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Outline
• Cache access timing attacks 

• DAWG protection mechanism: Cache, Core 

• OS support: System Calls, Resource Management 

• Performance and security evaluation 

• Conclusion & Q/A
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• Cache Protection Domains 

• Non-interference by any action: 
hit / flush / eviction / fill 

• Partitioned ways of set-associative structures 
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CAT: QoS Cache Partitioning

• Starting point in production silicon:  
Intel's Cache Allocation Technology for LLC 

• Iyer et al [SC'04, SIGMETRICS'07, MICRO'07] 
From concept to reality in Haswell [HPCA'16] 

• Not a security barrier
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Shared Sets ↛ Shared Metadata 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Fast System Calls

1. OS can access 
everything in 
process memory 

2. In/out arguments in 
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3. OS must not leak
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Core & OS changes: 
Domain Selectors

• Existing support for SMAP  
(Supervisor Mode Access Protection) 

Few routines access user-data & toggle SMAP
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DAWG Beyond Cache 
Partitioning
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Core & OS changes

• Shared libraries, memory mapped I/O,  
VM page sharing, and cache coherence 

• Details in our paper
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Matching Performance of  
QoS Cache Partitioning

• Typical use case:  
public cloud VM isolation  
(no page sharing, no core sharing, no SMT) 
 
→ DAWG's performance is identical to 
production LLC way-partitioning (Intel's CAT)
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Remote Cache Reflection: 
Attacks and Defenses
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Conclusion
• Partitioning is the foundation 

• Minimal changes to hardware:  Build on CAT 

• Minimal changes to OS:            Build on SMAP 

• Minimal performance overhead:  
Zero or small over CAT QoS 

• DAWG applies beyond caches: TLB, etc
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Beyond Cache Partitioning: 
Code Prioritization
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Beyond Cache Partitioning  
Streaming Data Isolation

• Graph application use case:  
1-way for streaming edges  
3-ways for per-vertex data 
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