaryTree::find(node* n, Key key){  
 while (n) {  
 if (n->key == key)  
 return n;  
 
  
 n = n->child[n->key < key];  
  
  
 }  
 return n;  
}

50

Cimple

Today: Cimple DSL 
for Experts

51

If it is fast and ugly, they will use it and curse you;

if it is slow, they will not use it.  
 - David Cheriton

[Jain, The Art of Computer Systems Performance Analysis]

Cimple

• Performance critical database indices:  
Replace LLVM IR builders in JIT query engines

• C++ Standard Template Library replacement

52

If it is fast and ugly, they will use it and curse you;

if it is slow, they will not use it.  
 - David Cheriton

Today: Cimple DSL 
for Experts

Cimple

Past:  
Related Work

• GP: Group prefetching - [Chen et al'04]  
manual static scheduling for hash-join

• AMAC: Asynchronous Memory Access Chaining
[Kocberber et al, VLDB’15]  
manual dynamic scheduling

53

Cimple

Concurrent:  
C++20 co_routines

• SAP Hana [Psaropoulos et al, VLDB'18]

• Microsoft SQLServer [Jonathan et al, VLDB'18]

• Slower than manual GP! 
Pretty front-end, high-overhead backend

• Dynamic schedule only, no vectorization

54

automated dynamic scheduling

Cimple

Binary Tree Lookup
node* BinaryTree::find(node* n, Key key){  
 while (n) {  
 if (n->key == key)  
 return n;  
 
  
 n = n->child[n->key < key];  
  
  
 }  
 return n;  
}

55

Cimple

Cimple DSL: Binary Tree

56

Cimple

Cimple DSL: Binary Tree

57

Cimple

Cimple DSL: Binary Tree

58

Cimple

Co-routine State

59

• Arguments,  
Variables

Cimple

Co-routine State

60

• Result

Cimple

Co-routine State

61

• Dynamic Schedule  
Finite State Machine 
_state

Cimple

Dynamic Schedule: 
Co-routine with switch

62

Cimple

Dynamic Schedule: 
Co-routine with switch

63

Duff’s device 
co-routine

Cimple

Scheduler Width
• Width high to hide latency, low to fit state in L1

64

Cimple

Static Schedule: for

65

Vectorization friendly Struct-of-Arrays

Cimple

Static Schedule: for

66

Vectorization friendly Struct-of-Arrays

Applications

Cimple

Binary Search

68

Cimple

Binary Search

69

Cimple

Binary Search

70

Cimple

Skip List Lookup

71

Cimple

Skip List Lookup

72

Down Right

Cimple

Skip List Iteration

• Pointer chasing

73

Cimple

Hash Table Lookup  
(Linear Probing)

• SIMD

• One
cache
line

74

Performance 
Evaluation

Cimple

Performance

76

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x
Speedup (1T, 1GB)

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

[Default indices of  
VoltDB/RocksDB]

Cimple

Performance

77

Pe
rf

or
m

an
ce

 G
ai

ns

0x

1x

2x

3x

4x

5x

6x

7x
Speedup (1T, 1GB)

Pe
rf

or
m

an
ce

 G
ai

ns
0x

1x

2x

3x

4x

BS BT SL SLi HT

Throughput (48 SMT, 48GB)

Binary  
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

[Default indices of  
VoltDB/RocksDB]

Haswell EP (24 cores, 2-way SMT)

Cimple

Thread Level Parallelism

• Multi-core

• SMT hardware thread

• Single-thread OS context switching?

78

✅

✅

❌
50x slower

Cimple

Cimple Throughput Gains 
on Multicore

79

Th
ro

ug
hp

ut
 (M

O
ps

/s)

0

10

20

30

40

50

Cores

1 2 4 8 12 16 20 24

Baseline Cimple

6.4x

[Haswell (2x12 cores)]

3.7x

Cimple

Cimple Throughput Gains 
vs Hyper-threading

80

Th
ro

ug
hp

ut
 (M

O
ps

/s)

0

10

20

30

40

50

HW Threads

1 2 4 8 12 16 20 24 48

Baseline Cimple

6.4x

[Haswell (2x12 cores, 2-way SMT)]

2.4x

Cimple

Cimple Throughput Gains 
vs Hyper-threading

81

Th
ro

ug
hp

ut
 (M

O
ps

/s)

0

10

20

30

40

50

HW Threads

1 2 4 8 12 16 20 24 48

Baseline Cimple

6.4x

[Haswell (2x12 cores, 2-way SMT)]

6x

82Cimple

IPC Analyzed

• SkipList Range:  
scheduler overhead  

• HashTable:  
SIMD vectorization

R
at
io

0x

2x

4x

6x

8x

10x

Speedup IPC Gain

22x

Binary 
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

p = p->next;

83Cimple

ILP Analyzed

Binary 
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

Executed μOps  
when not stalled

0

1

2

3

4
ILP Base ILP Cimple• Uncovered 

more parallelism 

• Absorbed  
scheduler overhead

84Cimple

MLP Analyzed

Pe
rf

or
m

an
ce

 G
ai

ns

0x

2x

4x

6x

8x

10x

Speedup MLP Gain

Binary 
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

• HashTable -  
OoO HW extracts MLP

 

85Cimple

MLP Analyzed

• HashTable -  
OoO HW extracts MLP

• SkipList - speedup  
matching MLP gains

Pe
rf

or
m

an
ce

 G
ai

ns

0x

2x

4x

6x

8x

10x

Speedup MLP Gain

Binary 
Search

Binary 
Tree

Skip 
List 

Skip 
List 
Range

Hash 
Table

86Cimple

MLP: Ineffective or Low

Pe
rf

or
m

an
ce

 G
ai

ns

0x

2x

4x

6x

8x

10x

Speedup MLP Gain

Binary 
Search

M
LP

0

2

4

6

8

10

MLP Base MLP Cimple

Binary  
Search

87Cimple

MLP: Ineffective or Low

Pe
rf

or
m

an
ce

 G
ai

ns

0x

2x

4x

6x

8x

10x

Speedup MLP Gain

Binary 
Search

Binary 
Tree

Skip 
List 
Range

M
LP

0

2

4

6

8

10

MLP Base MLP Cimple

Binary  
Search

Binary 
Tree

Skip 
List 
Range

Cimple

MLP Improvement Paths

• Increased Efficiency  
- Static scheduling 
- Vectorization

• Increased Effectiveness  
- Dynamic scheduling: no bubbles  
- Branchless code

88

Cimple

Conclusion

• Fast 
- up to 6.4× speedup

• Portable DSL (for Stephanies)  
- template libraries 
- database query engines

• Next: C++ standards (for Joes)

3

%

%

%

%

Cimple

Thanks

90

Vladimir Kiriansky
vlk@csail.mit.edu

