
Abstraction layers for scalable microfluidic
biocomputing

William Thies Æ John Paul Urbanski Æ Todd Thorsen Æ Saman Amarasinghe

Received: 30 July 2006 / Accepted: 28 November 2006 / Published online: 5 May 2007
� Springer Science+Business Media B.V. 2007

Abstract Microfluidic devices are emerging as an attractive technology for automatically

orchestrating the reactions needed in a biological computer. Thousands of microfluidic

primitives have already been integrated on a single chip, and recent trends indicate that the

hardware complexity is increasing at rates comparable to Moore’s Law. As in the case of

silicon, it will be critical to develop abstraction layers—such as programming languages

and Instruction Set Architectures (ISAs)—that decouple software development from

changes in the underlying device technology. Towards this end, this paper presents Bio-

Stream, a portable language for describing biology protocols, and the Fluidic ISA, a stable

interface for microfluidic chip designers. A novel algorithm translates microfluidic mixing

operations from the BioStream layer to the Fluidic ISA. To demonstrate the benefits of

these abstraction layers, we build two microfluidic chips that can both execute BioStream

code despite significant differences at the device level. We consider this to be an important

step towards building scalable biological computers.

This is an extended version of a paper (Thies et al. 2006) that appeared in the 12th International Meeting on
DNA Computing, June, 2006.

W. Thies (&) � S. Amarasinghe
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Room 32-G890, 32 Vassar, St., Cambridge, MA 02139, USA
e-mail: thies@mit.edu

S. Amarasinghe
e-mail: saman@mit.edu

J. P. Urbanski � T. Thorsen
Hatsopoulos Microfluids Laboratory, Massachusetts Institute of Technology, Room 3-246, 77
Massachusetts, Ave., Cambridge, MA 02139, USA

J. P. Urbanski
e-mail: urbanski@mit.edu

T. Thorsen
e-mail: thorsen@mit.edu

123

Nat Comput (2008) 7:255–275
DOI 10.1007/s11047-006-9032-6

Keywords Microfluidics � Laboratory automation � DNA computing �
Biological computation � Self-assembly � Programming languages

1 Introduction

Biological computing offers the possibility of a machine that can assemble itself, adapt to

its environment, and sustain itself naturally. Numerous mechanisms have been devised for

computing with biological primitives, among them DNA computing (Adleman 1994;

Pisanti 1998; Ezziane 2006), DNA self-assembly (Winfree et al. 1998; Winfree 2003),

DNA cellular automata (Benenson et al. 2001; Benenson et al. 2004; Adar et al. 2004), and

cellular signaling (Knight and Sussman 1998; Elowitz and Leibler 2000; Kitano 2002;

Batten et al. 2004). While none of these technologies immediately threatens to displace

silicon as a general-purpose computing medium, each offers unique advantages and could

have far-reaching applications in areas such as programmable nanofabrication, biochem-

ical sensing, embedded therapeutics, and smart agriculture.

One of the challenges in biological computing is that the laboratory protocols needed to

carry out a computation can be very time consuming. For example, a 20-variable 3-SAT

problem required 96 h to complete (Braich et al. 2002), not counting the considerable time

needed for setup and evaluation. To automate and optimize this process, researchers have

turned to microfluidic devices (Farfel and Stefanovic 2005; Gehani and Reif 1999; Grover

and Mathies 2005; Livstone et al. 2006; McCaskill 2001; Somei et al. 2005; van Noort

2005; van Noort et al. 2002; van Noort and Zhang 2004). Microfluidics offers the promise

of a ‘‘lab on a chip’’ system that can individually control picoliter-scale quantities of

fluids, with integrated support for operations such as mixing, storage, PCR, heating/

cooling, cell lysis, electrophoresis, and others (Breslauer et al. 2006, Erickson and Li 2004;

Sia and Whitesides 2003). Apart from being amenable to computer control, microfluidics

drastically reduces the volumes of samples, thereby reducing costs and improving capture

kinetics. Using microfluidics, DNA hybridization times can be reduced from 24 h to 4 min

(van Noort and Zhang 2004) and the number of bases needed to encode information can be

decreased from 15 bases per bit to 1 base per bit (Braich et al. 2002; van Noort 2005).

Thus has emerged a vision for creating a hybrid DNA computer: one that uses mi-

crofluidics for the plumbing (the control paths) and biological primitives for the compu-

tations (the ALUs). On the hardware side, this vision is becoming scalable: microfluidic

chips have integrated up to 3,574 valves with 1,000 individually addressable storage

chambers (Thorsen et al. 2002). Moreover, recent trends indicate that microfluidics is

following a path similar to Moore’s law, with the number of soft-lithography valves per

unit area doubling every 4.5 months (Hong and Quake 2003; Fluidigm Corportaion 2006).

On the software side, however, the microfluidic realm is lagging far behind its silicon

counterpart. For silicon computers, the complexity and scale of the underlying hardware is

masked by a set of well-defined abstraction layers. For example, transistors are organized

into gates, which combine to form functional units, which together can implement an

Instruction Set Architecture (ISA). The user operates at an even higher level of abstraction

(e.g., C++), which is automatically translated into the ISA. These abstraction layers have

proven critical for managing complexity. Without them, the computing field would have

stagnated as every researcher tried to gain a transistor-level understanding of his machine.

Unfortunately, the current practice in experimental microfluidics is to expose all of the

hardware resources directly to the experimentalist. Using a graphical system such as

256 W. Thies et al.

123

Labview, the user orchestrates the individual behavior of each valve in the microfluidic

device. While this practice is merely tedious for today’s devices, it will soon become

completely intractable—akin to programming a modern microprocessor by directly tog-

gling each of a million gates.

In this paper, we present a system and methodology that uses new abstraction layers for

scalable biological computing. As illustrated in Fig. 1, our system consists of three layers.

At the highest level, the programmer indicates the abstract computation to be performed—

for example, in the form of a SAT formula. With some expertise in DNA computing and

experimental biology, the computation can be transformed to the next layer: a portable

biological protocol for performing the computation. The protocol is portable in that it does

not depend on the physical implementation of the protocol; for example, it specifies fluid

concentrations but not fluid volumes. Finally, the bottom layer specifies the operations

needed to execute the protocol on a specific microfluidic chip. Each microfluidic chip

designer provides a library that translates an abstract protocol into the specific sequence of

valve actuations needed to execute that protocol on a specific chip.

These abstraction layers provide many benefits. Primarily, by using an architecture-

independent description of the biological protocol (the middle layer), the application

development can be decoupled from advances in the underlying device technology. Thus,

as microfluidic devices come to support additional inputs, mixers, storage cells, etc., the

existing suite of protocols can run without modification (much as C programs run without

modification on successive generations of microprocessors). In addition, the protocol layer

serves as a division of labor. Rather than requiring a heroic and brittle translation from a

SAT formula directly to a microfluidic chip, a biologist provides a mapping to the abstract

protocol while a microfluidics expert maps the protocol to the underlying device. The

abstract protocol is also perfectly suited to simulation, thereby allowing the logical

operations to be verified without relying on any physical implementation. Further, a por-

table protocol description could serve the role of pseudocode in technical publications,

providing a precise account of the experimental methods used. Third-party protocols could

be downloaded and executed (or called as sub-routines) on one’s own microfluidic device.

Computational problem

Biology expert

Microfluidics expert

Max-clique graph

Biology protocol

, oligo generation
Concentrations of DNA, buffer, etc.
Selection and isolation steps

Microfluidic chip operations

Connectivity and control logic
Locations of inputs, fluids, beads, etc.
Calibration and timing

chip 1
2

3

SAT formula

DNA library

Fig. 1 Abstraction layers for DNA computing

Abstraction layers for scalable microfluidic biocomputing 257

123

In the long term, the protocol description language will support all of the operations

needed for biological computing. However, as there does not yet exist a single microfluidic

device that can encompass all the functionality (preparation of DNA libraries, selection,

readout, etc.), this paper focuses on three fundamental primitives: fluid mixing, fluid

transport, and fluid storage. We describe a programming system called BioStream that

provides an architecture-independent interface for these operations. To show that Bio-

Stream is portable, we execute BioStream code on two fundamentally different micro-

fluidic architectures. We also present a novel algorithm for mixing fluids to a given

concentration using the minimal number of simple on-chip mixing steps. Our system

represents a fully-functional, end-to-end demonstration of portable software on micro-

fluidic hardware.

2 BioStream protocol language

We have developed a software system called BioStream for portable microfluidics pro-

tocols. BioStream is a Java library that virtualizes many aspects of the underlying hardware

resources. While BioStream can be targeted by a compiler (for example, a DNA computing

compiler that converts a mathematical problem into a biological protocol), it is also

suitable for direct programming and experimentation by biologists. As such, the language

provides several high-level abstractions to improve readability and programmer

productivity.

2.1 Providing portability

As shown in Fig. 2, BioStream offers two levels of abstraction underneath the protocol

developer. The first abstraction layer is the BioStream library, which provides first-class

Fluid objects to represent the physical fluids on the chip. The programmer deals only with

Fluid variables, while the runtime system automatically assigns and tracks the location of

the corresponding fluids on the device. The library also supports a general mix operation

for combining fluids in arbitrary proportions and with adjustable precision.

The second abstraction layer, the Fluidic ISA, interfaces with the underlying hardware.

The fundamental operation is mixAndStore, which mixes two fluids in equal proportions

and stores the result in a destination cell. (We describe later how to translate the flexible

mix operations in BioStream to a series of equal-proportion mixes.) As all storage cells on

the chip have unit volume, only one unit of mixture is stored in the destination; any leftover

mixture may be discarded. As detailed in a later section, this allows for a flexible

implementation of mixAndStore on diverse architectures.

In addition to the abstractions for mixing, there are some architecture-specific features

that need to be made available to the programmer. These ‘‘native functions’’ include I/O

devices, sensors, and agitators that might not be supported by every chip, but are needed to

execute the program; for example, special input lines, cameras, or heaters. As shown in

Fig. 2, BioStream supports this functionality by having the programmer declare a set of

architecture requirements. BioStream uses the requirements to generate a library which

contains the same functionality; it also checks that the architecture target supports all of the

required functions. Finally, BioStream includes a generic simulator that inputs a set of

architecture requirements and outputs a virtual machine that emulates the architecture. This

allows full protocol development and validation even without hardware resources.

258 W. Thies et al.

123

The BioStream system is fully implemented. The reflection capabilities of Java are

utilized to automatically generate the library and the simulator from the architecture

requirements. As described later, we also execute the Fluidic ISA on two real microfluidic

chips.

2.2 Example protocol

An example of a BioStream protocol appears in Fig. 3. This is a general program that seeks

to find the ratio of two reagents that leads to the highest activity in the presence of a given

indicator. Experiments of this sort are common in biology. For example, the program could

be applied to investigate the roles of cytochrome-c and caspase 8 in activating apoptosis

(cell death); cell lysate would serve as the indicator in this experiment (Ellerby et al. 1997;

Allan et al. 2003). The protocol uses feedback from a luminescence detector to guide the

search for the highest activity. After sampling some concentrations in the given range, it

descends recursively and narrows the range for the next round of sampling. Using self-

directed mixing, a high precision can be obtained after only a few rounds.

The recursive descent program declares a SimpleLibrary interface (see bottom of

Fig. 3) describing the functionality required on the target architecture. In this case, a

camera is needed to detect luminescence. While we have not mounted a camera on our

current device, it would be straightforward to do so.

 BioStream Library

// mix fluids in arbitrary proportions
Fluid mix(Fluid[] f, double[] c);
// set precision of mixing operations
void setPrecision(double precision);
// wait for a period before proceeding
void waitFor(long seconds);

[native functions with Fluid arguments]

Microfluidic Device Microfluidic Simulator

 Library
Generator

Generate a
BioStream

Library for an
architecture.

 Simulator
Generator

Generate a
simulated

backend for an
architecture.

 Fluidic Instruction
 Set Architecture (ISA)

// mix two fluids in equal proportions
void mixAndStore(Location src1,
 Location src2,
 Location dst)

[native functions with Location arguments]

 Protocol Code

Portable between microfluidic chips
supporting architecture requirements.

Declares native functions such as
I/O, sensors, agitators. For example:
 Fluid input(Integer i);
 Double camera(Fluid i);

 Architecture Requirements

Implemented by

Hardware
Developers

Implemented by

BioStream

Implemented by

Protocol
Developers

Fig. 2 Abstraction layers in the BioStream system

Abstraction layers for scalable microfluidic biocomputing 259

123

// The Recursive Descent protocol recursively
// zooms in on the ratio of fluids A and B that
// has the highest activity. It requires the
// following setup in the laboratory:

import biostream.library.*; // - input(0) -- fluid A
// - input(1) -- fluid B

public class RecursiveDescent { // - input(2) -- luminescent activity indicator

public static void main(String[] args) { // Initialize the backend to use (for example,
String backend = args[0]; // an actual chip or a microfluidic simulator)

// based on command-line input.
SimpleLibrary lib =

(SimpleLibrary)LibraryFactory. // Create an interface to the backend using the
buildLibrary("SimpleLibrary", args[0]); // native functions declared in SimpleLibrary.

run(lib);
}

private static void run(SimpleLibrary lib) { // Perform the protocol:
int ROUNDS = 10; int SAMPLES = 5; // Set number of rounds and samples per round.

Fluid A = lib.input(new Integer(0)); // Assign names to the input fluids.
Fluid B = lib.input(new Integer(1));
Fluid indicator = lib.input(new Integer(2));

double center = 0.5, radius = 0.5; // Initialize center, radius of concentration range.

for (int i=0; i<ROUNDS; i++) { // Repeat for a number of rounds:
lib.setPrecision(0.1*(2*radius)/ SAMPLES); // Set absolute mixing precision to 10X

// more than the granularity of sampling.
double bestActivity = -1; int bestJ = -1;
for (int j=1; j<SAMPLES; j++) { // Repeat across concentrations in range:

double target = center+radius* // Obtain sample of the
(1-2*(double)j/SAMPLES); // target concentration.

Fluid sample = lib.mix(A, target, B, 1-target);

Fluid test = lib.mix(indicator, 0.9, sample, 0.1); // Mix sample with indicator,
lib.wait(30); // wait, and measure activity.
double act = lib.luminescence(test).doubleValue();

if (act > bestActivity) // Remember highest activity.
bestActivity = act; bestJ = j;

}

center = center+radius*(1-2*(double)bestJ/SAMPLES); // Zoom in by factor of 2 around best activity.
radius = radius / 2;

if (center < radius) center = radius; // If needed, move center away from boundary.
if (center > 1-radius) center = 1-radius;

}
}
System.out.println("Best activity: “ + center); // Print concentration yielding highest activity.

}

interface SimpleLibrary extends FluidLibrary { // Declare devices needed by RecursiveDescent:
Fluid input(Integer i); // Require array of fluid inputs.
Double luminescence(Fluid f); // Require luminescence camera.

}

Fig. 3 Recursive descent search in BioStream

260 W. Thies et al.

123

2.3 Improving programmer productivity

A distinguishing feature of BioStream code is the use of Fluid variables to represent

samples on the device. The challenge in implementing this functionality is that physical

fluids can be used only once, as they are consumed in mixtures and reactions. However, the

programmer might reference a Fluid variable multiple times (e.g., variables A and B in the

recursive descent example). BioStream supports this behavior by keeping track of how

each Fluid was generated and automatically regenerating fluids that are reused. This

process assumes that the original steps employed to generate a Fluid (input, mixing,

agitation, etc.) will produce an equivalent Fluid if repeated. While this assumption is a

natural fit for protocols depending only on the concentrations of reagents, there are also

non-deterministic systems (such as directed evolution of cells) to which it does not apply.

We leave full consideration of such systems for future work.

The regeneration mechanism works by associating each Fluid object with the name and

arguments of the function that created it. The creating function must be a mix operation or

a native function, both of which are visible to BioStream (the Fluid constructor is not

exposed). BioStream maintains a valid bit for each Fluid, which indicates whether or not

the Fluid is stored in a storage chamber on the chip. By default, the bit is true when the

Fluid is first created, and it is invalidated when the Fluid is used as an argument to a

BioStream function. If a BioStream function is called with an invalid Fluid, that Fluid is

regenerated using its history. Note that this regeneration mechanism is fully dynamic (no

analysis of the source code is needed) and is accurate even in the presence of pointers and

aliasing.

The computation history created for fluids can be viewed as a dependence tree with

several interesting applications. For example, the library can execute a program in a

demand-driven fashion by initializing each Fluid to an invalid state and only generating it

when it is used by a native function. This lazy evaluation affords the library more flexi-

bility in scheduling the mixing operations when the fluids are needed. For example,

operations could be reordered to minimize storage requirements or to issue parallel

operations with vector control. Dynamic optimizations such as these are especially

promising for microfluidics, as the silicon-based control processors operate much faster

than their microfluidic counterparts.

3 Microfluidic implementation

To demonstrate an end-to-end system, we have designed and fabricated two microfluidic

chips using a standard multi-layer soft-lithography process (Sia and Whitesides 2003).

While there are fundamental differences between the chips (see Table 1), both provide

support for programmable mixing, storage, and transport of fluid samples. More specifi-

cally, both chips implement the mixAndStore operation in the Fluidic ISA: they can load

two samples from storage, mix them together, and store the result. Thus, despite their

differences, code written in BioStream will be portable between the chips.

The first chip (see Fig. 4) isolates fluid samples by suspending them in oil (Urbanski et al.

2006). To implement mixAndStore, each input sample is transported from a storage bin to

one side of the mixer. The mixer uses rotary flow, driven by peristaltic pumps, to mix the

samples to uniformity (Chou et al. 2001). Following mixing, one half of the mixer is drained

and stored in the target location. While the second half could also be stored, it is currently

discarded, as the basic mixAndStore abstraction produces only one unit of output.

Abstraction layers for scalable microfluidic biocomputing 261

123

The second chip (see Fig. 4) isolates fluid samples using air instead of oil. Because fluid

transport is very rapid in the absence of oil, a dedicated mixing element is not needed.

Instead, the input samples are loaded from storage and aligned in a metering element; when

the element is drained, the samples are mixed during transport to storage. Because the

samples are in direct contact with the walls of the flow channels, a small fraction of the

sample is lost during transport. This introduces the need for a wash phase, to clean the

channel walls between operations. Also, to maintain sample volumes, the entire result of

mixing is stored. Any excess volume is discarded in future mixing operations, as the

metering element has fixed capacity.

To demonstrate BioStream’s portability between these two chips, consider the following

code, which generates a gradient of concentrations:

Fluid blue = input(1);
Fluid yellow = input(2);
Fluid[] gradient = new Fluid[5];
for (int i = 0; i <= 4; i++) {

gradient[i] = mix(blue, yellow, i/4.0, 1-i/4.0);
}

This code was used to generate the gradient pictured in Fig. 4 and produces an identical

result on both microfluidic devices. (The gradient shown in Fig. 5 is different and was

generated by a different program.)

Control Layer

Input 1

Input 2

Oil

Mixer

WasteWaste

Flow Layer 5 mm

Storage Cells

Inputs

Mixer
Waste Waste

Storage Cells

Fig. 4 Layout and photo of Chip 1 (driven by oil)

Table 1 Key properties of the microfluidic chips developed

Driving
fluid

Wash
fluid

Mixing Sample
size

Inputs Storage
cells

Valves Control
lines

Chip 1 Oil N/A Rotary mixer Half of mixer 2 8 46 26

Chip 2 Air Water During transport Full mixer 4 32 140 21

Chip 1 provides better isolation and retention of samples, while Chip 2 offers faster and simpler operation

262 W. Thies et al.

123

4 Mixing algorithms

The mixing and dilution of fluids plays a fundamental role in almost all bioanalytical

procedures. Mixing is used to prepare input samples for analysis, to dilute concentrated

substances, and to control reagent volumes. In DNA computing, mixing is needed for

reagent preparation (e.g., DNA libraries, PCR buffers, detection assays) and, in some

techniques, for restriction digests (Faulhammer et al. 2000; Ouyang et al. 1997) or fine-

grained concentration control (Yamamoto et al. 2002). It is critical to provide integrated

support for mixing on microfluidic devices, as otherwise the samples would have to leave

the system every time a mixture is needed.

As described in the previous sections, our microfluidic chips support the mixAndStore
instruction from the Fluidic ISA. This operation simply mixes two fluids in equal pro-

portions. However, the mix command in BioStream allows the programmer to specify

complex mixtures involving multiple fluids in various concentrations. To bridge the gap

between these abstractions, this section describes how to obtain a complex mixture using a

series of simple steps. We describe an abstract model for mixing, an algorithm for mini-

mizing the number of steps required, how to deal with error tolerances, and directions for

future work.

4.1 A model of mixing

The following definition gives our notation for mixtures.

Definition 1 A mixture M is a set of substances Si at given concentrations ci:

M¼fhS1; c1i � � � hSk; ckig
Rk

i¼1ci ¼ 1

For example, a mixture of 3/4 buffer and 1/4 reagent is denoted as

fhbuffer; 3=4i; hreagent; 1=4ig. We further define a sample to be a mixture with only one

substance ðjMj ¼ 1Þ. For example, a sample of buffer is denoted fhbuffer; 1ig, or just

hbufferi.
To obtain a given mixture on a microfluidic chip, one performs a series of mixes using

an on-chip mixing primitive. While the capabilities of this mixer might vary from one chip

Waste

Air

Inputs

Water

Vent

Storage Cells

Metering

Inputs Metering Waste

Storage Cells

Fig. 5 Layout and photo of Chip 2 (driven by air)

Abstraction layers for scalable microfluidic biocomputing 263

123

to another, a simple 1-to-1 mixing model can be implemented on both continuous flow and

droplet-based architectures (Chou et al. 2001; Paik et al. 2003). In this model, all fluids are

stored in uniform chambers of unit volume. The mix operation combines two fluids in

equal proportions, producing two units of the mixture. However, since there may be some

amount of fluid loss with every operation, the result of the mixture might not be able to

completely fill the contents of two storage cells. Thus, the result is stored in only one

storage cell, and the extra mixture is discarded.

The 1-to-1 mixing process can be visualized using a ‘‘mixing tree’’. As depicted in

Fig. 6, each leaf node of a mixing tree represents a sample, while each internal node

represents the mixture resulting from the combination of its children. Figure 7 illustrates

that the mixture at an internal node can be calculated as the arithmetic mean of the

components in child mixtures. In the 1-to-1 model, mixing trees are binary trees because

each mix operation has two inputs. Evaluation of the tree proceeds from the leaf nodes

upwards; the mixture for a given node can be produced once the child mixtures are

available. The overall result of the operation is the mixture specified at the root node.

The following theorem is useful for reasoning about mixing trees. It describes the

concentration of a substance in the overall mixture based on the depths of leaf nodes

containing samples of the substance. The depth of a node n in a binary tree is the length of

the path from the root node to n.

Theorem 1 Consider a mixing tree and a substance S. Let md denote the number of leaf
nodes with sample hSi appearing at depth d of the tree. Then the concentration of S
contained in the root mixture is given by

P
d md�2�d .

Proof A sample at depth d is diluted d times in the mixing process, each time by a factor

of two. Thus it contributes 2�d to the root mixture. Since each mix operation sums the

concentrations from child nodes, the overall contribution is the sum across the leaf nodes at

all depths:
P

d md�2�d . h

The following theorem describes the set of mixtures that can be obtained using a 1-to-1

mixer. Informally, it states that a mixture is reachable if and only if the concentration of

each substance can be written as an integral fraction k/2d.

Fig. 6 Mixing tree yielding 3/4 buffer and 1/4 reagent

264 W. Thies et al.

123

Theorem 2 (1-to-1 Mixing Reachability) Consider a finite set of substances fS1 � � � Skg
with an unlimited supply of samples hSii. Let R denote the set of mixtures that can be
obtained via any sequence of 1-to-1 mixes. Then:

R ¼
fhS1; c1i � � � hSk; ckigs:t: 9 pi; qi; d 2 Z :

LCMðq1 � � � qkÞ ¼ 2d ^ 8i 2 ½1; k� : ci ¼ pi

qi

� �

Proof The equality in the theorem can be shown via bi-directional inclusion ofR and the

right hand side (RHS).

R � RHS: Given a mixing tree for the mixture, construct pi, qi, and d as follows to

satisfy the RHS. Select d as the maximum depth of the tree (i.e., the maximum path length

from the root node to a leaf node) and set all qi = 2d, thereby satisfying the LCM condition.

Then, for leaf nodes at a depth less than d, replace the node with an internal node whose

children are leaves with the same sample as the original. This preserves the identity of the

mixture but increases the depth of some nodes. Iterate until all leaf nodes are at depth d. By

Theorem 1, if a substance has concentration ci in the mixture then it must have ci � 2d leaf

nodes in this tree. Thus, setting pi to the number of leaf nodes with sample hSii, we have

that pi=qi ¼ ci � 2d=2d ¼ ci as required.

R � RHS: Given a mixture satisfying the RHS and values of pi, qi, and d satisfying the

conjuncts, construct a mixing tree that can be used to obtain the given mixture. The tree has

d levels and 2d leaves. Assign sample hSii to any pi�2d=qi of the leaves (this is an integral

quantity because 2d is a common multiple of the qi). By the definition of mixture,P
iðpi=qiÞ ¼

P
i ci ¼ 1 and there is a one-to-one mapping between leaves and samples. By

Theorem 1, the resulting mixture has a concentration of k/2d for a substance with k samples

at the leaves. Thus the concentration for Si in the assignment is ðpi�2d=qiÞ=2d ¼ pi=qi ¼ ci

as desired. h

It is natural to suggest a number of optimization problems for mixing. Of particular

interest are the number of mixes and the number of samples consumed, as these directly

impact the running time and resource requirements of a laboratory experiment. The fol-

lowing theorem shows that (under the 1-to-1 model) these two optimization problems are

equivalent.

Fig. 7 Calculation of a parent mixture from child mixtures using a 1-to-1 mixer. For each substance, the
resulting concentration is the average of the concentrations in the children

Abstraction layers for scalable microfluidic biocomputing 265

123

Theorem 3 In any 1-to-1 mixing sequence, the number of samples consumed is exactly
one greater than the number of mixes.

Proof By induction on the number of nodes, there is always exactly one more leaf node

than internal node in a binary tree. The mixing tree is a binary tree in which each internal

node represents a mix and each leaf node represents a sample. Thus there is always exactly

one more sample consumed than there are mixes. h

Note that this theorem only holds under the 1-to-1 mixing model, in which two units of

volume are mixed but only one unit of the mixture is retained. For microfluidic chips that

attempt to retain both units of mixture (such as droplet-based architectures or our oil-driven

chip), it might be possible to decrease the number of samples consumed by increasing the

number of mix operations.

4.2 Algorithm for optimal mixing

In this section, we give an efficient algorithm for finding a mixing tree that requires the

minimal number of mixes to obtain a given concentration. For clarity, we frame the

problem as follows:

Problem 1 (Minimal Mixing) Consider a finite set of substances fS1 � � � Skg with an
unlimited supply of samples hSii. Given a reachable mixture fhS1; p1=ni � � � hSk; pk=nig,
what is the mixing tree with the minimal number of leaves?

Our algorithm runs in Oðk lg nÞ time.1 and produces an optimal mixing tree (with

respect to this metric). The tree produced has no more than k lg n internal nodes.

The idea behind the algorithm, which we refer to as MIN-MIX, is to place a leaf node

with sample hSi at depth d in the mixing tree if and only if the target concentration for S
has a 1 in bit lg n� d of its binary representation. Theorem 1 then ensures that all sub-

stances have the desired concentrations, while fewer than lg n samples are used for each

one.

Psuedocode for MIN-MIX appears in Fig. 8. We illustrate its operation for the example

mixture of fhA; 5=16i; hB; 4=16i; hC; 7=16ig. As shown in Fig. 9, the algorithm begins with

a pre-processing stage that allocates substances to bins according to the binary represen-

tation of the target concentrations. It then builds the mixing tree via calls to MIN-MIX-

HELPER, which descends through the bins. When a bin is empty, an internal node is created

in the graph and the procedure recurses into the next bin. When a bin has a substance

identifier in it, the substance is removed from the bin and a corresponding sample is added

as a leaf node to the graph. Figure 9 labels the order in which the nodes in the final mixing

tree are created by the algorithm.

The following lemma is key to proving the correctness of MIN-MIX. We denote the nth

least significant bit of x by LSBðx; nÞ. That is, LSBðx; nÞ � ðx� nÞ& 1.

Lemma 1 Consider the mixing tree t produced by MIN-MIX ðfhS1; p1=ni � � � hSk; pk=nigÞ.
A substance Si appears at a depth d in t if and only if LSBðpi; lg n� dÞ ¼ 1.

1 lg n denotes log2 n.

266 W. Thies et al.

123

Proof If: It suffices to show that there is a substance added to the mixing tree for each

LSB of 1 drawn from the pi (that the substance appears at depth d is given by the only if

direction.) Further, since bins[j] is constructed to contain all substances i for which

LSBðpi; jÞ ¼ 1, it suffices to show that (a) all bins are empty at the end of the procedure,

and (b) the procedure does not try to pop from an empty bin. To show (a), use the invariant

that each call to MIN-MIX-HELPER adds a total of 2�d to the mixing tree, where d is the

current depth; either a leaf node is added (which contributes 2�d by Theorem 1) or two

child nodes are added, contributing 2 � 2�ðdþ1Þ ¼ 2�d . But since the initial depth is 0, the

external call results in 20 = 1 unit of mixture being generated. Since the bins represent

exactly one unit of mixture (i.e.,
P

j bins½j� � 2�j ¼ 1), all bins will be used. To show (b),

observe that MIN–MIX references the bins in order, testing if each is empty before pro-

ceeding. Thus no empty bin will ever be dereferenced.

Only if: When a substance is added to the tree from bins[j], it appears at depth lg n� j
in the tree. This is evident from the recursive call in MIN-Mix-HELPER: it initially draws

from bins[lg n] and then works down when the upper bins are empty. By construction,

bins[j] contains only substances Si with LSBðpi; jÞ ¼ 1. Thus, if Si appears at depth d in the

mixing tree, it was added from bins½lg n� d� which has LSBðpi; lg n� dÞ ¼ 1. h

The following theorem asserts the correctness of MIN-MIX.

Fig. 8 MIN-MIX algorithm

Abstraction layers for scalable microfluidic biocomputing 267

123

Theorem 4 The mixing tree given by MIN-MIX gives the correct concentration for each
substance in the target mixture.

Proof Consider a component hS; p=ni of the mixture passed to MIN-MIX. Let md denote

the number of leaf nodes with sample S at depth d of the resulting mixing tree. By Lemma

1, md ¼ LSBðp; lgðnÞ � dÞ. Using Theorem 1, this implies that the concentration for S in

the root mixture is given by

c ¼
X

d

LSBðp; lgðnÞ � dÞ � 2�d

¼
X

x

LSBðp; xÞ � 2�ðlgðnÞ�xÞ

¼
X

x

LSBðp; xÞ � 2x=n

¼p=n

Thus the concentration in the root node of the mixing tree is the same as that passed to

MIN-MIXi h

The following theorem asserts the optimality of the mixing trees produced by MIN-MIX.

Theorem 5 Consider the mixing tree t produced by MIN-MIX ðfhS1; p1=n � � � hSk; pk=ngÞ.
The number of leaf nodes LðtÞ is given by

Fig. 9 Example operation of MIN-MIX for the mixture fhA; 5=16i; hB; 4=16i; hC; 7=16ig. Part (a) illustrates
the algorithm’s allocation of substances to bins. The bin layout directly translates to a valid mixing tree,
which appears in (b) with numbers indicating the order in which nodes are added to the tree. The mixing tree
is redrawn in (c) for clarity

268 W. Thies et al.

123

LðtÞ ¼
Xk

i¼1

Xlg n

j¼0

LSBðpi; jÞ

There does not exist a mixing tree that yields the given mixture with fewer leaf nodes than
LðtÞ.

Proof That MIN-MIX produces a tree t with LðtÞ leaf nodes follows directly from Lemma

1, as there is a one-to-one correspondence between leaf nodes and input samples. To prove

optimality, Theorem 1 gives that pi=n ¼
P

d md�2�d. Thus

pi ¼
P

d md�2lg n�d ¼
P

d

Pmd

i¼1 2lg n�d . That is, pi is a sum of powers of two, and the

number of leaf nodes determines the number of summands. The minimal number of

summands is the number of non-zero bits in the binary representation for pi; this quantity isPlg n
j¼0 LSBðpi; jÞ. Thus it is impossible to obtain a concentration of pi for all k substances in

the tree with fewer than
Pk

i¼1

Plg n
j¼0 LSBðpi; jÞ leaf nodes. h

The following theorem describes the running time of MIN-MIX.

Theorem 6 MIN-MIX(fhS1; p1=ni � � � hSk; pk=nigÞ runs in Oðk lg nÞ time.

Proof The pre-processing stage in MIN-MIX executes k lg n iterations with constant cost

per iteration. By Theorem 5, the recursive procedure returns a tree withPk
i¼1

PlgðnÞ
j¼0 LSBðpi; jÞ ¼ Oðk lg nÞ leaf nodes, and by Theorem 3 this implies that there are

Oðk lg nÞ total nodes in the tree. Since there is constant cost at each node, the overall

complexity is Oðk lg nÞ. h

4.3 Special case: mixing two substances

The minimal mixing tree admits a particularly compact representation when only two

substances hs1; p1=ni and hs2; p2=ni are being mixed. Because the two target concen-

trations must sum to a power of two (in order to be reachable with a 1-to-1 mixer),

there is a special pattern in the bitwise representation of p1 and p2 (see Fig. 10). The

least significant bits might be zero in both concentrations, but then some bit must be

one in each of them. The higher-order bits must be one in exactly one of the con-

centrations (to carry a value upwards) and the most significant bit is zero (as we

assume p1, p2 < n).

Algorithm twoWayMix, shown in Fig. 12, exploits this pattern to directly execute

the mix sequence without building a mixing tree. The sequence of mixes is completely

encoded in the binary representation of either concentration. As illustrated by the

example in Fig. 11, the algorithm starts with a unit of S2 and then skips over all the

low-order zero bits (these result from a fraction p1/n that is not in lowest terms).

When it gets to a high bit, it maintains a running mixture—requiring no temporary

storage—in which either S1 or S2 is added to the mix depending on the next most

significant bit of p1. It can be shown that this procedure is equivalent to building a

mixing tree. However, it is attractive from hardware design standpoint due to its

simplicity and the fact that it directly performs a mixture based on the binary rep-

resentation of the desired concentration.

Abstraction layers for scalable microfluidic biocomputing 269

123

4.4 Supporting error tolerances

Thus far the presentation has been in terms of mixtures that can be obtained exactly with a

1-to-1 mixer, i.e., those with target concentrations in the form of k/2d. However, the

programmer should not be concerned with the reachability of a given mixture. In the

p1 p2 Region Must be present?

ad bd ad + bd = 0 yes

. .

. . ai + bi = 1 no
Bits . .

. . ai + bi = 2 yes

. .

. . a0 + b0 = 0 no

a0 b0

Fig. 10 Arrangement of bits for any p1 þ p2 ¼ 2d

p1 = 14 p2 = 18 Mixing Sequence

25 0 0

24 0 1 4. Add S2, mix

23 1 0 3. Add S1, mix

Bits 22 1 0 2. Add S1, mix

21 1 1 1. Add S2, mix

20 0 0 (ignore)

0. Start with S1

Fig. 11 Example of mixing 14/32 and 18/32 using twoWayMix

twoWayMix(mixture { S1, p1/n , S2, p2/n }) {
// start with S2

fluid = S2

// ignore where both are zero
int start = 0
while (LSB(p1, start) = 0)

start = start + 1
endwhile

// keep running mixture, based on bits of p1:
// bit is 0 - mix with S2

// bit is 1 - mix with S1

for i = start to lg(n)-1
fluid = mix (fluid, S2-LSB(p1, i))

endfor

return fluid
}

Fig. 12 Algorithm for mixing two substances

270 W. Thies et al.

123

BioStream system, the programmer specifies a concentration range [cmin, cmax] and the

system ensures that the mixture produced will fall within the given range.2 Such error

tolerances are already a natural aspect of scientific experiments, as all measuring equip-

ment has a finite precision that is carefully noted as part of the procedure.

Given a concentration range, the system increases the internal precision d until some

concentration k/2d (which can be obtained exactly) falls within the range. When per-

forming a mixture with concentration ranges fhS1; ½c1;min; c1;max� � � � hSk; ½ck;min; ck;max�ig the

system needs to choose concrete concentrations ci and a precision d that satisfies the

following conditions:

1. 8i : 9kis:t:ci ¼ ki=2d

2. 8i : ci;min 	 ci 	 ci;max

3.
P

i ci ¼ 1

The first condition guarantees that the mixture can be obtained using a 1-to-1 mixer. The

second condition states that the concrete concentrations ci are within the range specified by

the programmer. The third condition ensures that the ci form a valid mixture, i.e., that they

sum to one.

The BioStream system uses a simple greedy algorithm to choose ci and d satisfying

these conditions. It increases d until there exists a ci satisfying (1) and (2) for all i. If

multiple candidates for a given ci exist, it selects the smallest possible. Then it checks

condition (3). If the sum exceeds one, it increases d and starts over. If the sum is less than

one, it increases by 1/2d some ci for which ci 	 ci;max � 1=2d. If no such ci exists, it

increases d and starts over. Otherwise the algorithm continues until the conditions are

satisfied.

One can imagine other selection schemes that select ci and d to optimize some criterion,

such as the number of mixes required by the resulting mixture. This would be straight-

forward to implement via an exhaustive search at a given precision level, but it could be

costly depending on the size of the error margins. It will be a fruitful area of future research

to optimize the selection of target concentrations while respecting the error bounds.

4.5 Open problems

We suggest three avenues for future research in mixing algorithms.

4.5.1 N-to-M mixing

It is simple to build a rotary mixer that combines fluids in a ratio other than 1-to-1; for

example, 1-to-2, 1-to-3, or even a ternary mixer such as 1-to-2-to-3. Judging by exhaustive

experiments, it appears that a 1-to-2 mixer can obtain any concentration k/3n. However, we

are unaware of a closed form for the mixtures that can be obtained with a general N-to-M

mixer. Likewise, we consider it to be an open problem to formulate an efficient algorithm

for determining the minimal mix sequence using an N-to-M mixer (i.e., one that does not

resort to an exhaustive lookup table.) A solution to this problem could reduce mixing time

and reagent consumption while increasing precision.

2 Alternately, BioStream supports a global error tolerance e that applies to all concentrations.

Abstraction layers for scalable microfluidic biocomputing 271

123

4.5.2 Minimizing storage requirements

Given a mixing tree, it is straightforward to find an evaluation order that minimizes the

number of temporaries; one can apply the classical node labeling algorithm that minimizes

register usage for trees (Alfred V. Aho and Ullman 1988, p. 561). However, we are

unaware of an efficient algorithm for finding the mixing tree that minimizes the number of

temporaries needed to obtain a given mixture. This could be an important optimization, as

experiments often demand as many parallel samples as can be supported by the archi-

tecture. Also, storage chambers on microfluidic chips are relatively limited and expensive

compared to storage on today’s computers.

4.5.3 Heterogeneous inputs

Our presentation treats each input sample as a black box. However, in practice, the user is

able to prepare large quantities of reagents as inputs to the chip. For an application that

produces an array of concentrations, what inputs should the user prepare to minimize the

number of mixes required? And if some inputs are related (e.g., a sample of 10% acid and

20% acid) how can that be incorporated into the mixing algorithm? Like the previous

items, these are interesting algorithmic questions that can have a practical impact.

5 Related work

Several researchers have pursued the goal of automating the control systems for micro-

fluidic chips. Gascoyne et al. describe a graphical user interface for controlling chips that

manipulate droplets over a two-dimensional grid (Gascoyne et al. 2004). By varying

parameters in the interface, the software can target grids with varying dimensions, speeds,

etc. However, portability is limited to grid-based droplet processors. While the BioStream

protocol language could target their chips, their software is not suitable for targeting ours.

Su et al. represent protocols as acyclic sequence graphs and map them to droplet-based

processors using automatic scheduling (Su and Chakrabarty 2004) and module placement

(Su and Chakrabarty 2005). While the sequence graph is portable, it lacks the expres-

siveness of a programming language and cannot represent feedback loops (as in our

recursive descent example). King et al. demonstrate a ‘‘robot scientist’’ that directs lab-

oratory experiments using a high-level programming language (King et al. 2004), but lacks

the abstraction layers needed to target other devices. Gu et al. have controlled microfluidic

chips using programmable Braille displays (Gu et al. 2004), but protocols are mapped to

the chip by hand.

Johnson demonstrates a special-purpose robotic system (controlled by Labview) that

automatically solves 3-SAT problems using DNA computing (Johnson 2006). Miniatur-

izing his benchtop devices could result in a fully-automatic microfluidic biocomputer.

Livstone et al. compile an abstract SAT problem into a sequence of DNA-computing steps

(Livstone et al. 2006). The output of their system would be a good match for BioStream

and the abstraction layers proposed in this paper.

There are other microfluidic chips that support flexible generation of gradients Dertinger

et al. (2001), Neils et al. (2004), Lin et al. (2004) and programmable mixing on a droplet

array (Pollack et al. 2000). To the best of our knowledge, our chips are the only ones that

provide arbitrary mixing of discrete samples in a soft-lithography medium. A more detailed

comparison of the devices is published elsewhere (Urbanski et al. 2006).

272 W. Thies et al.

123

Ren et al. also suggest a mixing algorithm for diluting a single reagent by a given factor

(Ren et al. 2003). It seems that their algorithm performs a binary search for the target

concentration, progressively approximating the target by a factor of two. However, since

intermediate reagents must be regenerated in the search, this algorithm requires O(n) mixes

to obtain a concentration k/n. In contrast, our algorithm needs O(lg n) to mix two fluids.

6 Conclusions

Microfluidic devices are an exciting substrate for biological computing because they allow

precise and automatic control of the underlying biological protocols. However, as the

complexity of microfluidic hardware comes to rival that of silicon-based computers, it will

be critical to develop effective abstraction layers that decouple application development

from low-level hardware details.

This paper presents two new abstraction layers for microfluidic biocomputers: the

BioStream protocol language and the Fluidic ISA. Protocols expressed in BioStream are

portable across all devices implementing a given Fluidic ISA. We demonstrate this por-

tability by building two fundamentally different microfluidic devices that support execu-

tion of the same BioStream code. We also present a new and optimal algorithm for

obtaining a given concentration of fluids using a simple on-chip mixing device. This

algorithm is essential for efficiently supporting the mix abstraction in the BioStream

language.

It remains an interesting area of future work to leverage DNA computing technology to

target the BioStream language from a high-level description of the computation. This will

create an end-to-end platform for biological computing that is seamlessly portable across

future generations of microfluidic chips.

Acknowledgements We are grateful to David Wentzlaff and Mats Cooper for early contributions to this
research. We also thank John Albeck for helpful discussions about experimental protocols. This work was
supported by National Science Foundation grant #CCF-0541319. J.P.U. was funded in part by the National
Science and Engineering Research Council of Canada (PGSM Scholarship).

References

Adar R, Benenson Y, Linshiz G, Rozner A, Tishby N, Shapiro E (2004) Stochastic computing with
biomolecular automata. PNAS 101:9960–9965

Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024
Alfred V. Aho RS, Ullman JD (1988) Compilers: principles, techniques, and tools, 2nd edn. Addison-

Wesley Publishing Company, pp 561
Allan L, Morrice N, Brady S, Magee G, Pathak S, Clarke P (2003) Inhibition of caspase-9 through phos-

phorylation at Thr 125 by ERK MAPK. Nature Cell Biol 5:647–654
Batten C, Krashinsky R, Knight JT (2004) A scalable cellular logic technology using zinc-finger proteins. In

3rd workshop on non-silicon computing
Benenson K, Paz-Elitzur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous

computing machine made of biomolecules. Nature 414:430–434
Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical

control of gene expression. Nature 429:423–429
Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-variable 3-SAT

problem on a DNA computer. Science 296:499–502
Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol BioSystems 2:97–112
Chou H, Unger M, Quake S (2001) A microfabricated rotary pump. Biomed Microdevices 3:323–330

Abstraction layers for scalable microfluidic biocomputing 273

123

Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes
using microfluidic networks. Anal Chem 73:1240–1246

Ellerby H, Martin S, Ellerby L, Naiem S, Rabizadeh S, Salvesen G, Casiano C, Cashman N, Green D,
Bredesen D (1997) Establishment of a cell-free system of neuronal apoptosis: comparison of premi-
tochondrial, mitochondrial, and postmitochondrial phases. Neuroscience 17:6165–6178

Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–
338

Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26
Ezziane Z (2006) DNA Computing: applications and challenges. Nanotechnology 17:173–198
Farfel J, Stefanovic D (2005) Towards practical biomolecular computers using microfluidic deoxyribozyme

logic gate networks. In proceedings of the 11th international meeting on DNA computing, 38–54
Faulhammer D, Cukras AR, Lipton RJ, Landweber LF (2000) Molecular computation: RNA solutions to

chess problems. PNAS 97(4):1385–1389
Gascoyne PRC, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C,

Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip
4:299–309

Gehani A, Reif J (1999) Micro flow bio-molecular computation. Biosystems 52:197–216
Grover WH, Mathies RA (2005) An integrated microfluidic processor for single nucleotide polymorphism-

based DNA computing. Lab Chip 5:1033–1040
Gu W, Zhu X, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elas-

tomeric channels and Braille displays. PNAS 101(45):15861–15866
Hong JW, Quake SR (2003) Integrated nanoliter systems. Nature BioTechnol 21(10):1179–1183
Johnson C (2006) Automating the DNA computer to solve n-variable 3-SAT problems. In Proceedings of

the 12th international meeting on DNA computing, 360–373
King RD, Whelan KE, Jones FM, Reiser PGK, Bryant CH, Muggleton SH, Kell DB, Oliver SG (2004)

Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427:247–
252

Kitano H (2002) Computational systems biology. Nature 420:206–210
Knight T, Sussman G (1998) Cellular gate technology. In Proceedings of the 1st international conference on

unconventional models of computation
Lin F, Saadi W, Rhee SW, Wang S-J, Mittalb S, Jeon NL (2004) Generation of dynamic temporal and

spatial concentration gradients using microfluidic devices. Lab Chip 4:164–167
Livstone MS, Weiss R, Landweber LF (2006) Automated design and programming of a microfluidic DNA

computer. Nat Comput 5:1–13
Fluidigm Corportaion (2006) Fluidigm glossary - Moore’s Law. Website. http://www.fluidigm.com/

gloss_mlaw.i.ht
McCaskill JS (2001) Optically programming DNA computing in microflow reactors. BioSystems 59:125–

138
Neils C, Tyree Z, Finlayson B, Folch A (2004) Combinatorial mixing of microfluidic streams. Lab Chip

4:342–350
Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science

278:446–449
Paik P, Pamula V, Fair R (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259
Pisanti N (1998) DNA computing: a survey. Bull EATCS 64:171–187
Pollack M, Fair R, Shenderov A (2000) Electrowetting-based actuation of liquid droplets for microfluidic

applications. Appl Phys Lett 77(11):1725–1726
Ren H, Srinivasan V, Fair R (2003) Design and testing of an interpolating mixing architecture for elec-

trowetting-based droplet-on-chip chemical dilution. Proceedings of the 12th international conference
on solid state sensors, actuators, and microsystems, 619–622

Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological
studies. Electrophoresis 24:3563–3576

Somei K, Kaneda S, Fujii T, Murata S (2005) A microfluidic device for DNA tile self-assembly. In
Proceedings of the 11th international meeting on DNA computing, 325–335

Su F, Chakrabarty K (2004) Architectural-level synthesis of digital niicrofluidics-based biochips. In Pro-
ceedings of the 2004 international conference on computer aided design, 223–228

Su F, Chakrabarty K (2005) Unified high-level synthesis and module placement for defect-tolerant mi-
crofluidic biochips. In Proceedings of the 42nd design automation conference 825–830

Thies W, Urbanski JP, Thorsen T, Amarasinghe S (2006) Abstraction layers for scalable microfluidic
biocomputers. In Proceedings of the 12th international meeting on DNA computing, 308–323

Thorsen T, Maerkl S, Quake S (2002) Microfluidic large scale integration. Science 298:580–584

274 W. Thies et al.

123

http://www.fluidigm.com/gloss_mlaw.i.ht
http://www.fluidigm.com/gloss_mlaw.i.ht

Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft
lithography. Lab Chip 6:96–104

van Noort D (2005) A programmable molecular computer in microreactors. In Proceedings of the 11th
international meeting on DNA computing, 365–374

van Noort D, Gast F-U, McCaskill JS (2002) DNA computing in microreactors. In Proceedings of the 8th
international meeting on DNA computing, 33–45

van Noort D, Zhang B-T (2004) PDMS valves in DNA computers. In: SPIE international symposium on
smart materials, nano-, and micro-smart systems, pp 214–220

Winfree E (2003) DNA computing by self-assembly. The Bridge 33(4):37–38
Winfree E, Liu F, Wenzler L, Seeman N (1998) Design and self-assembly of two-dimensional DNA

crystals. Nature 394:539–544
Yamamoto M, Matsuura N, Shiba T, Kawazoe Y, Ohuchi A (2002) Solutions of shortest path problems by

concentration control. In Proceedings of the 7th international meeting on DNA computing, 203–212

Abstraction layers for scalable microfluidic biocomputing 275

123

	Abstraction layers for scalable microfluidic biocomputing
	Abstract
	Introduction
	BioStream protocol language
	Providing portability
	Example protocol
	Improving programmer productivity

	Microfluidic implementation
	Mixing algorithms
	A model of mixing
	Algorithm for optimal mixing
	Special case: mixing two substances
	Supporting error tolerances
	Open problems
	N-to-M mixing
	Minimizing storage requirements
	Heterogeneous inputs

	Related work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

