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Abstract
RNA Polymerase II ChIA-PET data has revealed enhancers that are active in a profiled cell

type and the genes that the enhancers regulate through chromatin interactions. The most

commonly used computational method for analyzing ChIA-PET data, the ChIA-PET Tool,

discovers interaction anchors at a spatial resolution that is insufficient to accurately identify

individual enhancers. We introduceGerm, a computational method that estimates the likeli-

hood that any two narrowly defined genomic locations are jointly occupied by RNA Polymer-

ase II.Germ takes a blind deconvolution approach to simultaneously estimate the likelihood

of RNA Polymerase II occupation as well as a model of the arrangement of read alignments

relative to locations occupied by RNA Polymerase II. Both types of information are utilized

to estimate the likelihood that RNA Polymerase II jointly occupies any two genomic loca-

tions. We apply Germ to RNA Polymerase II ChIA-PET data from embryonic stem cells to

identify the genomic locations that are jointly occupied along with transcription start sites.

We show that these genomic locations align more closely with features of active enhancers

measured by ChIP-Seq than the locations identified using the ChIA-PET Tool. We also

applyGerm to RNA Polymerase II ChIA-PET data from motor neuron progenitors. Based on

theGerm results, we observe that a combination of cell type specific and cell type indepen-

dent regulatory interactions are utilized by cells to regulate gene expression.

Introduction
Regulatory regions that are scattered throughout the genome control the differential expression
of genes in different cell types. One of the most well characterized types of regulatory regions is
the enhancer [1]. Transcription factors bind to sequence motifs contained within an enhancer
leading to increased transcription of one or more associated genes [2]. Several measurable
characteristics of enhancers have led to the identification of hundreds of thousands of putative
enhancers in the mouse genome [3]. Active enhancers have been shown to exhibit H3K27
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acetylation [4, 5] and are often bound by the acetyltransferase p300 [6]. Chromatin at enhanc-
ers tends to be open [7] as reflected by DNaseI hypersensitivity. This corresponds to the ability
of transcription factors to bind to enhancers. Mediator and cohesin have been shown to fre-
quently bind enhancers [8] and are hypothesized to help stabilize chromatin loops that form to
allow enhancers to interact with the genes that they regulate.

A single gene may be regulated by multiple enhancers in the same cell type, and such regula-
tory relationships have been shown to span large genomic distances [9]. Methods that predict
active enhancers [10–16] have observed widespread changes in enhancer activity in different
cell types [17]. It has been suggested that differential enhancer usage implements both cell-
state specific and cell-state independent gene regulation [18].

To identify active enhancers and assign them to the genes that they regulate, we analyzed
ChIA-PET [19] data for RNA Polymerase II (PolII). The chromatin interaction analysis by
paired-end tag sequencing or ChIA-PET method combines chromatin immunoprecipitation to
enrich for genomic locations occupied by a protein with chromatin conformation capture tech-
niques to identify pairs of genomic locations that are spatially proximal in the nucleus. The re-
sulting data provide information about chromatin interactions that involve a particular protein
of interest. For the purpose of discovering high confidence chromatin interactions at high reso-
lution from PolII ChIA-PET data we introduce Germ. This method utilizes a blind deconvolu-
tion step to model the positional noise in read pair alignments relative to locations of protein
occupancy directly from the data. Another benefit of the blind deconvolution step is that a de-
tailed model of the distribution of PolII occupancy is obtained simultaneously with the model
of positional noise. Germ utilizes both models obtained through blind deconvolution to inform
a model of joint protein occupancy which reflects the likelihood that any two genomic loca-
tions are simultaneously occupied by a single PolII instance. Such joint occupancy events re-
flect underlying chromatin interactions that involve PolII.

The most common approach to analyzing ChIA-PET data is implemented by the ChIA-
PET Tool [20]. This approach discovers locations bound by a protein and interactions involv-
ing a protein through two separate, independent pipelines. In contrast to the approach taken
by Germ, information about the occupancy of the protein is not used to refine the locations
and sizes of the regions identified to be involved in chromatin interactions. Also, the ChIA-
PET tool does not explicitly model the positional noise of read pair alignments relative to loca-
tions of protein occupancy other than by extending aligned locations by a heuristically deter-
mined number of base pairs.

We previously developed a method for analyzing ChIA-PET data called Sprout [21]. Sprout
assumes that proteins occupy point locations and that ChIA-PET data reflect interactions only
between such point locations. This assumption works well for factors such as CTCF that bind
to the genome in a punctate fashion. PolII, however, is observed to occupy regions of variable
width which are not accurately modeled by point locations. The assumption made by Sprout al-
lows statistical power to be gained when modeling punctate binding factors while causing in-
formation to be lost when modeling PolII data. Germ preserves more detailed models of
protein occupancy resulting in less loss of information. A benefit of this approach is that the
density of protein occupancy can be queried for any location, not just the set of point locations
that Sprout would identify as occupied.

We examined ChIP-Seq data for several enhancer-related factors to demonstrate that loca-
tions that are distal to annotated transcription start sites (TSSs) and are determined by Germ to
interact with TSSs exhibit stronger enrichment for properties of active enhancers than corre-
sponding locations discovered by the ChIA-PET Tool. Furthermore, the distal locations dis-
covered by Germ to interact with TSSs align with locations enriched for active enhancer
properties with very high spatial resolution. These findings support the analysis of PolII
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ChIA-PET data with Germ as a useful approach for identifying the locations of active enhanc-
ers at high resolution as well as pairing the identified enhancers with their regulatory targets.

By measuring transcription levels using RNA-Seq, we show that the number of enhancers
that a gene interacts with is correlated with greater levels of transcription. We provide evidence
that genes switch the enhancers that they interact with and that enhancers that are actively uti-
lized in both cell types may in some cases switch the genes that they regulate. Finally, we com-
pare the enhancers used by genes in embryonic stem cells (ESCs) and motor neuron
progenitors (pMNs) and observe that cell type specific enhancers are enriched for cell type ap-
propriate transcription factor motifs.

Methods

Germ Description
Germ is a novel method for analyzing ChIA-PET data that presents a detailed view of the occu-
pancy of the genome by a protein of interest. Germ accomplishes this by modeling the distribu-
tion of self-ligation read pairs as a convolution of a model of the fragmentation process and an
estimate of the marginal distribution of protein occupancy. The estimated marginal distribu-
tion is then used to inform the estimation of the joint distribution of protein occupancy. The
estimated joint distribution reflects a detailed view of the likelihood that pairs of genomic loca-
tions are simultaneously occupied by a protein of interest.

Germ first estimates a two dimensional distribution over genomic coordinates that models
the alignment of self-ligation read pairs (Fig 1). Germ explicitly models the effects of fragmen-
tation in order to recover the marginal distribution of protein occupancy directly from the esti-
mated self-ligation read pair distribution. Germ then uses the fragmentation model along with
the marginal distribution of protein occupancy to estimate the two dimensional joint distribu-
tion of protein occupancy from the inter-ligation read pair alignments. Germ applies a hypoth-
esis test for evaluating the significance of regions of the joint protein occupancy distribution to
identify pairs of genomic regions that are likely to be jointly occupied by the protein over back-
ground levels of joint occupation.

We introduce a variation on Germ denoted GermX for more efficiently identifying genomic
regions that are jointly occupied by the protein with some location in a set of genomic locations
X. A practical example of GermX is to let X be a set of annotated transcription start sites in
order to discover interactions between TSSs and enhancers by applying GermTSS to RNA PolII
ChIA-PET data. Finally, we describe a method that GermX uses to estimate the amount of mass
that is missing from the estimated joint distribution of protein occupancy because of under-
sampling of the distribution due to sequencing limitations. This allows the significance of inter-
actions called by GermX to be evaluated more accurately. We have included a table of notation
(Table 1) to aid in our explanation of the Germmethodology.

Estimating the 2D Self-Ligation Read Pair Distribution. We assume that ChIA-PET
linker tags have been removed from the read pair sequences, that read pairs that are known to
have resulted from chimeric ligation events because they contain two different linker tags have
been removed, and that the remaining linkerless read pairs have been aligned to the reference
genome. Let R be the set of all aligned read pairs such that each read pair ri 2 R is represented
by the pair of genomic coordinates to which the ends of the read pair align. We assume that the

coordinates for each read pair are ordered so that if ri ¼ hrð1Þi ; rð2Þi i, then rð1Þi � rð2Þi . We also as-
sume that each read pair has an associated label according to the chromosome strands to
which the ends align. There are four possible strandedness labels given the imposed ordering
on the read pair ends. They are ++, -+, +-, and –. As mentioned above, all self-ligation read
pairs have strand orientation -+, but not all -+ read pairs were produced by self-ligation.
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Fig 1. The workflow ofGerm andGermX Read pairs are aligned to the reference genome and read
pairs are classified as ++, +-, -+, or—based on the strand to which the lower and higher coordinate
ends of each pair align. A kernel density estimate of the self-ligation read pair distribution is constructed by
weighting each -+ read pair by the estimated likelihood that it was produced by self-ligation. The marginal
distribution of protein occupancy and the read spread function are recovered from the self-ligation read pair
distribution through blind deconvolution. The estimated read spread function is marginalized in order to
recover estimated single end read spread functions for each strand. The marginal distribution of protein
occupancy, single end read spread functions, and inter-ligation read pairs are all used to estimate the joint
distribution of protein occupancy.GermX estimates the conditional distribution of protein occupancy for a set
of genomic locations X. In the example shown, X is a set of annotated transcription start sites. A hypothesis
test that is corrected for undersampling is applied to discover significant regions that are jointly occupied with
a location in X. A location eloc within each interacting region is estimated to be the most likely jointly occupied
location within the region.

doi:10.1371/journal.pone.0122420.g001
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A distribution estimated from all -+ read pairs would not accurately model the distribution
of self-ligation read pairs because self-ligation read pairs are much more likely to align within a
short distance than inter-ligation read pairs. This is because the fragment length distribution
induced by fragmentation limits the distance between which the ends of self-ligation read pairs
may align whereas there is no constraint on the distance between which the ends of inter-liga-
tion read pairs may align. To more accurately estimate the distribution of self-ligation read
pairs, we weight the contribution of each -+ read pair by the estimated likelihood that the read
pair was produced by self-ligation according to the distance between the aligned locations of
the read pair ends.

Let zi indicate whether -+ read pair ri was produced by self-ligation or inter-ligation and d
(ri) be the distance between the aligned locations of the ends of -+ read pair ri. The likelihood
that -+ read pair ri was produced by self-ligation according to d(ri) can be expressed in terms of

Table 1. Notation.

Term Definition

ri ¼ hrð1Þi ; rð2Þi i The aligned locations of the ith read pair

R The set of all aligned read pair locations

Rself, Rinter The sets of aligned self-ligation or inter-ligation read pairs

zi The indicator of whether the ith read pair was produced by self-ligation or inter-ligation

d(ri) The distance between the aligned locations of the ith read pair

N The total number of aligned read pairs

N++, N+−, N−+,
N
−−

The number of aligned read pairs with a particular strand orientation

Nself, Ninter The number of aligned self-ligation or inter-ligation read pairs

K1, K2 The standard univariate or bivariate Gaussian kernel

h
−+, hnon−+, hself The bandwidth parameters for kernel density estimates

ISEðf̂ Þ The integrated square error of f̂ relative to f

qi The location occupied by the protein associated with the ith read pair

RSF(hx − u, y −

ui)
The read spread function describing the probability of observing a self-ligation read pair
r = hx, yi given q = u

h−λ, λi The peak of the estimated RSF

reg A genomic region

w The size (in base pairs) of reg

p The probability of protein occupancy in reg

Z A random variable representing the number of read pairs associated with reg according
to the estimated distribution of occupancy

Y A random variable representing the number of read pairs associated with reg according
to the null model

M The size of the mappable genome

ti ¼PuP̂r ðq ¼ hu; viijRinterÞ
mi ¼ P̂r ðq ¼ viÞ
τi The estimated mass missing from ti
f A significance threshold

imax The index of the element in X with the greatest estimate mass

c (c−1)timax
is an estimate of the total amount of mass that should be associated with vimax

eloc The location within a region that is jointly occupied with another region that has the
greatest probability of being jointly occupied

doi:10.1371/journal.pone.0122420.t001
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quantities that can be estimated from the data

Prðzi ¼ self jdðriÞÞ ¼
PrðdðriÞjzi ¼ self ÞPrðzi ¼ self Þ

PrðdðriÞÞ
ð1Þ

Pr(d(ri)) for all -+ read pairs can be estimated by applying an unweighted kernel approach

P̂rðdðrÞ ¼ xÞ ¼
XN�þ

i¼1

1

h�þN�þ
K1

x � dðriÞ
h�þ

� �
ð2Þ

N−+ is the total number of -+ read pairs and K1 is a standard univariate Gaussian distribu-
tion. The bandwidth h−+ is a parameter that controls the trade-off between fitting the training
data and discovering a smooth estimate. To choose an appropriate h−+ we use a least-squares

cross-validation approach that minimizes the integrated square error (ISE) of P̂rðxÞ.

ISEðf̂ Þ ¼
Z

ðf̂ � f Þ2 ð3Þ

The ISEðP̂rðdðrÞ ¼ xÞÞ can be approximately minimized by minimizing for all -+ read pairs
[22]

X
i

X
j

1ffiffiffi
2

p
h�þ

K1

dðriÞ � dðrjÞffiffiffi
2

p
h�þ

 !
� 2

N�þ

X
i

P̂rðdðriÞÞ �
1ffiffiffiffiffiffi
2p

p
N�þ � 1

2664
3775 ð4Þ

We cannot estimate Pr(d(ri)jzi = self) directly for the same reason that we cannot estimate
the self-ligation read pair distribution directly. We can estimate Pr(d(ri)jzi = inter) directly be-
cause all non -+ read pairs are produced by inter-ligation. We also apply an unweighted kernel
approach to estimate this distribution

P̂rðdðrÞ ¼ xjz ¼ interÞ ¼
XNnon�þ

i¼1

1

hnon�þNnon�þ
K1

x � dðriÞ
hnon�þ

� �
ð5Þ

We choose an appropriate hnon−+ by approximately minimizing the

ISEðP̂rðdðrÞ ¼ xjz ¼ interÞÞ.
Given estimates for Pr(d(ri)) and Pr(d(ri)jzi = inter), we can estimate Pr(d(ri)jzi = self) by as-

suming that Pr(d(ri)) is a mixture of the distributions Pr(d(ri)jzi = self) and Pr(d(ri)jzi = inter)

PrðdðriÞÞ ¼ Prðzi ¼ self ÞPrðdðriÞjzi ¼ self Þ
þPrðzi ¼ interÞPrðdðriÞjzi ¼ interÞ ð6Þ

By rearranging the terms in this equation we can obtain

PrðdðriÞjzi ¼ self Þ ¼
PrðdðriÞÞ � Prðzi ¼ interÞPrðdðriÞjzi ¼ interÞ

Prðzi ¼ self Þ
ð7Þ

The final missing component is Pr(zi = self) = 1 − Pr(zi = inter). We assume that the average
number of read pairs with each of the three strand orientations other than -+ is a good estima-
tor for the number of -+ read pairs that were produced by inter-ligation. We use this

High Resolution Mapping of Enhancer-Promoter Interactions

PLOS ONE | DOI:10.1371/journal.pone.0122420 May 13, 2015 6 / 22



information to estimate Pr(zi = inter)

P̂rðzi ¼ interÞ ¼ avg:#non -+ read pairs

# -+ read pairs
ð8Þ

This allows us to estimate the self-ligation read pair distribution using a weighted kernel ap-
proach weighted by Pr(z = selfjd(ri))

P̂rðr ¼ hx; yijz ¼ self Þ ¼
XN�þ

i¼1

Prðz ¼ self jdðriÞÞ
hself

K2

hx; yi � ri
hself

 !
ð9Þ

where in this case K2 is a bivariate standard Gaussian distribution with no correlation between
the dimensions. To choose an appropriate bandwidth hself we approximately minimize

ISEðP̂rðr ¼ hx; yijz ¼ self ÞÞ by minimizingX
i

X
j

Prðz ¼ self jdðriÞÞPrðz ¼ self jdðrjÞÞffiffiffi
2

p
hself

K2

ri � rjffiffiffi
2

p
hself

 !

� 2

N

X
i

P̂rðrijzi ¼ self Þ � Prðz ¼ self jdðriÞÞffiffiffiffiffiffi
2p

pP
j6¼iPrðz ¼ self jdðrjÞÞ

2664
3775 ð10Þ

Estimating the 1DMarginal Distribution of Protein Occupancy. We assume that the
self-ligation read pair distribution is the result of the convolution of the marginal distribution
of protein occupancy and a distribution that models DNA fragmentation which we will refer to
as the read spread function (RSF). If we let q be the genomic location occupied by the protein,

Prðr ¼ hx; yijz ¼ self Þ ¼
X
u

Prðq ¼ uÞRSFðhx � u; y � uiÞ ð11Þ

Simultaneously deconvolving the marginal distribution of protein occupancy and the RSF
from the self-ligation read pair distribution is an example of a blind deconvolution problem.
This problem commonly arises in the context of image processing. It is often the case that a
camera will systematically blur the images that it captures because of flaws in its lens. This blur-
ring process is modeled as a convolution of the distribution of light that enters the camera lens
with a point spread function (PSF) that is induced by the flaws in the lens. The PSF specifically
describes the effect that the lens flaws will have on a theoretical point source of light. In our
case, the RSF describes the manner in which self-ligation read pairs are likely to be distributed
given the theoretical occupancy of the protein at a genomic location.

If we assume at first that the RSF is known, the marginal distribution of protein occupancy
can be approximately recovered using a standard approach known as Richardson-Lucy (RL)
deconvolution [23, 24]. The RL algorithm iteratively applies the following EM-like update

P̂r iþ1ðq ¼ uÞ ¼

P̂r iðq ¼ uÞ
X
x

X
y

P̂rðr ¼ hx; yijz ¼ self ÞP
vP̂r iðq ¼ vÞRSFðhx � v; y � viÞ

" #
RSFð�hx � u; y � uiÞ

( ) ð12Þ

RL deconvolution has been shown empirically to converge to a maximum-likelihood esti-
mate for Pr(q = u) and preserves the non-negativity and sum of the initial guess Pr0(q = u). To
extend RL deconvolution to the blind case, we take an approach similar to that proposed in
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[25] and alternate the updates described by Eq 12 with the following updates

dRSFiþ1ðhx; yiÞ ¼

dRSFiðhx; yiÞ
X
u

P̂rðr ¼ hx � u; y � uijz ¼ self ÞP
v
dRSF iðhx � u� v; y � u� viÞP̂rðq ¼ vÞ

" #
P̂rðq ¼ �uÞ

( ) ð13Þ

The overall procedure then entails going back and forth between updating P̂rðq ¼ uÞ for
several iterations while holding dRSFðhx � u; y � uiÞ fixed and then updating dRSFðhx � u; y �
uiÞ for several iterations while holding P̂rðq ¼ uÞ fixed. Despite the unconstrained nature of
the blind deconvolution approach, the recovered RSF conforms to our expectations. The RSF
in Fig 2 is typical of what is recovered from RNA PolII ChIA-PET data. Given a location
bound by the protein, we would expect the most likely alignment of the ends of self-ligation
read pairs to be roughly equidistant to the occupied location with the distance from the occu-
pied location determine by the degree of fragmentation. The typical RSF that we estimate has
the greatest value along the line through the origin that is perpendicular to the identity line.
Points along this line reflect self-ligation read pairs that align equidistantly to the occupied lo-
cation which is represented by the origin in the RSF. The distance of the peak in the RSF from
the origin reflects the most likely fragment size generated by the sonication step. Thus, the RSF
that we recover using our blind deconvolution approach conforms to our expectations and pro-
vides useful information about the fragmentation step of the ChIP procedure.

Efficiently estimating the genome-wide protein occupancy distribution. RL blind
deconvolution works well for deconvolving the protein occupancy distribution for regions of
the genome that are on the order of megabases in size. However, the time that it would take to
deconvolve the full genome-wide distribution of protein occupancy is impractical. Based on

Fig 2. A typical read spread function estimated from RNA PolII ChIA-PET data.

doi:10.1371/journal.pone.0122420.g002
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observations made about typical RSFs estimated by RL blind deconvolution from portions of
real ChIA-PET datasets, we devised a highly efficient procedure that achieves a level of accura-
cy comparable to full RL blind deconvolution. The observation we made was that typical RSFs
estimated by RL blind deconvolution from portions of real datasets are unimodal and sharply
peaked. This implies that the RSF can be approximated by a function with all of its mass at the
peak of the RSF. This approximation allows for a very efficient deconvolution procedure. If the
peak of the estimated RSF is at h−λ, λi, we estimate the protein occupancy distribution as

P̂rðq ¼ uÞ / P̂rðr ¼ hu� l; uþ lijz ¼ self Þ ð14Þ

In summary, to estimate the marginal distribution of protein occupancy from a full ge-
nome-wide ChIA-PET dataset we first estimate the genome-wide self-ligation read pair distri-
bution. We then apply RL blind deconvolution to a 5 megabase region of the genome to obtain
a good estimate for the RSF. Finally, we identify the peak of the estimated RSF and estimate the
distribution of RNA PolII occupancy as in (Eq 14).

Estimating the 2D Joint Distribution of Protein Occupancy. Chromatin looping allows
proteins to simultaneously occupy two genomic locations [26]. Inter-ligation read pairs can be
thought of as samples from a joint distribution of protein occupancy with positional noise in-
troduced by fragmentation. We make several assumptions about this process. We assume that
the inter-ligation read pairs are based on independent samples from the joint distribution of
protein occupancy. We associate the lower coordinate protein location q(1) with the lower coor-
dinate end of the read pair r(1) and the higher coordinate protein location q(2) with the higher
coordinate end of the read pair r(2).

Prðq ¼ hu; vijRinterÞ ¼ 1

Ninter

X
ri2Rinter

Prðq ¼ hu; vijhrð1Þi ; rð2Þi iÞ ð15Þ

¼ 1

Ninter

X
ri2Rinter

Prðqð1Þ ¼ ujhrð1Þi ; rð2Þi iÞPrðqð2Þ ¼ vjqð1Þ ¼ u; hrð1Þi ; rð2Þi iÞ ð16Þ

¼ 1

Ninter

X
ri2Rinter

Prðqð1Þ ¼ ujrð1Þi ÞPrðqð2Þ ¼ vjqð1Þ ¼ u; rð2Þi Þ ð17Þ

The last equality reflects an assumption that we make that the location occupied by the pro-
tein is independent of the read pair end that it is not associated with. We will demonstrate that
these terms are non-zero in only a relatively small window around their associated read pair
end and that the non-associated read pair end has minimal effect on the manner in which we
compute these terms. We transform the first term within the sum into quantities that we can
compute using Bayes’ Theorem

Prðqð1Þ ¼ ujrð1Þi Þ ¼ Prðrð1Þi jqð1Þ ¼ uÞPrðqð1Þ ¼ uÞ
Prðrð1Þi Þ ð18Þ

We assume that we can obtain Prðrð1Þi jqð1Þ ¼ uÞ by marginalizing the RSF that was estimated
during the blind deconvolution step. For read pair ends that align to the—strand

Prðrð�Þi jqð�Þ ¼ uÞ ¼
X
y

RSFðhrð�Þi � u; y � uiÞ ð19Þ
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Correspondingly, for read pair ends that align to the + strand

Prðrð�Þi jqð�Þ ¼ uÞ ¼
X
x

RSFðx � u; rð�Þi � uiÞ ð20Þ

Pr(q(1) = u) is the distribution of protein marginal occupancy that was estimated in the pre-

vious step. The prior read distribution Prðrð1Þi Þ reflects any factors that might influence the
alignment of reads to locations in the genome. Such factors might include the uniqueness of
the sequence around that location in the genome and bias in the library preparation or se-

quencing for the sequence around that location. We assume that Prðrð1Þi Þ is uniform in this
work. However, future work may be improved by utilizing a more informative
prior distribution.

We also transform the second term within the sum in (Eq 17) using Bayes’ Theorem

Prðqð2Þ ¼ vjqð1Þ ¼ u; rð2Þi Þ ¼ Prðrð2Þi jqð1Þ ¼ u; qð2Þ ¼ vÞPrðqð2Þ ¼ vjqð1Þ ¼ uÞ
Prðrð2Þi jqð1Þ ¼ uÞ ð21Þ

� Prðrð2Þi jqð2Þ ¼ vÞPrðqð2Þ ¼ vÞ
Prðrð2Þi Þ ð22Þ

The approximation in (Eq 22) incorporates assumptions to simplify all terms involved. We

assume that rð2Þi only depends on the location of protein occupancy that it is associated with,

and hence Prðrð2Þi jqð1Þ ¼ u; qð2Þ ¼ vÞ � Prðrð2Þi jqð2Þ ¼ vÞ which we obtain by marginalizing the
estimated RSF. We next assume that q(1) and q(2) are independent. This is clearly not true, since

otherwise we would have no need of estimating their joint distribution. But, since Prðrð2Þi jqð2Þ ¼
vÞ is only non-zero in a relatively small range around v, the purpose of Pr(q(2) = vjq(1) = u) is

mainly to fine tune the probability that q(2) = v if rð2Þi falls within that range. We expect the loca-
tions of peaks of Pr(q(2) = vjq(1) = u) to roughly agree with peaks of Pr(q(2) = v) if they exist,

and so we assume that we can swap one for the other in this case. Finally, we assume that rð2Þi is
independent of the location of protein occupancy that it is not associated with, allowing us to

substitute Prðrð2Þi Þ for Prðrð2Þi jqð1Þ ¼ uÞ.
These transformations allow us to write the estimated joint distribution of protein occupan-

cy as

P̂rðq ¼ hu; vijRinterÞ /
X

ri2Rinter
Prðrð1Þi jqð1Þ ¼ uÞPrðqð1Þ ¼ uÞPrðrð2Þi jqð2Þ ¼ vÞPrðqð2Þ ¼ vÞ ð23Þ

GermX: Estimating the Conditional Distribution of Protein Occupancy with a Set of Lo-
cations X. In many situations we are interested in estimating the joint occupancy of a protein
with a set of genomic locations X. For example, when analyzing RNA PolII ChIA-PET data, a
common query might be to detect regions that are jointly occupied by RNA PolII along with a
location from set of annotated transcription start sites (TSSs). If we define TSS to be a set of an-
notated TSSs, we refer to GermTSS as the process of estimating Pr(q = hu, vijRinter) only for
v 2 TSS.

Evaluating the Significance of Portions of Estimated Distributions of Marginal and
Joint Protein Occupancy. Once we have estimated distributions of marginal and joint pro-
tein occupancy from ChIA-PET data we evaluate the significance of the estimated protein oc-
cupancy within a given region or the joint occupancy within a given pair of regions. We
describe our approach as applied to a marginal distribution of protein occupancy and then ex-
tend the approach to joint distributions. Given a genomic region reg of size w base pairs, let
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p ¼Pu2reg P̂rðq ¼ uÞ. If we let Z* Binomial(Nself, p) and Y � BinomialðNself ;
w
M
Þ whereM is

the size of the mappable genome, we then evaluate the significance of the protein occupancy
within reg as Pr(Y> Z). In other words, we calculate the probability that more self-ligation
read pairs would be associated with reg according to a uniform distribution of protein occupan-
cy than would be associated with reg according to the estimated distribution of
protein occupancy.

We extend this approach to evaluating the significance of pairs of regions according to a
joint distribution of protein occupancy. Given a pair of regions rega and regb, let

pjoint ¼
P

u2rega
P

v2regb P̂rðq ¼ hu; vijRinterÞ, pa ¼
P

u2rega P̂rðq ¼ uÞ, and pb ¼
P

u2regb P̂rðq ¼ uÞ.
If we then let Z* Binomial(Ninter, pjoint) and Y* Binomial(Ninter, pa pb), we then evaluate the
significance of the joint protein occupancy of the regions rega and regb as Pr(Y> Z).

Significance evaluation for GermX. The estimate P̂rðq ¼ hu; vijRinterÞ for v 2 X that is ob-
tained by applying GermX is void of mass for much of its domain. This is because not enough
inter-ligation read pairs can be sequenced to fully explore this space given current technologies.

Without considering the mass that is missing from the estimate of P̂rðq ¼ hu; vijRinterÞ, the sig-
nificance of portions of the distribution for which mass is estimated will be overestimated. To
remedy this issue, we introduce a method for estimating how much mass is missing from the

estimate of P̂rðq ¼ hu; vijRinterÞ in order to more accurately evaluate the significance of por-

tions of this distribution. We assume an ordering on the vi 2 X and let ti ¼
P

uP̂rðq ¼
hu; viijRinterÞ andmi ¼ P̂rðq ¼ viÞ. If we assume that there is some amount of mass τi that is
missing from ti, then we can find a setting of the τi such that tiþtiP

i
tiþti

¼ miP
i
mi
. However, there are

many valid settings of the τi and larger values of the τi will cause portions of the estimated dis-
tribution to be evaluated as less significant.

To choose an appropriate setting of the τi we introduce a procedure that allows us to choose
τi large enough to avoid overestimating the significance of portions of the estimated distribu-
tion. We first choose a set of candidate regions for each vi 2 X which we will evaluate for signif-

icance based on P̂rðq ¼ hu; vijRinterÞ. We do this by setting a threshold f and adding a region

reg to the set for vi if 8u 2 reg; P̂rðhu; viijRinterÞ > f . We then identify an imax such that 8i, timax

� ti. We choose some c> 1 and set τimax
= (c − 1)timax

. We hold τimax
fixed and apply an iterative

procedure to find settings for τi (i 6¼ imax) such that tiþtiP
i
tiþti

¼ miP
i
mi
. For each iteration, we cycle

through i 6¼ imax and compute

ti ¼
mi

P
j6¼iðtj þ tjÞP
j6¼imj

ð24Þ

Once this converges, we evaluate the significance of the regions defined using the threshold

f in the following way. For a region reg in the set for vi we let p ¼
P

u2reg P̂rðhu;viijRinterÞ
tiþti

and

p0 ¼Pu2reg P̂rðuÞ. If we then let Z* Binomial(Ninter, p) and Y* Binomial(Ninter, p0), the sig-
nificance of the estimated joint protein occupancy of vi and reg is Pr(Y> Z). We evaluate the
significance of the regions in the sets for all v 2 X and identify the regions that have an associat-
ed Pr(Y> Z) less than some threshold such as 0.05. We call these regions significant. For each
region, we also note the number of read pairs in Rinter that contributed to p for that region. If
the ratio of the number of significant regions supported by only one read pair to the total num-
ber of significant regions is greater than some target threshold, such as 0.1, we increase c and
begin the process of finding a new set of τi. If there are too few significant regions supported by
one read pair with Pr(Y> Z)< 0.05 we reduce c and find new τi. In this manner we search for
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c that achieves a target fraction of weakly supported jointly occupied regions within the set of
all regions that evaluate as significant.

Evaluation

Germ identifies locations involved in interactions at high spatial
resolution
We applied Germ to PolII ChIA-PET data from ESCs [27] to identify locations that interact
with TSSs. By examining ChIP-Seq data for several features of active enhancers at the locations
that Germ detects as interacting with TSSs we found that these locations align closely with loca-
tions that appear to be active enhancers. We incorporated a set of annotated TSSs from the
UCSC knownGene database to profile the occupancy of PolII conditioned on the locations of
the annotated TSSs. For each TSS, Germ provided a set of regions that are jointly occupied by
PolII along with the TSS. The joint occupation of a region with a TSS by PolII indicates that
this region is spatially proximal to the TSS and that PolII is also present at the junction between
the region and the TSS. PolII tends to occupy relatively broad regions of the genome, but upon
examining the distributions of PolII occupancy that we estimate with Germ, we observed that
regions of elevated occupancy generally contain locations with locally maximal likelihood of
occupancy. We noted the location within each TSS-interacting region that Germ determines to
be the most likely anchor point for the interaction. As shown in Fig 3, the Germ estimated an-
chor points are informative in that they align closely with maximal locations of enrichment for
active enhancer-related ChIP-Seq data.

The difficulty in extracting locations that interact with TSSs from results obtained using the
ChIA-PET Tool highlights the superior informativeness of Germ results. We obtained the set
of interactions called by the ChIA-PET Tool from the same ChIA-PET data and filtered out
the interactions that do not contain a TSS within either anchor region. Since the ChIA-PET
Tool interactions do not include estimates of the most likely locations within the anchor re-
gions that are jointly occupied by RNA PolII, we chose the midpoint of each anchor region as
the approximate maximally occupied location. We further filtered the interactions to identify
the set of interactions that contain a TSS within one anchor region and for which the midpoint
of the other anchor region is at least 2kb away from any TSS. As shown in Fig 3, the locations
identified in this way are not as closely associated with the ChIP-Seq data as the locations iden-
tified with Germ. To quantify the enhancer properties at the locations identified by Germ and
the ChIA-PET Tool we identified 500 bp windows centered on the locations identified by the
two methods. We examined the significance of enrichment for each of the ChIP-Seq data with-
in each of the identified windows as shown in Fig 4. The two methods identified similar num-
bers of TSS-interacting locations (Germ identified 2924 and the ChIA-PET Tool identified
3098). The greater percentage of significantly enriched locations within the Germ identified lo-
cations for all of the ChIP-Seq data emphasizes the usefulness of analyzing PolII ChIA-PET
data with Germ for the purpose of identifying active enhancers.

Results

Germ discovers meaningful interactions involving TSSs
Since Germ identifies TSS-interacting locations that align closely with enhancer related ChIP-
Seq data, we decided to investigate whether the interactions detected by Germ appear to influ-
ence the expression levels of the genes involved. We performed PolII ChIA-PET with motor
neuron progenitors (pMNs) and applied Germ in order to characterize enhancers that are dif-
ferentially utilized between pMNs and ESCs. We also performed RNA-Seq to profile
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transcription levels of genes in both cell types. We hypothesized that the interactions that
Germ identifies between TSSs and locations that are more than 2 kb away from any TSS reflect
functional interactions between enhancers and promoters. We call such interactions TSS-
nonTSS interactions. As shown in Fig 5, genes involved in TSS-nonTSS interactions exhibit
greater levels of transcription than genes not involved in such interactions. The level of tran-
scription is also correlated with the number of TSS-nonTSS interactions that the gene is in-
volved in implying that such interactions may have an additive effect.

The observed correlation between TSS-nonTSS interactions and transcription levels led us
to ask whether the existence of nearby active enhancers is enough to induce a TSS-nonTSS

Fig 3. Visualization of ChIP-Seq data in regions detected to interact with TSSs. The top row of boxes
contains TSS-distal, TSS jointly occupied regions identified byGermTSS. The bottom row of boxes contains
the corresponding regions from [27]. The 6 kilobase regions are centered on the estimated eloc or midpoint
and are ordered by the significance associated with the interaction. Each column represents data from a
ChIP-Seq dataset that is associated with active enhancers.

doi:10.1371/journal.pone.0122420.g003
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interaction and increase transcription levels or if active enhancers specifically target genes that
are not necessarily the closest gene. We compared the transcription levels of the genes closest
to the locations that Germ identifies as involved in TSS-nonTSS interactions to the levels of the
genes that are involved in TSS-nonTSS interactions in ESCs. As shown in Fig 6, the genes that
are involved in TSS-nonTSS interactions exhibit greater levels of transcription. This indicates
that enhancers have specific targets and do not necessarily have the effect of increasing the
transcription levels of the genes closest to them.

We observed that TSS-interacting locations that Germ identifies interact with anywhere
from one to a hundred or more distinct TSSs. We wondered whether enhancers that target
more genes exhibit stronger enhancer characteristics. We collected the locations that interact
with TSSs according to Germ in either ESCs or pMNs. We grouped these locations based on
the number of TSS-nonTSS interactions in which they are involved in ESCs. As shown in Fig 7,
the degrees of enrichment for H3K27ac, Med1, Med12, p300, and Smc1a all correlate with the
number of interactions in which a location is involved. This suggests that the strength of the ac-
tive enhancer characteristics at a given location reflects the number of genes targeted by
that location.

Differentially utilized enhancers contain cell type appropriate
transcription factor motifs
Given the evidence that we collected that indicate that the locations that Germ identifies as
TSS-interacting are active enhancers, we decided to investigate whether the sequence context
of Germ identified enhancers reflects their cell type specificity. We grouped the Germ identified
enhancers according to their cell type utilization resulting in 2,217 enhancers that are only uti-
lized in ESCs, 950 that are only utilized in pMNs, and 314 that are utilized in both cell types.
We tested for the presence of several sequence motifs corresponding to the binding preferences

Fig 4. The percentages of the locations identified byGerm and the ChIA-PET Tool that are enriched
for each of the ChIP-Seq datasets.

doi:10.1371/journal.pone.0122420.g004
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of several transcription factors that are relevant to one or both cell types in 1 kb windows cen-
tered on the enhancer locations. We observed interesting patterns of motif presence for many
of the factors as shown in Fig 8. The stem cell factor Klf4 [28] motif is present in almost half of
the ESC enhancers, and is the most common motif present in these enhancers. Both the Klf4
and Oct4 [29] motifs are present in about twice the percentage of ESC specific enhancers as
they are in pMN specific and shared enhancers. pMN specific enhancers are enriched for the
RXR::RAR [30] motif and many of the Hox [31] factor motifs compared to ESC specific en-
hancers. Interestingly, the Sox2 [32, 33] motif is at least twice as common in enhancers specific
to either cell type as in the shared enhancers. Sox2 is an important transcription factor for both
cell types and it may be the case that the two cell types utilize mostly non-overlapping sets of
Sox2 binding events to regulate gene expression.

Conclusion
We have demonstrated that applying the Germ algorithm to ChIA-PET data successfully re-
covers genomic regions that are enriched for enhancer-related ChIP-Seq data. Their identity as
enhancers is further supported by the observation that the interactions that we identify

Fig 5. Transcription levels are correlated with the number of nonTSS locations with which a TSS
interacts.Genes are categorized based on the number of nonTSS locations that their TSSs interact with in
(A) ESCs and (B) pMNs. The boxplots reflect the distribution of FPKM values computed for the genes in each
group from RNA-Seq data.

doi:10.1371/journal.pone.0122420.g005
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Fig 6. Considering interactions allowsmore highly transcribed genes to be identified than the set of
genes that are closest to the locations that are detected to interact with TSSs. (A) The set of Interacting
Genes is the set of genes for which their TSS is identified byGerm as interacting with at least one nonTSS
location. The set of Proximal Genes is the set of genes for which their TSS is the closest TSS to the set of
nonTSS locations that are identified byGerm as interacting with at least one TSS. The boxplots reflect the
distribution of FPKM values computed for the genes in each group from the ESC RNA-Seq data. (B) The
cumulative distributions of the transcription levels of the two sets of genes in ESCs demonstrate that a greater
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fraction of the genes proximal to theGerm identified nonTSS locations have transcription levels less than any
FPKM threshold than the set of genes that interact with the nonTSS locations.

doi:10.1371/journal.pone.0122420.g006

Fig 7. Enrichment for enhancer associatedmarks is correlated with the number of TSSs with which a
nonTSS location interacts. All nonTSS locations that are involved in an interaction with a TSS in at least
one of the cell types were considered. The nonTSS locations were categorized based on the number of TSSs
that they interact with in ESCs. RPKM values were computed from ChIP-Seq data in 1 kb windows centered
on each nonTSS location. The boxplots reflect the distributions of RPKM values for the nonTSS locations in
each group for each ChIP-Seq dataset.

doi:10.1371/journal.pone.0122420.g007
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between these regions and TSSs are correlated with transcription levels. Technologies for pro-
filing chromatin interactions genome-wide such as ChIA-PET, Hi-C, and 5C have yet to reach
maturity and present analytical challenges such as inherently high false negative rates. Our ob-
servations suggest that gene regulation by long-range chromatin interactions with enhancers is
a highly dynamic process. Genes that are expressed in more than one cell type may utilize dif-
ferent enhancers to maintain or adjust their expression. This hypothesis is supported by the ob-
servation that differentially utilized enhancers contain varying sets of motifs that are
recognized by cell-type appropriate transcription factors. The observation that the relation-
ships between enhancers and genes may be not fixed between cell types has been previously
noted [18], although caveats about the high false negative rate inherent to ChIA-PET data have
been largely ignored. Theories have been proposed [34–37] which have begun to characterize
the principles underlying regulatory relationships in the genome, yet the logic behind the place-
ment of enhancers relative to the genes that they regulate has yet to be fully elucidated. We
hope that the observations about enhancer usage that we have characterized in this study will
help guide future studies that address these important questions regarding
transcriptional regulation.

Supplementary Methods

Cell Culture
Hb9::GFP transgenic mouse-derived (HBG3) ESCs were cultured over a layer of neomycin re-
sistant Mitomycin-C-treated fibroblasts (Millipore) in EmbryoMax D-MEM (Millipore) sup-
plemented with 15% ESC-grade fetal bovine serum (Thermo Fisher), l-glutamine (Gibco), 0.1

Fig 8. Enhancer usage reflects cell-type appropriate motif enrichment. 1 kb windows centered on Med1 binding events involved in interactions with
TSSs in one or both cell types were scanned for matches to known transcription factor motifs. Med1 binding events were categorized based on whether they
interact with TSSs in one or both cell types. The bar graphs reflect the percentages of Med1 binding events in each group that have a motif match within 500
bp for several important transcription factors.

doi:10.1371/journal.pone.0122420.g008
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mM β-mercaptoethanol and 100 U ml-1 leukemia inhibitory factor. Motor neuron differentia-
tion of ESCs was performed as previously described [38]. Briefly, ESCs were trypsinized (Invi-
trogen) and seeded at 5 × 105 cells per ml in ANDFK medium (Advanced DMEM/F12:
Neurobasal (1:1) Medium, 10% Knockout- SR (vol/vol), Pen/Strep, 2 mM l-glutamine, and 0.1
mM 2-mercaptoethanol) to initiate formation of embryoid bodies (day 0). Medium was ex-
changed on day 2. Patterning of embryoid bodies was induced by supplementing media on day
2 with 1 μM all-trans retinoic acid (Sigma) and 0.5 μM Smo agonist of hedgehog signaling
(SAG, Calbiochem).

ChIP-Seq
ESC ChIP-Seq sequence data were obtained for H3K27ac, Med1, Med12, Smc1a, and p300
[4, 8]. Sequence reads were aligned to the mouse genome (version mm10) using Bowtie [39].
Only uniquely mapping reads were analyzed further. The GEM algorithm [40] was applied to
discover binding events. Reads per kilobase per million reads (RPKM) values were computed
by identifying the number of reads that fall within a particular region and dividing by the
width of the region in kilobases and by the number of millions of reads in the dataset. Enrich-
ment is computed as the proportion of reads from a dataset that fall within the region. If we let
w represent the width of the region,M represent the size of the mappable genome, p be the en-
richment in the region, N be the number of uniquely mapped reads in the dataset, Z* Bino-
mial(N, p), and Y � BinomialðN; w

M
Þ, then the p-value that we associate with the enrichment

in the region is Pr(Y> Z).

RNA-Seq
Total RNA from mouse embryonic stem cells or motor neuron progenitors was isolated using
Trizol Reagent (Invitrogen). mRNA was isolated and strand specific RNA-Seq was performed
following the Illumina Truseq protocol. Read pairs were aligned to the mouse genome (version
mm10) using STAR [41]. Fragments per kilobase per million reads (FPKM) values were com-
puted using Cufflinks [42].

ChIA-PET
ChIA-PET experiments were performed as previously described. Briefly, on the appropriate
day of differentiation, embryoid bodies were dissociated in trypsin into single cell suspension.
Cells were cross-linked using 1% formaldehyde. Cross-linked chromatin was fragmented by
sonication to a size of approximately 300bp. Chromatin complexes were immunoprecipitated
with monoclonal anti-RNAPII (Covance, 8WG16) coated protein G Dynabeads (Life Technol-
ogies). A small portion of ChIP enriched DNA was eluted from beads for quantification. To
prepare ChIA-PET libraries DNA was end polished with T4 DNA polymerase (NEB). To assess
the degree of intermolecular proximity ligation end polished DNA was divided into 2 aliquots
and each ligated to linkers (A or B). The two samples were then joined together for proximity
ligation under dilute conditions. Following ligation samples were treated with Mme1 to release
paired end tag (PET) constructs. PET constructs were amplified and submitted to sequencing
on Illumina Genome Analyzer II.

Software availability
Complete Java source code is available from https://github.com/christopherreeder/germ.
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