
DAWG: A Defense Against  
Cache Timing Attacks in  

Speculative Execution Processors

Vladimir Kiriansky, Ilia Lebedev,  
Saman Amarasinghe, Srinivas Devadas, Joel Emer

{vlk, ilebedev, saman, devadas, emer}@csail.mit.edu

MICRO'18
 

October 24, 2018
Fukuoka, Japan

DAWG

Outline
• Cache access timing attacks

• DAWG protection mechanism: Cache, Core

• OS support: System Calls, Resource Management

• Performance and security evaluation

• Conclusion & Q/A

2

DAWG

Trust Boundaries

3

OS

Process

DAWG

Trust Boundaries

4

OS

Sand 
box

Enclave

Hypervisor

Process

DAWG

Trust Boundaries

5

OS

Sand 
box

EnclaveOS

Hypervisor

Process Process

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Trust Boundary Crossing 
APIs / Attack Vectors

6

Enclave

Legal API

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Trust Boundary Crossing 
APIs / Attack Vectors

7

Enclave

Illegal Channel

Legal API

DAWG

Side Channels and  
Covert Channels

8

 

Attacker's  
Protection Domain

Victim's  
Protection Domain

  
!

Secret  
data

!

Stolen  
data

DAWG

Side Channels and  
Covert Channels

9

 

Attacker's  
Protection Domain

  
!

• Accessor 
- Existing code - non-speculative, traditional  
- Synthesized - Spectre 1.0, 1.1 - unresolved

 

Secret  
data Accessor 

⛓ ⛓ ⛓ ⛓

Victim's  
Protection Domain

DAWG

Side Channels and  
Covert Channels

10

 

Attacker's  
Protection Domain

  
!

covert 
channel

• Accessor 
- Existing code - non-speculative, traditional  
- Synthesized - Spectre 1.0, 1.1 - unresolved

 

!

Secret  
data Transmitter  

!

Accessor  Receiver 

⛓ ⛓ ⛓ ⛓ !

Stolen  
data

Victim's  
Protection Domain

DAWG

Side Channels and  
Covert Channels

11

 

Attacker's  
Protection Domain

  
!

covert 
channel

• Accessor 
- Existing code - non-speculative, traditional  
- Synthesized - Spectre 1.0, 1.1 - unresolved

• Channel = micro-architectural state: 
cache, TLB, branch predictor state, etc.

!

Secret  
data Transmitter  

!

Accessor  Receiver 

⛓ ⛓ ⛓ ⛓ !

Stolen  
data

Victim's  
Protection Domain

DAWG

Side Channels and  
Covert Channels

12

 

Attacker's  
Protection Domain

  
!

• Accessor 
- Existing code - non-speculative, traditional  
- Synthesized - Spectre 1.0, 1.1 - unresolved

• Channel = micro-architectural state: 
cache, TLB, branch predictor state, etc.

!

Secret  
data Transmitter  

!

Accessor  Receiver 

⛓ ⛓ ⛓ ⛓ !

Stolen  
data

Victim's  
Protection Domain blocked 

channel

DAWG

Cache Covert Channel

13

 

Attacker's  
Protection Domain

  
!

cache 
covert 

channel
!!

Transmitter  

Victim's  
Protection Domain

Receiver 

DAWG

Cache Covert Channel: 
Shared Cache Ways

14

2-way  
Cache Set

DAWG

Cache Covert Channel: 
Shared Cache Ways

15

1. Receiver evicts block A  
Flush / Evict / Thrash  

 
 

2-way  
Cache Set

[Flush+Reload, Evict+Reload, Thrash+Reload]

A

DAWG

Cache Covert Channel: 
Shared Cache Ways

16

1. Receiver evicts block A  
Flush / Evict / Thrash  

 
 

2-way  
Cache Set

DAWG

Cache Covert Channel: 
Shared Cache Ways

17

0 1

1. Receiver evicts block A  
Flush / Evict / Thrash  

2. Transmitter sends a 0 or 1  
secret bit via access to A  

A

DAWG

Cache Covert Channel: 
Shared Cache Ways

18

A

0 1

1. Receiver evicts block A  
Flush / Evict / Thrash  

2. Transmitter sends a 0 or 1  
secret bit via access to A  

3. Receiver times access to A

A

DAWG

Cache Covert Channel: 
Shared Cache Ways

19

A A

A

0 1

1. Receiver evicts block A  
Flush / Evict / Thrash  

2. Transmitter sends a 0 or 1  
secret bit via access to A  

3. Receiver times access to A

>!infers secret bit

DAWG

 

Cache Covert Channel

20

☹

!

Attacker

  
! !!

Transmitter   Receiver 

Victim cache 
covert 

channel

DAWG

 

Block 
Cache Covert Channel?

21

Attacker

  
! !!

Transmitter   Receiver 

Victim

DAWG

DAWG: Dynamically
Allocated Way Guard

• Cache Protection Domains

• Non-interference by any action:  
hit / flush / eviction / fill

22

DAWG

DAWG: Dynamically
Allocated Way Guard

• Cache Protection Domains

• Non-interference by any action: 
hit / flush / eviction / fill

• Partitioned ways of set-associative structures

• Domain-private cache tag state

23

Way-partitioned  
Cache Set

DAWG

DAWG: Dynamically
Allocated Way Guard

• Cache Protection Domains

• Non-interference by any action: 
hit / flush / eviction / fill

• Partitioned ways of set-associative structures

• Domain-private cache tag state

• Domain-private replacement metadata

24

Way-partitioned  
Cache Set

DAWG

No Cache Covert Channel: 
Private Cache Ways

25

Per-Domain  
Ways

AttackerVictim

DAWG

No Cache Covert Channel: 
Private Cache Ways

26

1. Receiver evicts block A? 
Flush / Evict / Thrash  

 
 

DAWG

No Cache Covert Channel: 
Private Cache Ways

27

1. Receiver evicts block A  
Flush / Evict / Thrash  

 
 

DAWG

No Cache Covert Channel: 
Private Cache Ways

28

0 1

1. Receiver evicts block A  
Flush / Evict / Thrash  

2. Transmitter sends a 0 or 1  
secret bit via access to A  

A

DAWG

No Cache Covert Channel: 
Private Cache Ways

29

A

0 1

1. Receiver evicts block A  
Flush / Evict / Thrash  

2. Transmitter sends a 0 or 1  
secret bit via access to A  

3. Receiver times access to A A

DAWG

No Cache Covert Channel: 
Private Cache Ways

30

AA

0 1

1. Receiver evicts block A  
Flush / Evict / Thrash  

2. Transmitter sends a 0 or 1  
secret bit via access to A  

3. Receiver times access to A

=no signal

A

A

DAWG

No Cache Covert Channel: 
Private Cache Ways

31

0 1

1. Receiver evicts block A  
Flush / Evict / Thrash  

2. Transmitter sends a 0 or 1  
secret bit via access to A  

3. Receiver times access to A ?!

=no signal

A

A

AA

DAWG

No Cache Covert Channel

32

Receiver

Attacker 
Domain

Victim  
Domain

Transmitter
!

!

!

DAWG

CAT: QoS Cache Partitioning

• Starting point in production silicon:  
Intel's Cache Allocation Technology for LLC

• Iyer et al [SC'04, SIGMETRICS'07, MICRO'07] 
From concept to reality in Haswell [HPCA'16]

• Not a security barrier

33

Quality of Service goal: prevent one  
application from dominating the cache

DAWG

CAT: Way-Partitioned
Set-associative Caches

34

Set
Index

== == == ==

Tag

replacement
policy

updated
set
metadata

Address

set metadata

way hits

cache line

Address, Core ID, etc

Cache controller state machine

cache line
write data

way write
enables

coherence
logic

new
cache

line

set
index

way
write
enable

Address, Core ID, coherence, etc
Cache port (s) Backend port

W0 W1 W2 W3

Tag Line

cache
way

... cache set
metadata

hit 

• Way-partitioning LLC

• Protection domain IDs

• Fill mask

 
 

DAWG 35

...W0 W1 W2 W3
cache set
metadata

Set
Index

== == == ==

Tag

replacement
policy

updated
set
metadata

Address

set metadata

policy-masked
way hits

cache line

Tag Line

Address, Core ID,
domain_id, etc

Cache controller state machine

cache line
write data

way write
enables

coherence
logic

cache
way

new
cache

line

set
index

way
write
enable

Address, Core ID,
domain_id, coherence, etc

Cache port (s) Backend port

policies

hit
isolation

• Way-partitioning L1-L3

• Protection domain IDs

• Fill mask

 
 

DAWG: Dynamically
Allocated Way Guard

 
metadata 

 

hit 

fill 
isolation

DAWG 36

...W0 W1 W2 W3
cache set
metadata

Set
Index

== == == ==

Tag

replacement
policy

updated
set
metadata

Address

set metadata

policy-masked
way hits

cache line

Tag Line

Address, Core ID,
domain_id, etc

Cache controller state machine

cache line
write data

way write
enables

coherence
logic

cache
way

new
cache

line

set
index

way
write
enable

Address, Core ID,
domain_id, coherence, etc

Cache port (s) Backend port

policies

hit
isolation

• Way-partitioning L1-L3

• Protection domain IDs

• Fill mask

• Hit mask  
- Hits  

DAWG: Dynamically
Allocated Way Guard

 
metadata 

 

hit 
isolation

fill 
isolation

DAWG

...W0 W1 W2 W3
cache set
metadata

Set
Index

== == == ==

Tag

replacement
policy

updated
set
metadata

Address

set metadata

policy-masked
way hits

cache line

Tag Line

Address, Core ID,
domain_id, etc

Cache controller state machine

cache line
write data

way write
enables

coherence
logic

cache
way

new
cache

line

set
index

way
write
enable

Address, Core ID,
domain_id, coherence, etc

Cache port (s) Backend port

policies

hit
isolation

• Way-partitioning L1-L3

• Protection domain IDs

• Fill mask

• Hit mask  
- Hits  
- PLRU updates

DAWG: Dynamically
Allocated Way Guard

37

 
metadata 
isolation 

hit 
isolation

fill 
isolation

DAWG

Higher Security than 
QoS Cache Partitioning

38

Hits 
Cross-Domain

• Production QoS 
way-partitioning (CAT) 
by design allows  
hits across domains

• Not a security barrier  

CAT DAWG

Way
allocation ✅ ✅
Hits in
victim ❌ ✅

DAWG

Higher Security than 
QoS Cache Partitioning

39

CAT DAWG

Way
allocation ✅ ✅
Hits in
victim ❌ ✅
Flush in
victim ❌ ✅

Flush

• Production QoS 
way-partitioning (CAT) 
by design allows  
hits across domains

• Not a security barrier  

DAWG

Higher Security than 
QoS Cache Partitioning

40

LRU

CAT DAWG

Way
allocation ✅ ✅
Hits in
victim ❌ ✅
Flush in
victim ❌ ✅
PLRU/NRU  
leak ❌ ✅

• Production QoS 
way-partitioning (CAT) 
by design allows  
hits across domains

• Not a security barrier  

DAWG

Shared Memory ↛ Shared Cache  

41

CAT DAWG

Hits in
victim ❌ ✅
Flush in
victim ❌ ✅

Flush+Reload 
Evict+Reload 
Thrash+Reload

CAT

DAWG

DAWG

Shared Sets ↛ Shared Metadata 

42

 
PLRU-Prime+Probe

LRU LRU

LRU

CAT DAWG

PLRU/NRU  
leak ❌ ✅

CAT

DAWG

OS Support and  
Resource Management

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Protection Domain Isolation

44

Enclave

Illegal Channels

Legal API

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Protection Domain Isolation

45

Enclave

Illegal Channels

Legal API

❌

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Protection Domain Isolation

46

Enclave

Legal API❌

DAWG

Fast System Calls

1. OS can access
everything in
process memory

2. In/out arguments in
cache (dirty)

3. OS must not leak

47

OS

Process

DAWG

Core & OS changes: 
Domain Descriptors

48

Fill Mask

• Existing support for CAT

Domain Descriptors 
Global

0111
1000

0
1

DAWG

Core & OS changes: 
Domain Descriptors

49

Fill Mask
Hit Mask

Domain Descriptors 
Global

• Existing support for CAT + DAWG

0111,0111
1000,1000

0
1

DAWG

Core & OS changes: 
Domain Selectors

• Existing support for SMAP  
(Supervisor Mode Access Protection)

Few routines access user-data & toggle SMAP

50

copy_from_user
copy_to_user

...

DAWG

Core & OS changes: 
Domain Selectors

Code:

Store:
Load:

51

Domain Selectors 
Per-Thread

• Existing support for SMAP + DAWG  

• Core MSR: separate code / load / store selectors

DAWG

Core & OS changes: 
System calls

Code:
User

Store:
Load:

User

User

52

Fill Mask
Hit Mask

Domain Selectors 
Per-Thread

• Existing support for CAT & SMAP + DAWG 

• Core MSR: separate code / load / store selectors

DAWG

Core & OS changes: 
System calls

53

copy_from_user

User

OS

OSCode:

Store:
Load:

• Existing support for CAT & SMAP + DAWG 

• Core MSR: separate code / load / store selectors

DAWG

Core & OS changes: 
System calls

54

copy_to_user

OS

User

OSCode:

Store:
Load:

• Existing support for CAT & SMAP + DAWG 

• Core MSR: separate code / load / store selectors

DAWG

Resource Management

55

Fill Mask
Hit Mask

• Extends CAT support + secure domain reallocation

• Secure dynamic way reassignment

DAWG

Secure Dynamic Way
Reassignment

56

Fill Mask
Hit Mask

Flush blocks  
in revoked way

• Secure way sanitization

• Concurrent for shared caches

DAWG

Secure Dynamic Way
Reassignment

57

Fill Mask
Hit Mask

DAWG

Secure Dynamic Way
Reassignment

58

Fill Mask
Hit Mask

DAWG

Secure Dynamic Way
Reassignment

59

Fill Mask
Hit Mask

DAWG

DAWG Beyond Cache
Partitioning

• Cache Way Locking

60

Fill Mask
Hit Mask

DAWG

Core & OS changes

• Shared libraries, memory mapped I/O,  
VM page sharing, and cache coherence

• Details in our paper

61

Performance 
Evaluation

DAWG

Matching Performance of  
QoS Cache Partitioning

• Typical use case:  
public cloud VM isolation  
(no page sharing, no core sharing, no SMT) 
 
→ DAWG's performance is identical to
production LLC way-partitioning (Intel's CAT)

63

VM1 VM2

Cy
cle

s /
 E

dg
e

(K
)

0

5

10

15

12 13 14 15 16 17 18 19 20

 8/16 ways 15/16 ways 16/16 ways

12 13 14 15 16 17 18 19 2012 13 14 15 16 17 18 19 20

Cy
cle

s /
 E

dg
e

(K
)

0

1

2

3

12 13 14 15 16 17 18 19 20 12 13 14 15 16 17 18 19 20

Graph Size (log N)
12 13 14 15 16 17 18 19 20

bc pr tc

bfs cc sssp

[in zsim]Power-law graphs [GAPBS]

(1 way for OS)

Way-Partitioning
(fair share) (insecure baseline)

Cy
cle

s /
 E

dg
e

(K
)

0

5

10

15

12 13 14 15 16 17 18 19 20

 8/16 ways 15/16 ways 16/16 ways

12 13 14 15 16 17 18 19 2012 13 14 15 16 17 18 19 20

Cy
cle

s /
 E

dg
e

(K
)

0

1

2

3

12 13 14 15 16 17 18 19 20 12 13 14 15 16 17 18 19 20

Graph Size (log N)
12 13 14 15 16 17 18 19 20

bc pr tc

bfs cc sssp

Way-Partitioning

[in zsim]Power-law graphs [GAPBS]

(1 way for OS)(fair share) (insecure baseline)

DAWG 66

15 16 17 18 19 20 21 22 23

Graph Size (log N)
15 16 17 18 19 20 21 22 23

Sl
ow

do
w

n

0.8

0.9

1

1.1

1.2

15 16 17 18 19 20 21 22 23

15 16 17 18 19 20 21 22 23 15 16 17 18 19 20 21 22 23

Sl
ow

do
w

n

0.8

0.9

1

1.1

1.2

15 16 17 18 19 20 21 22 23

Private vs Shared (Haswell)

bc pr tc

bfs cc sssp

[on Haswell]

Shared Data: DAWG vs CAT
Shared read-only mapping

Security 
Evaluation

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Cache Partitioning ≈
Dedicated Host Per Domain

68

Illegal Channels❌

Isolating peers

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Cache Partitioning ≈
Dedicated Host Per Domain

69

Illegal Channels❌

Isolating peers

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Cache Partitioning ≈
Dedicated Host Per Domain

70

Illegal Channels❌

Isolating peers and parents

DAWG

OS

Hypervisor

OS

Process Process

Sand 
box

Cache Partitioning ≈
Dedicated Host Per Domain

71

Illegal Channels❌

Secure API

Secure communication

DAWG

Attacker OS

Hypervisor

OS

Process Process

Sand 
box

Dedicated Host Insufficient:
Remote Cache Timing Attacks

72

Dedicated Host

Attacker 
Process

Hypervisor

• High-bandwidth remote cache timing attack

DAWG

Remote Cache Reflection: 
Attacks and Defenses

73

victim’s protection domain
 (kernel)

secret syscall
1

syscall
2

attacker’s protection domain
(malicious unprivileged app)

secretreceiver

 syscall completion
time channel, not closed

by DAWG caches

cache state
affected byaffects

secret is passed indirectly,
via timing of cache accesses,

within a single protection domain

attacker orchestrates syscalls to infer
secret via syscall completion time

syscalls interact via the cache; latency of 2nd syscall depends on accesses made by 1st

• High-bandwidth remote cache timing attack

DAWG

Conclusion
• Partitioning is the foundation

• Minimal changes to hardware: Build on CAT

• Minimal changes to OS: Build on SMAP

• Minimal performance overhead:  
Zero or small over CAT QoS

• DAWG applies beyond caches: TLB, etc

74

DAWG

Thanks

7575

Vladimir Kiriansky
vlk@csail.mit.edu

Backup Slides

DAWG

Beyond Cache Partitioning: 
Code Prioritization

81

CS:
Data

DataES:
DS:

Code

DAWG

Beyond Cache Partitioning  
Streaming Data Isolation

• Graph application use case:  
1-way for streaming edges  
3-ways for per-vertex data

82

CS:
Data

EdgesES:
DS:

