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An important research problem in computational biology is the identification of expression programs, sets of co-
expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of
these programs. The use of human expression data compendia for discovery of such programs presents several
challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples,
uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram,
a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the
above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into
overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted
by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data,
we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram
to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious
agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial
number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-jB
transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear
to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and
neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to
infection will be useful for guiding future biological experiments; genes from programs with low generality scores
might serve as new drug targets that exhibit minimal ‘‘cross-talk,’’ and genes from high generality programs may
maintain common physiological responses that go awry in disease states. Further, our method is multipurpose, and
can be applied readily to novel compendia of biological data.
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Introduction

The great complexity of the human body, in both normal
physiology and pathological states, arises from the coordi-
nated expression of genes. A fundamental challenge in
computational biology is the identification of sets of co-
activated genes in a given biological context and the
characterization of the functional breadth of such sets.
Understanding of the functional generality of gene sets has
both practical and theoretical utility. Sets of genes that are
very specific to a particular cell type or pathological
condition may be useful as diagnostic markers or drug
targets. In contrast, sets of genes that are active across diverse
cell types or pathological states can give us insight into
unexpected functional similarities and involvement of core
common pathways.

In this study, we use a large compendium of short time-
series gene expression datasets measuring the responses of
human cells to infectious agents or immune-modulating
molecules, to discover a set of biologically interpretable
expression programs and to characterize quantitatively the
specificity of each program. Such large genome-wide human
expression data compendia present several new challenges
that do not necessarily arise when analyzing data from
simpler organisms. First, tissue samples may represent
collections of diverse cell-types mixed together in different

proportions. Even if a sample consists of a relatively
homogenous cell population, the cells can still behave
asynchronously. Second, each tissue sample is often from a
different individual, so that the compendium represents a
patchwork of samples from different genetic and environ-
mental backgrounds. Third, the number of expression
programs and distinct cell populations present in a compen-
dium is effectively unknown a priori. Fourth, a compendium
may contain experiments measuring temporal responses over
different durations or using varied sampling rates.
We present a novel methodology, GeneProgram, designed

for analyzing large compendia of human expression data,
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which simultaneously compresses sets of genes into expres-
sion programs and sets of tissues into groups. Specific
features of our algorithm address each of the above issues
relating to analysis of compendia of human gene expression
data.

First, GeneProgram handles tissue inhomogeneity by
allocating the total mRNA recovered from each tissue to
different gene expression programs, which may be shared
across tissues. The number of expression programs used by a
tissue therefore relates to its functional homogeneity.
Second, GeneProgram handles the disparate origin of tissue
samples by explicitly modeling each tissue as a probabilistic
sample from a population of related tissues. Related tissues
are assumed to use similar expression programs and to
similar extents, but the precise number of genes and the
identity of genes used from each program may vary in each
sample. Additionally, populations of related tissues are
discovered automatically, and provide a natural means for
characterizing the generality of expression programs. Third,
GeneProgram handles uncertainty in the numbers of tissue
groups and expression programs by using a non-parametric
Bayesian technique, Dirichlet Processes, which provides prior
distributions over numbers of sets. Fourth, GeneProgram
explicitly models patterns of temporal expression change
using the novel concept of program usage modifiers. A usage
modifier is a variable that is specific to a tissue-expression
program pair and describes how a tissue uses the program.
For instance, usage modifiers can specify the temporal phase
and direction (induction or repression) of expression. Thus,
the genes used by a tissue from a program and the manner in
which they are expressed (e.g., early induction versus late
repression) are chosen probabilistically and influenced by the
behavior of similar tissues. Further, usage is by definition
consistent across a program for a particular tissue, which
facilitates biological interpretation.

To understand the novelty of GeneProgram, it is useful to
view our framework in the context of a lineage of
unsupervised learning algorithms that have previously been
applied to gene expression data. These algorithms are diverse,
and can be classified according to various features, such as
whether they use matrix factorization methods [1], heuristic
scoring functions [2], generative probabilistic models [3],
statistical tests [4,5], or some combinations of these methods
[6,7]. The simplest methods, such as K-means clustering,
assume that all genes in a cluster are co-expressed across all
tissues, and that there is no overlap among clusters. Next in
this lineage are biclustering algorithms [2,5,8–10], which
assume that all genes in a bicluster are co-expressed across
a subset rather than across all tissues. In many such
algorithms, genes can naturally belong to multiple biclusters.
GeneProgram is based on two newer unsupervised learning

frameworks, the topic model [11,12] and the Hierarchical
Dirichlet Process mixture model [13]. The topic model
formalism allows GeneProgram to further relax the assump-
tions of typical biclustering methods, through a probabilistic
model in which each gene in an expression program has a
(potentially) different chance of being co-expressed in a
subset of tissues. The hierarchical structure of our model,
which encodes the assumption that groups of tissues are more
likely to use similar sets of expression programs in similar
proportions, also provides advantages. Hierarchical models
tend to be more robust to noise, because statistical strength is
‘‘borrowed’’ from items in the same group for estimating the
parameters of clusters. Additionally, hierarchical models can
often be interpreted more easily—in the context of the
present application, the inferred expression programs will
tend to be used by biologically coherent sets of tissues or
experimental conditions. Finally, through the Dirichlet
Process mixture model formalism, GeneProgram automati-
cally infers the numbers of gene expression programs and
tissue groups. Because this approach is fully Bayesian, the
numbers of mixture components can be integrated over
during model learning, so that the complexity of the model is
appropriately penalized. This is in contrast to previous
methods that either require the user to specify the number
of clusters directly or produce as many clusters as are deemed
significant with respect to a heuristic or statistical score
without providing a global complexity penalty. We note that
Medvedovic et al. have also applied Dirichlet Process mixture
models to gene expression analysis, but not in the context of
topic models, of Hierarchical Dirichlet Processes, or to
human data [14].
A variety of algorithms have been developed to analyze

time-series expression data [15], but, to our knowledge, none
have been specifically designed for analysis of large compen-
dia of such data. Analysis methods for combining time-series
of different durations or that use different sampling rates
have focused on long time-series over a few experimental
conditions [16,17], rather than on short series over many
conditions as we do. Jenner and Young performed a meta-
analysis using hierarchical clustering of a superset of the
infection time-course experiments we analyze in this paper
[18]. However, their analysis was not automated or statisti-
cally principled, relying on extensive prior biological knowl-
edge, and using visual assessment of clusters to manually
assign genes to pathways of interest. Further, as described in
the Results/Discussion section, our analysis implicated several
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Author Summary

In recent years, DNA microarrays have been used to produce large
compendia of human gene expression data, which are promising
resources for discovery of expression programs, sets of co-expressed
genes orchestrating important physiological or pathological pro-
cesses. However, these compendia present particular challenges,
including cellular inhomogeneity within samples, genetic and
environmental variation across samples, uncertainty in the numbers
of programs and sample populations, and temporal behavior. To
address these challenges, we developed GeneProgram, a state-of-
the-art statistical framework that automatically generates interpret-
able maps of expression programs from microarray data. GenePro-
gram accomplishes this by simultaneously organizing tissues into
groups and genes into overlapping programs with consistent
temporal behavior, and sorting programs by a generality score.
Such maps may be valuable for guiding future biological experi-
ments; genes from programs with low generality scores might serve
as new drug targets that exhibit minimal ‘‘cross-talk,’’ and genes
from high generality programs may maintain common physiological
responses that go awry in disease states. Using synthetic and real
data, we showed that GeneProgram outperformed several popular
expression analysis methods. Further, on a compendium of time-
series gene expression data measuring the responses of human cells
to infectious agents, GeneProgram discovered programs that
implicate surprising signaling pathways and receptor types.

Functional Generality of Gene Expression Programs



surprising signaling pathways and receptor types in the
response to infection that previous analyses of these datasets
have not.

In the remainder of this paper, we describe the GenePro-
gram algorithm, and the biological insights gained from
applications of our method. We first present an intuitive
overview of the GeneProgram algorithm and probability
model. We then use synthetic data to examine the kinds of
structures that GeneProgram and several other classes of
algorithms can recover from noisy data. Next, we benchmark
GeneProgram on two large compendia of mammalian data
[19,20] by comparing our algorithm’s ability to recover
biologically relevant gene sets to those of two popular
biclustering methods. We then apply GeneProgram to a
compendium of 62 short time-series gene expression datasets,
measuring the responses of human cells to infectious agents
or immune-modulating molecules [21–26], and produce a
map of expression programs organized by functional general-
ity scores. We evaluate the biological relevance of the
discovered expression programs using biological process
categories [27] and pathway [28] databases, as well as
genome-wide data profiling binding of NF-jB family tran-
scription factors [29]. Finally, we provide examples of
discovered expression programs involved in key pathways
related to the response to infection, discuss the significance
of our results, and comment on possible future research
directions.

Results/Discussion

The GeneProgram Algorithm and Probability Model
Algorithm overview. The GeneProgram algorithm consists

of data pre-processing, model inference/learning, and model
posterior distribution summary steps as depicted in Figure 1.
Data pre-processing steps make data from multiple experi-
ments comparable and discretize continuous values in
preparation for input to the model. The model inference/

learning step seeks to discover underlying expression
programs and tissue groups in the data. To accomplish this,
we use Markov Chain Monte Carlo (MCMC) sampling [30], an
approximate inference method, to estimate the model
posterior probability distribution. Each posterior distribu-
tion sample describes a configuration of expression programs
and tissue groups for the entire dataset; more probable
configurations tend to occur in more samples. The final step
of the algorithm is model summarization, which produces
consensus descriptions of expression programs and tissue
groups from the posterior distribution samples. See the
Methods section for details.
Probability model overview. The GeneProgram probability

model can be understood intuitively as a series of ‘‘recipes’’
for constructing the gene expression of human tissues. Figure
2 presents a schematic diagram of this process, in which we
imagine that we are generating the expression data for the
digestive tract of a person. The digestive tract is composed of
a variety of cell types, with cells of a given type living in
different microenvironments, and thus expressing somewhat
different sets of genes. We can envision each cell in an organ
choosing to express a subset of genes from relevant
expression programs; some programs will be shared among
many cell types and others will be more specific. As we move
along the digestive tract, the cell types present will change,
and different expression programs will become active.
However, based on the similar physiological functions of
the tissues of the digestive tract, we expect more extensive
sharing of expression programs than we would between
dissimilar organs such as the brain and kidneys. As can be
seen in Figure 2, the final steps of our imaginary data
generation experiment involve organ dissection, homogeni-
zation, cell lysis, and nucleic acid extraction, to yield the total
mRNA expressed in the tissue, which is then measured on a
DNA microarray.
The conceptual experiment described above for ‘‘con-

structing’’ collections of mRNA molecules from tissues is
analogous to the topic model, a probabilistic method developed
for information retrieval applications [12,31] and also applied
to other domains, such as computer vision [32] and
haploinsufficiency profiling [11]. In topic models for in-
formation retrieval applications, documents are represented
as unordered collections of words, and documents are
decomposed into sets of related words called topics that
may be shared across documents. In hierarchical versions of
such models, documents are further organized into catego-
ries, and topics are preferentially shared within the same
category. In the GeneProgram model, a unit of mRNA
detectable on a microarray is analogous to an individual
word in the topic model. Related tissue populations (tissue
groups) are analogous to document categories, tissues are
analogous to documents, and topics are analogous to
expression programs.
GeneProgram extends the hierarchical topic model to

capture general patterns of expression changes, such as
temporal dynamics, through the novel concept of program
usage modifiers, which are variables that alter the manner in
which each tissue uses an expression program. For instance,
for time-series data, usage modifiers would take on values of
particular temporal patterns, such as early, middle, or late
induction or repression of expression. A tissue then
probabilistically chooses a set of genes from a program, and

Figure 1. GeneProgram Algorithm Steps

The main steps of the algorithm are: data pre-processing (steps 1–2),
model inference/learning (step 3), and model posterior distribution
summarization (step 4). See the text for details.
doi:10.1371/journal.pcbi.0030148.g001
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also a value for its usage modifier (e.g., the particular
temporal pattern with which to express genes from the
program). Because usage modifiers are modeled hierarchi-
cally, their values are influenced by all tissues in the data, and
especially those in the same group.

GeneProgram handles uncertainty in the numbers of
expression programs and tissue groups by using Dirichlet
Processes, a non-parametric Bayesian statistical method that
provides a prior distribution over the numbers of programs
and tissues groups while penalizing model complexity. More
specifically, GeneProgram is based on Hierarchical Dirichlet
Process mixture models [13], which allow data items to be
assigned to groups. Items in the same group preferentially
sharemixture components, althoughmixture components may

be used across the entire model. We note that in the original
Hierarchical Dirichlet Processes formulation [13], items were
required to be manually assigned to groups. The GeneProgram
model extends this work, automatically determining the
number of groups and tissue memberships in the groups.
The GeneProgram probability model consists of a three-

level hierarchy of Dirichlet Processes, as depicted in Figure
3A. Tissue samples are at the lowest level in the hierarchy.
Each tissue sample is characterized by a mixture (weighted
combination) of expression programs and a set of usage
modifiers, which together describe the observed expression
magnitudes and patterns of change in the tissue sample. An
expression program represents a set of genes that are likely
to behave coordinately in particular tissues that use the

Figure 2. Conceptual Overview of the Data Generation Process for Gene Expression in Human Tissues

The GeneProgram probability model can be thought of as a series of ‘‘recipes’’ for constructing the gene expression of tissues, as depicted in this
schematic example for a digestive tract. In the upper right, four expression programs (labeled A–D) are shown, consisting of sets of genes (e.g., GA1
represents gene 1 in program A). Cells (circles) throughout the digestive tract choose genes to be expressed probabilistically from the programs. The
biological experimenter then collects mRNA by dissecting out the appropriate tissue sample, homogenizing it, lysing cells, and extracting nucleic acids.
doi:10.1371/journal.pcbi.0030148.g002
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program, as depicted in Figure 3B. Tissue samples differ in
terms of which expression programs they employ, how the
programs are weighted, and how the programs are used. The
middle level of the hierarchy consists of tissue groups, in
which each group represents tissue samples that are similar
in their use of expression programs (in terms of both
weightings and usage modifiers). The highest and root level in
the hierarchy describes a base level mixture of expression
programs that is not tissue sample or group specific.

Each node in our hierarchical model maintains a mixture
of gene expression programs, and the mixtures at the level
below are constructed on the basis of those above. Thus, a
tissue sample is decomposed into a collection of gene
expression programs, which are potentially shared across
the entire model, but are more likely to be shared by related
tissues (those in the same tissue group). Further, the usage of
each program may differ between tissues, but is more likely to
be the same in related tissues. Because our model uses
Dirichlet Processes, the numbers of both expression pro-
grams and tissue groups are not fixed and may vary with each
sample from the model posterior distribution. See Protocol
S1 for complete details.

GeneProgram Accurately Recovered Coherent Gene Sets
in Noisy Synthetic Data That Other Algorithms Could Not
We used a simple synthetic data example to explore the

kinds of structures GeneProgram and several other well-
known unsupervised learning algorithms could recover from
noisy data. Our objective with these experiments was to use
simulated data to illustrate the capabilities of the algorithms;
whether or not particular structures are present in real data
can only be answered empirically, and is addressed in the
next subsections. In creating synthetic data, we sought to
simulate important features of real microarray data profiling
human tissues. Thus, we assumed noisy data in which there
were several distinct populations of related tissues using
different sets of co-expressed genes. In particular, the
simulated data contained four sets of co-expressed genes
used by 40 tissues divided equally among four tissue
populations (see Figure 4A). Each gene set contained 40
genes with varying mRNA levels; gene sets three and four
overlapped in ten genes. See the Methods section for details.
We note that this scheme for simulating data does not simply
recapitulate the assumptions present in the GeneProgram
model, because it does not assume discrete and independent
‘‘units’’ of expression signal and it introduces microarray-like
noise.
Hierarchical clustering is one of the most frequently used

methods for clustering microarray gene expression data.
Figure 4B shows the results of hierarchical clustering, using
Pearson correlation as a similarity metric and the average
linkage method [33], applied to sorting both rows (genes) and
columns (tissues) of the synthetic data. As can be seen,
hierarchical clustering did reasonably well at sorting tissues
and genes independently, although it did not separate gene
sets three and four correctly. But, this method’s failure to
consider genes and tissues simultaneously is known to break
up coherent ‘‘overhanging’’ blocks of genes, making inter-
pretation difficult [2,5,8]. This issue was demonstrated in this
example by gene sets one and two that ‘‘overhang,’’ thus
causing gene set two to be broken up horizontally (blue rows
in Figures 4A and 4B).
The inability of hierarchical clustering to handle ‘‘over-

hanging’’ block structure in data was one of the motivations
for the development of biclustering algorithms that take
genes and tissues into account simultaneously [2,5,9]. To
investigate the behavior of biclustering algorithms, we used
Samba, an algorithm that has been shown previously to
outperform other biclustering methods [5,34]. Samba pro-
duced 23 biclusters from the synthetic data (unpublished
data). This method tended to find small subsets of genes co-

Figure 3. Overview of the GeneProgram Probability Model, Which Is

Based on Hierarchical Dirichlet Process Mixture Models

(A) The model consists of a three-level hierarchy of Dirichlet Processes.
Each node describes a weighted mixture of expression programs (each
colored bar represents a different program; heights of bars ¼ mixture
weights). The distributions at each level are constructed on the basis of
the parent mixtures above. Tissue group and root level nodes maintain
distributions over usage modifiers (shaded circles above bars, darker
circles ¼ more probable), which are variables that alter the manner in
which each tissue uses an expression program. In this example, there are
two possible values for usage modifier variables (þ or�), corresponding
to gene induction or repression; more complex patterns such as
temporal dynamics can be captured by using more values. Tissues are
at the leaves of the hierarchy, and choose particular values for usage
modifier variables. The observed gene expression in each tissue is
characterized by a vector of discretized expression magnitudes (first row
of small shaded squares below each tissue) and pattern types (second
row of squares withþ/� designations below each tissue).
(B) Example of a gene expression program, which represents a set of
genes that are likely to behave coordinately in particular tissues that use
the program. On the left is a simple program containing five genes
(colored bars¼expression frequencies). A tissue probabilistically chooses
a set of genes from a program, and also a setting for its usage modifier
variable. Note that usage is consistent across a program for a particular
tissue, which facilitates biological interpretation.
doi:10.1371/journal.pcbi.0030148.g003
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Figure 4. Synthetic Data Experiments Demonstrated GeneProgram’s and Other Algorithms’ Abilities to Recover Gene Sets from Noisy Data

(A) Noisy synthetic data, containing 150 genes (rows) and 40 tissues (columns), with four gene sets and four tissue sample populations. Vertical
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expressed in some tissues, but did not recover the four gene
sets as coherent biclusters. Presumably, this is because Samba
does not attempt to incorporate more global constraints on
biclusters.

Singular Value Decomposition (SVD) is a matrix factoriza-
tion method that can be used to approximate a matrix using a
smaller number of factors or components. In the context of
gene expression data, the method has previously been used to
decompose data into ‘‘eigengenes’’ and ‘‘eigenexperiments,’’
linear combinations of genes and experiments, respectively
[1,35]. However, it is generally recognized that SVD often
produces components that are difficult to interpret [8,36–38].
As can be seen in Figure 4C, components produced by SVD
[33] do not clearly correspond to the distinct gene sets or
tissue populations in the synthetic data. For instance, the first
component is to some extent a composition of gene sets one
and three, and subsequent components then add or subtract
different combinations of the gene sets.

The development of non-negative matrix factorization
(NMF) methods was in part driven by the aforementioned
problems with SVD. NMF algorithms decompose a matrix
into the product of non-negative matrices [38]. These
algorithms generally produce more interpretable factors
than does SVD, and have been successfully applied to various
problems including gene expression analysis [8,36,37]. Figure
4D shows the application of an NMF-based algorithm to the
synthetic data. We used a publicly available implementation
[36], which searches for an optimal number of factors using a
cophenetic clustering coefficient metric, and in this case we
found three factors to be optimal. As can be seen in Figure
4D, NMF did fairly well at recovering gene sets one and two,
although there was some overlap between the sets. However,
gene sets three and four were indistinguishable.

Figure 4E demonstrates the application of a simplified
version of GeneProgram in which tissue groups were not
modeled (all tissues were attached to the root of the
hierarchy). As can be seen, this version of the algorithm
accurately recovered gene sets one and two. However, as with
NMF, gene sets three and four completely overlapped.

Figure 4F shows the application of GeneProgram with full
automatic learning of tissue groups enabled. As can be seen,
the algorithm accurately recovered all four gene sets. By
leveraging hierarchical structure in the data, the algorithm
had additional information (the pattern of expression
program use by related tissues), which presumably allowed
it to correctly recover all the synthetic gene sets—something
the other methods we tested were not capable of doing.

GeneProgram Outperformed Biclustering Algorithms in

the Discovery of Biologically Relevant Gene Sets in Large
Compendia of Mammalian Gene Expression Data
Our objective in this subsection was to apply GeneProgram

to large compendia of mammalian gene expression data to
compare our method’s performance against that of other
algorithms. In this regard, we used Novartis Gene Atlas
version 2 [20], consisting of genome-wide Affymetrix ex-
pression measurements for 79 human and 61 mouse tissues,
and a second dataset collected by Shyamsundar et al.,
consisting of cDNA expression measurements for 115 human
tissues [19]. We compared GeneProgram’s performance to
two biclustering algorithms, Samba [5,34] and a non-negative
matrix factorization (NMF) implementation [36]. We chose
these two algorithms for comparison because they are
popular in the gene expression analysis community, they
have previously outperformed other biclustering algorithms,
and available implementations are capable of handling large
datasets.
Because expression programs characterize both genes and

tissues, we used both Gene Ontology (GO) categories [27] and
manually derived, broadly physiologically based tissue cate-
gories to assess the algorithms’ performance. However, GO
categories and the manually derived tissue categories
represent only limited biological knowledge. So, we were
also interested in assessing the consistency of gene sets
discovered by each algorithm across the two datasets. Because
the two datasets used different microarray platforms and
sources for tissues, similarities in discovered gene sets
between datasets were likely to be biologically relevant. To
analyze gene set consistency for each algorithm, we used the
gene sets discovered from one dataset to compute the
significance of the overlap with sets produced using the
second dataset. We then inverted the analysis and averaged
the results to produce correspondence plots. See the Methods
section for details.
GeneProgram clearly outperformed the other algorithms

in both the tissue and gene dimensions on the two datasets
considered separately (Table 1), and also in terms of gene set
consistency between the datasets (Figure 5). These results
suggest several performance trends related to features of the
different algorithms. As noted in the section on synthetic
data experiments, Samba was successful at finding relatively
small sets of genes that are co-expressed in subsets of tissues,
but had difficulty uncovering larger structures in data.
Presumably, our algorithm’s dominance of both Samba and
NMF was partly attributable to GeneProgram’s hierarchical
model. Both Samba and NMF lack such a model, so the
assignment of tissues to biclusters was not guided by global
relationships among tissues.

numbers and colored bars designate gene sets; corresponding horizontal elements designate tissue sample populations. Each gene set contained 40
genes with varying mRNA levels; programs 3 and 4 overlapped in ten genes. See the text for complete details.
(B) Hierarchical clustering was applied to sorting both rows (genes) and columns (tissues) of the data. Arrows from (A) indicate resorting of gene sets.
Note that hierarchical clustering did not separate gene sets 3 and 4 correctly, and broke up gene set 2 horizontally.
(C) SVD factors did not clearly correspond to the distinct gene sets or tissue populations in the synthetic data; the first three factors are shown.
(D) An NMF implementation, which searches for the optimal number of factors, was applied to the data. In this case, three factors were optimal. The
method performed fairly well in recovering genes sets 1 and 2, although there was some overlap between the sets. However, gene sets 3 and 4 were
not recovered as separate sets.
(E) A simplified version of GeneProgram using a flat hierarchy (automatic tissue grouping disabled) accurately recovered gene sets 1 and 2, but failed to
separate sets 3 and 4.
(F) The full GeneProgram implementation using automatic tissue grouping correctly recovered all four gene sets.
doi:10.1371/journal.pcbi.0030148.g004
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We note also that the algorithms differed substantially in
runtimes. For the largest dataset (Novartis Gene Atlas version
2), Samba was fastest (approximately 3 h), GeneProgram the
next fastest (approximately 3 d), and NMF the slowest
(approximately 6 d), with all software running on a 3.2 GHz
Intel Xenon CPU. Although these runtime differences may be
attributable in part to implementation details, it is worth
noting that GeneProgram, a fully Bayesian model using
MCMC sampling for inference, ran faster than the NMF
algorithm, which uses a more ‘‘traditional’’ objective max-
imization algorithm and searches for the appropriate number
of biclusters.

GeneProgram Discovered Five Tissue Groups and 104
Expression Programs in Human Host-Cell Infection Time-
Series Data

In the previous two subsections, we used GeneProgram in a
manner similar to traditional biclustering algorithms. In this
subsection, we take advantage of GeneProgram’s ability to
find coherent gene sets that may be used with different but
consistent temporal dynamics by each tissue sample—a
capability not shared with traditional biclustering algorithms.

We applied GeneProgram to a compendium of 62 short
time-series gene expression datasets, measuring the responses
of human cells to various infectious agents or immune-
modulating molecules. See Table S1 for a summary of the
data sources used in the compendium and Table S2 for
information about each time-series experiment analyzed.

Behavior for each gene over each time-series experiment
was mapped to one of six simple temporal patterns. A limited
set of possible temporal patterns was intentionally chosen for
two reasons. First, in the original studies, a primary feature of
interest for all the experiments analyzed was the time of
earliest induction or repression of each gene [21,23–25].
Thus, a small set of relevant temporal patterns aids in the
biological interpretability of our results. Second, the time-
series datasets analyzed had different durations, sampling
rates, and numbers of samples. By considering only simple
temporal patterns that extract features present in all time-

series, we could produce meaningful results spanning all the
datasets. The six temporal patterns characterize three
temporal phases (early, middle, or late) with two possible
directions (induction or repression) for the first significant
expression change for each gene in each time-series experi-
ment. See Figure S1 for a summary of the temporal patterns
used, and Figure S2 for example genes with expression
profiles corresponding to the patterns.
Figures S3–S5 (programs 1–75) and Figure 6 (programs 76–

104) provide graphical summaries and Table S3 provides
complete details for the tissue groups and expression
programs discovered by GeneProgram from the infection
data. The tissue groups essentially corresponded to the
different host-cell types used for the infection experiments,
although there was some intermingling of the dendritic and
peripheral blood mononuclear cell experiments and those
using other host-cell types. Expression programs were used by
2–27 experiments (median¼ 7) and contained 101–410 genes
(median¼ 201). All six temporal patterns were used, although
late induction and late repression were used least frequently,
likely in part because the corresponding time intervals were
the most sparsely sampled in the compendium analyzed. In
many cases, usage patterns for a single program were
uniformly inductive or repressive, although programs were
sometimes used with differently phased patterns by different
experiments. However, in other interesting cases, usage
patterns were not uniformly inductive or repressive. Specific

Figure 5. GeneProgram Outperformed Two Popular Biclustering

Methods, an NMF Implementation and Samba, in Terms of Gene Set

Consistency between Two Large Compendia of Mammalian Tissue Gene

Expression Data

Because the two data compendia used different microarray platforms
and sources for tissues, similarities in discovered gene sets between
compendia were likely to be biologically relevant. For each algorithm, we
used gene sets discovered from one data compendium to compute the
significance of the overlap (p-values) with sets produced using the
second compendium. We then inverted the analysis and averaged the
results to produce the correspondence plots shown. The plots depict log
p-values on the horizontal axis and the fraction of gene sets with p-
values below a given value on the vertical axis (see the Methods section
for details). The larger fraction of gene sets at most p-values suggests
that GeneProgram generally produces the most consistent results
between the data compendia.
doi:10.1371/journal.pcbi.0030148.g005

Table 1. GeneProgram Outperformed Two Popular Biclustering
Algorithms, an NMF Implementation and Samba, in Recovering
Biologically Interpretable Gene Sets from Two Compendia of
Mammalian Gene Expression Experiments

Data

Source

Algorithm Gene Dimension

(GO Category

Enrichment)

Tissue Dimension

(Manually Derived

Category Enrichment)

N GeneProgram 93% 76%

N NMF 35% 29%

N Samba 53% 9%

S GeneProgram 66% 53%

S NMF 28% 19%

S Samba 51% 28%

Biological interpretability of gene sets was assessed using GO categories in the gene
dimension, and manually constructed categories in the tissue dimension. Each cell in the
table shows the percentage of sets significantly enriched for at least one category in a
given dimension (p-value , 0.05, corrected for multiple hypothesis tests). The data
compendia are the Novartis Tissue Atlas version 2 (N) [20] and the Shyamsundar et al.
human tissue data (S) [19].
doi:10.1371/journal.pcbi.0030148.t001
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Figure 6. GeneProgram Discovered Five Tissue Groups (A–E) and 104 Expression Programs (Numbered Columns, Only 76–104 Shown Here; 1–75 Shown

in Figures S3–S5) in a Compendium of 62 Short Time-Series Gene Expression Datasets Measuring the Responses of Human Cells to Infectious Agents

and Immune-Modulating Molecules
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examples of expression programs with different temporal
pattern usage are discussed below.

Discovered Expression Programs Overlapped Extensively
with Key Human Signaling Pathways and Biological
Processes

To evaluate the biological relevance of expression pro-
grams, we used two external sources of information about
gene function: GO biological process categories [27] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
[28]. See the Methods section for details.

A large number of expression programs were significantly
enriched for GO categories (50%) or KEGG pathways (59%).
As expected, many significant GO categories and KEGG
pathways were specifically involved with response to infec-
tion. Interestingly, a substantial number of significant
categories or pathways corresponded to signaling cascades.
Further, there were also a number of significantly enriched
biological processes or pathways not directly annotated as
being infection-related, but that are involved with alterations
in cellular physiology consistent with infection. Finally, there
were some unexpected significant categories or pathways. See
Tables S4 and S5 for details. Specific examples of expression
programs enriched for genes involved in key pathways and
biological processes are discussed below.

A Surprising Number of Expression Programs Contained
Significant Numbers of Genes Bound by NF-jB
Transcription Factor Family Members

We further evaluated the biological relevance of discovered
expression programs using genome-wide ChIP–chip data
profiling binding of NF-jB family transcription factors in
human cell-culture–derived macrophages [29]. NF-jB tran-
scription factors are key controllers of mammalian immune
and inflammatory responses [39], so we expected that some
genes differentially expressed in the infection time-series
compendium would also be bound by NF-jB transcription
factors in the ChIP–chip experiments.

Fifteen of the expression programs discovered by GenePro-
gram were significantly enriched for sets of genes bound by
at least one NF-jB family member. This overlap with the
binding data was quite large, considering that only 348 genes
were bound by NF-jB family members in the ChIP–chip
experiments [29]. Overall, the 15 significantly enriched
programs tended to be those used by a diverse array of host-
cell types exposed to a range of pathogens and their
components. This suggests that these expression programs
may represent common processes that are strongly induced or
repressed during infection via NF-jB family member regu-
latory activity. Examples of such programs are discussed below.

The Generality Score Naturally Categorized Programs into
a Spectrum of Responses to Infection

We developed a score for assessing the functional general-
ity of expression programs, and demonstrated its utility for
automatically characterizing the spectrum of discovered
programs—from gene sets involved in response to a specific

pathogen in one host-cell type, to those mediating common
inflammatory pathways. The generality score is the entropy of
the normalized distribution of usage of an expression
program by all tissues in each tissue group. Because the
distribution employed for calculating the score is normalized,
tissue groups that only use an expression program a relatively
small amount will have little effect on the score. Thus, a high
generality score indicates that an expression program is used
fairly evenly across many tissue groups; a low score indicates
the program is used by tissues from a small number of groups.
We note that a score based on expression program usage by
individual tissues, rather than by groups, would ignore
similarities among tissues and would tend to overestimate
the generality of programs if related tissues were present in
the dataset. Thus, an informative generality score requires a
global organization of tissues into groups, rather than just the
local associations of subsets of tissues with individual gene
sets provided by biclustering algorithms. Because there is
uncertainty in the number of and membership in tissue
groups, GeneProgram’s Dirichlet Process–based model pro-
vides a natural framework for computing the generality score.
See Protocol S1 for complete details.

Programs with Low Generality Scores Were Used by
Experiments Spanning a Limited Number of Host-Cell and
Infection Types
Experiments involving exposure of gastric epithelial cells

to Helicobacter pylori used several low generality expression
programs (EPs). This is biologically plausible, because gastric
epithelial cells are not involved in principle immune system
functions, unlike all other host cells profiled in the dataset
[22]. As an example of a program used exclusively by H. pylori–
infected epithelial cells, EP 22 (generality ¼ 0.011, five
experiments) was enriched for genes involved in regulation
of the actin cytoskeleton (KEGG: hsa04810), and was used
with a middle induction modifier by all associated experi-
ments. The induction of this pathway is consistent with
extensive host-cell shape changes known to occur in H. pylori
infection; delayed induction likely reflects the time necessary
for bacterial attachment and secretion of proteins that
induce host-cell cytoskeletal rearrangements [22].
Peripheral blood mononuclear cell (PBMC) and whole

blood experiments also used several low generality programs.
This is biologically reasonable, because PBMCs and whole
blood represent mixtures of innate and adaptive immunity-
mediating cell types, and thus contain cell types not profiled
in the other experiments analyzed. Further, the diversity of
cell types in PBMC and whole blood cultures allows for
critical interactions that are necessary to trigger certain
cellular responses [21]. As an example, EP 33 (generality ¼
0.027, nine experiments) was used by experiments involving
PBMCs and whole blood exposed to the Gram-negative
bacteria Neisseria meningitides or Bordetella pertussis, and was
enriched for genes with anti-apoptotic function (GO:
0006916). We hypothesize that this program, which was
generally induced in the middle of the time-courses, may

Each entry in the matrix represents the usage of an expression program (darker shading¼ higher usage), and matrix entries are colored and labeled
with temporal patterns. The patterns are early induction (Eþ, red), middle induction (Mþ, yellow), late induction (Lþ, green), early repression (E�, cyan),
middle repression (M�, blue), and late repression (L�, light purple). Generality scores are shown at the bottom of the figure; programs are sorted from
lowest to highest scores (left to right).
doi:10.1371/journal.pcbi.0030148.g006
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involve stabilization of an anti-apoptotic state necessary for
maturation and differentiation of peripheral immune cells
following infection.

Programs with Intermediate Generality Scores Were Used
by Experiments Involving Host Cells Exposed to a Wider
Variety of Agents

Several intermediate generality programs appeared to
represent coordinated downregulation of proteolytic and
antigen presentation pathways. For example, EP 68 (general-
ity ¼ 0.227, 14 experiments) was used by experiments
involving exposure of primary macrophages to a variety of
interleukins/interferons, pathogens, or their components.
This program was enriched for genes involved in proteasome
function (KEGG: hsa03050), and was generally repressed early
in the time-series. As another example, EP 77 (generality ¼
0.298, six experiments) was used by several experiments
involving PBMCs or cell-culture–derived macrophages ex-
posed to different bacteria or immune-modulating chemicals.
This program was enriched for genes involved in both MHC I
and MHC II antigen processing and presentation pathways
(KEGG: hsa04612), and was used with a middle repression
modifier by all associated experiments. Downregulation of
proteasome and antigen presentation pathways subsequent to
infection may reflect commitment of phagocytic cells to
presentation of antigens from a pathogen that has just been
encountered [21].

Several expression programs revealed differences in
temporal phasing of the response of host cells exposed to
different classes of pathogenic organisms. For example, EP 88
(generality ¼ 0.386, 13 experiments) was enriched for genes
involved in ribosomal structure or function (KEGG:
hsa03010). Induction of ribosomal genes may be a prelude
to production of critical signaling and defensive proteins,
such as chemokines and cytokines. EP 88 was induced early in
macrophages or dendritic cells exposed to several varieties of
Gram-negative bacteria, but induced in the middle of the
time-series in host cells exposed to Gram-positive bacteria. As
another example, EP 91 (generality¼ 0.402, 13 experiments),
was enriched for genes involved in mRNA splicing (GO:
0000398) and oxidative phosphorylation (KEGG: hsa00190).
This program was induced early in time-courses in dendritic
cells exposed to bacteria or viruses, but not induced until the
middle phase in experiments involving dendritic cells
exposed to live fungi or fungal cell components. Interestingly,
the program was repressed early in macrophages exposed to
various interferons/interleukins. We hypothesize that the
phasing differences observed in induction of EPs 88 and 91
may be due to the lesser ability of Gram-positive or fungal
organisms to induce critical signaling pathways in innate
immune cells. We also note that both programs were
significantly enriched for genes bound by NF-jB family
members. Interestingly, a number of the NF-jB targets in EP
88 were ribosomal genes, suggesting a direct role for this
transcription factor in ribosome activity induction.

Several intermediate generality programs were signifi-
cantly enriched for surprising signaling pathways or host-cell
receptor types. For instance, EP 50 (generality ¼ 0.134, 13
experiments) and EP 84 (generality ¼ 0.331, 12 experiments)
were significantly enriched for genes involved in the Wnt
signaling pathway (KEGG: hsa04310), including WNT7A and
FZD5 in EP 50, and WNT1, WNT5A, and MMP7 in EP 84 (see

Figure S6). Wnt signaling pathways have been traditionally
implicated in developmental processes [40], and have only
recently been shown to be involved in immune system
functions [41–43]. For instance, Lobov et al. demonstrated
that macrophages can secrete WNT7B, which induces
apoptosis in vascular endothelial target cells via the canonical
Wnt signaling pathway [42]. Signaling via the WNT5A
receptor FZD5 has been implicated in stimulation of pro-
inflammatory molecules (e.g., MMP7, TNF-a, IL-12) in macro-
phages, possibly via both canonical and non-canonical path-
ways [41,43]. Consistent with these reports of Wnt activity in
macrophages, EP 50 was used by macrophages exposed to a
variety of bacteria and stimulatory molecules. Interestingly,
the program was repressed in macrophages infected with
bacteria and induced in cells treated with interleukins or
interferons. This difference in program usage may reflect the
ability of bacteria to downregulate pro-inflammatory Wnt
pathways. In contrast, EP 84, which was mostly used by
macrophages and dendritic cells exposed to bacteria or
microbial components, was uniformly induced in the middle
of the infection time-series. Because the two programs
contain different Wnt pathway genes, they may be involved
in different inflammatory functions. Further, we note that
only some of the Wnt pathway associated genes in EPs 50 and
84 have previously been implicated in macrophage function,
making these attractive candidates for future experimental
biology work.
EP 55 (generality ¼ 0.161, 12 experiments), which was

significantly enriched for genes coding for neurotransmitter
or hormonal receptors (KEGG: hsa04080), was another
surprising finding. This program was induced in macrophages
treated with various interleukins or interferons, and re-
pressed in macrophages exposed to various microbial
components. The program contained genes coding for a
variety of receptors including those for acetylcholine
(CHRM5), cannabinoids (CNR2), dopamine (DRD2), and
histamine (HRH1). Although such receptor types are typically
found on neurons, they have also been found on macro-
phages and T cells, and recent studies suggest they may have
important pro- and anti-inflammatory properties [44–47].
The different use of this program by macrophages exposed to
interleukins/interferons (induction) versus that of those
exposed to bacterial components (repression) may reflect
bias toward pro- or anti-inflammatory states mediated by
different neuroactive receptor signaling pathways.

Programs with High Generality Scores Were Used by the
Full Spectrum of Experiments Involving Exposure of
Different Host-Cell Types to a Wide Variety of Agents
Most programs with high generality scores were enriched

for genes bound by NF-jB family members and involved in a
range of signaling pathways. For instance, EP 99 (generality¼
0.585, 27 experiments) appeared to represent a ‘‘common
infection response’’ program, which was used by experiments
from every tissue group and almost always induced early. This
EP contained 203 genes, 15% of which code for cytokines or
cytokine receptors, and was also significantly enriched for a
number of signaling pathways. Of particular interest, it
contained many genes involved in the Toll-like receptor
signaling pathway (KEGG: hsa04620, see Figure S7). As
expected, many of the genes in the overlap between EP 99
and this pathway code for cytokines, but various genes coding
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for downstream signaling molecules were also present,
including TRAF6, AP-1, NF-jB (p105), and IjBa. Further,
EP 99 was significantly enriched for genes bound by NF-jB
family members RELB, p65, p50, p52, or c-REL in ChIP–chip
experiments. In contrast, EP 102 (generality ¼ 0.634, 15
experiments) was also used by a wide variety of experiments,
but was induced in the middle of the time-series of all
associated experiments, and was not significantly enriched
for binding of any NF-jB family members. This program
contained a large number of genes coding for interferons or
interferon induced chemokines [18]. Interestingly, many
interferon sensitive genes (ISGs) are activated by tran-
scription factors other than NF-jB, and a delay in production
of ISGs has previously been noted, presumably due to the
time needed to establish critical autocrine and paracrine
signaling loops [18].

Conclusions
We presented a new computational methodology, Gene-

Program, specifically designed for analyzing large compendia
of human expression data. We demonstrated that GenePro-
gram produces superior results when compared with tradi-
tional biclustering algorithms on two types of tasks. First, we
used synthetic data experiments to show that GeneProgram
was able to correctly recover gene sets that other popular
analysis methods could not. Second, we analyzed two large
compendia of mammalian gene expression data from
representative normal tissue samples, and demonstrated that
GeneProgram outperformed other biclustering methods in
the discovery of biologically relevant gene sets.

In our final application, we took advantage of GenePro-
gram’s ability to find coherent gene sets used with different
temporal dynamics by each tissue sample—a capability
traditional biclustering algorithms do not have. We applied
GeneProgram to a compendium of short time-series gene
expression datasets exploring the responses of human host
cells to infectious agents and immune-modulating molecules.
Using this dataset, GeneProgram discovered five tissue groups
and 104 expression programs, a substantial number of which
were significantly enriched for genes involved in key signaling
pathways and/or bound by NF-jB transcription factor family
members in ChIP–chip experiments. We introduced an
expression program generality score that exploits the tissue
groupings automatically learned by GeneProgram, and
showed that this score characterizes the functional spectrum
of discovered expression programs—from gene sets involved
in response to specific pathogens in one host cell type, to
those mediating common inflammatory pathways.

GeneProgram automatically discovered many expression
programs involved in key pathways related to the response to
infection and uncovered temporal phasing differences in
program use by some experiments. For instance, programs
enriched for genes involved in ribosomal function or energy
production were induced earlier in host cells exposed to
Gram-negative organisms than in those exposed to Gram-
positive organisms or fungi. Some of the discovered programs
overlapped with previously described gene sets derived from
the same expression data, such as EP 99 and the ‘‘common
host response’’ genes discussed by Jenner and Young [18].
However, previous meta-analyses of the data compendium
relied on extensive prior biological knowledge and manual
inspection of data [18]. In contrast, our method was

automatic, discovering expression programs, associating
them with consistent temporal patterns, and finding signifi-
cantly overlapping biological pathways and NF-jB binding
from ChIP–chip data.
Some of the gene sets discovered by GeneProgram

implicate surprising signaling pathways or host-cell receptor
types in the response to infection. In particular, EPs 50 and
84 were significantly enriched for genes involved in the Wnt
signaling pathway, and EP 55 was significantly enriched for
genes coding for neurotransmitter or hormonal receptors.
Wnt signaling pathways [41–43] and neurotransmitter recep-
tors [44–47] have only recently been implicated in the
response to infection. To our knowledge, our work is the
first to uncover the activity of these pathways in the datasets
analyzed, and to characterize the different temporal behav-
iors of these pathways in response to a variety of infectious
agents and immunomodulatory molecules. We believe that
the genes in the above-mentioned expression programs
constitute particularly attractive candidates for further bio-
logical characterization.
GeneProgram encodes assumptions that differ from some

previous methods for analyzing expression data and so merit
further discussion. First, we model expression data in a semi-
quantitative fashion, assuming that discrete levels of mRNA
correspond to biologically interpretable expression differ-
ences. We believe this is appropriate because popular array
technologies can only reliably measure semi-quantitative,
relative changes in expression; many relevant consequences
of gene expression are threshold phenomena [48–50]; and it is
difficult to assign a clear biological interpretation to a full
spectrum of continuous expression levels. Second, GenePro-
gram assumes that discrete ‘‘units’’ of mRNA are independ-
ently allocated to expression programs, which captures the
phenomena that mRNA transcribed from the same gene may
participate in different biological processes throughout a cell
or tissue. Independence of mRNA units is an unrealistic
assumption, but this approximation, which is important for
efficient inference, has worked well in practice for many
other applications of topic models [11,12,31]. Finally, Gene-
Program handles temporal data by collapsing time-series into
predefined, discrete patterns. Overall, we believe that this is a
very useful approach for finding interpretable gene expres-
sion programs, particularly when analyzing short time-series
experiments, in which there are a limited number of clearly
meaningful temporal patterns. Further, this method allows us
to extract features present in a compendium of time-series,
even when the series have different durations, sampling rates,
and numbers of samples. In the case of the infection time-
series data analyzed in this work, we defined relevant
temporal patterns manually, based on prior biological
knowledge [21,23–25]. However, temporal patterns could be
derived in more automated ways, such as through pre-
processing steps that apply time-series clustering algorithms
[15,51] to individual series in the data compendium.
Our method produced a large map of human infection–

response expression programs with several distinguishing
features. First, by simultaneously using information across a
variety of host-cell types exposed to a wide range of
pathogens and immunomodulatory molecules, GeneProgram
was able to dissect the data finely, automatically splitting
genes differentially expressed in response to infection among
both general and specific programs. Second, because our
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model explicitly operates on probabilistically ranked gene
sets throughout the entire inference process, rather than
finding individual differentially expressed genes, our results
are more robust to noise. Third, the fact that expression
programs provide probabilistically ranked sets of genes also
provides a logical means for prioritizing directed biological
experiments. Fourth, because our model is fully Bayesian,
providing a global penalty for model complexity including
for the number of tissue groups and expression programs, the
generated map represents a mathematically principled
compression of gene expression information throughout
the experiments. Finally, although such a large, comprehen-
sive map is inherently complicated, we believe that GenePro-
gram’s automatic grouping of tissues and the associated
expression program generality score aid greatly in its
interpretation.

GeneProgam is a general method for analyzing large
expression data compendium, and we believe that the maps
of expression programs discovered by our algorithm will be
particularly useful for guiding future biological experiments.
Highly specific expression programs can provide candidate
genes for diagnostic markers or drug targets that exhibit
minimal unintended ‘‘cross-talk.’’ General expression pro-
grams may be useful for identifying genes important in
regulating and maintaining general biological responses,
which may go awry in disease states such as inflammation
or malignancy. Additionally, our framework is flexible, and
could accommodate other genome-wide sources of biological
data in future work, such as DNA-protein binding or DNA
sequence motif information. GeneProgram’s ability to dis-
cover tissue groups and coherent expression programs de
novo using a principled probabilistic method, as well as its
use of data in a semi-quantitative manner, makes it especially
valuable for novel ‘‘meta-analysis’’ applications involving
large datasets of unknown complexity in which direct fully
quantitative comparisons are difficult.

Methods

Datasets and pre-processing. For our benchmark datasets, we used
two data sources. The data from Shyamsundar et al. consisted of 115
human tissue samples obtained from surgeries or autopsies, with
expression measured on custom cDNA microarrays [19]. The
reference channel on the microarrays consisted of mRNA pooled
from 11 established human cell lines. We considered a gene expressed
if its ratio was greater than 2.0. The Novartis Gene Atlas version 2
consisted of 79 human and 61 mouse tissue samples, with expression
measured on Affymetrixmicroarrays [20]. We retained pairs of related
genes from mouse and human samples using Homologene (build 47)
mappings [52]. Arrays were pre-processed using the GC content-
adjusted robust multi-array algorithm (GC-RMA) [53]. To correct for
probe specific intensity differences, the intensity of each probe was
normalized by dividing by its geometric mean in the 31 matched
tissues. For genes represented by more than one probe, we used the
maximum of the normalized intensities. A gene was considered
expressed if its normalized level was greater than 2.0. For both the
Novartis Gene Atlas version 2 and Shyamsundar et al. data, we
mapped genes to common identifiers using the IDConverter software
[54], and retained only the 7,404 genes present in both datasets.

For the infectious disease time-series analysis, we used expression
data from six microarray studies [21–26] that had previously been
combined and standardized by Jenner and Young [18]. The data used
consisted of 347 microarray experiments measuring expression of
5,042 genes in 62 short time-series (see Tables S1 and S2 for
summaries of experiments). Behavior for each gene over each time-
series experiment was mapped to one of six simple temporal patterns
(see Figure S1). Time-points for all experiments were divided into
three general phases: early (less than 2 h), middle (greater than 2 h
and not more than 12 h), and late (greater than 12 h). For each gene

in each time-series experiment, the gene was assigned to the pattern
corresponding to the earliest phase in which the gene’s expression
value exceeded a 2-fold increase (decrease) in at least one experiment
in the respective time interval. Further, to be assigned to a pattern, a
gene’s expression across the time-series was required to be consistent
in direction (either a 2-fold increase or decrease in expression but
not both). If a gene’s expression profile did not meet all these criteria,
it was not assigned to any pattern. Seventy-four genes were not
assigned to any pattern in any time-series and were thus excluded
from further analysis. The absolute expression value for a gene’s
earliest induction (repression) in each time-series was then used to
represent the magnitude of differential expression.

Expression data magnitudes were discretized into three levels
using a mutual information-based greedy agglomerative merging
algorithm, as described in Hartemink et al. [55]. In brief, continuous
expression levels were first uniformly discretized into a large number
of levels. The algorithm then repeatedly found the best two adjacent
levels to merge by minimizing the reduction in the pairwise mutual
information between all expression vectors. The appropriate number
of levels to stop at was determined by choosing the inflection point
on the curve obtained by plotting the score against the number of
levels. We obtained three levels for all the datasets. To analyze the
sensitivity of our results to the number of discretization levels, we
created correspondence plots for the largest dataset (the Novartis
Gene Atlas version 2) using two, three, and four discretization levels
(see Figure S8). As can be seen, at all the discretization levels
examined, GeneProgram outperformed the other biclustering meth-
ods, and fluctuations across results at different numbers of
discretization levels were considerably smaller than differences
between GeneProgram and the other algorithms.

To validate expression programs discovered in the infectious
disease data, we used genome-wide ChIP–chip data profiling binding
of five transcription factors in the NF-jB family in untreated or
lipopolysaccharide (LPS) stimulated cell-culture–derived human
macrophages [29]. The experimenters obtained data before and after
1 h of LPS stimulation, and binding was measured using microarrays
with probes covering proximal promoters of 9,492 genes. We used the
same criteria for determining binding events as in the original study
(a p-value threshold of 0.002).

Probability model. The GeneProgram model is an extension of the
Hierarchical Dirichlet Process mixture model as described in Teh et
al. [13]. In Hierarchical Dirichlet Processes, dependencies are
specified among a set of Dirichlet Processes by arranging them in a
tree structure. At each level in the tree, the base distribution for the
Dirichlet Process is a sample from the parent Dirichlet Process above.
In GeneProgram, each expression program corresponds to a mixture
component in the Hierarchical Dirichlet Process model. Because the
model is hierarchical, expression programs are shared by all Dirichlet
Processes in the model. An expression program specifies a multi-
nomial distribution over genes, and a set of usage modifier variables
(one for each tissue). Discrete expression levels are treated
analogously to word occurrences in document-topic models. Thus,
a tissue’s vector of gene expression levels is converted into a
collection of expression events, in which the number of events for
a given gene equals the discrete expression level of that gene in the
tissue. A pattern type (e.g., early induction) is associated with each
expression event. The model assumes that each gene expression event
in a tissue is independently generated by an expression program. One
usage modifier variable is associated with each tissue for each
program, and thus specifies the possible pattern type for genes from
the program used by the tissue. Usage variables are sampled
hierarchically, and thus influenced by other tissues. In the original
Hierarchical Dirichlet Process formulation [13], the entire tree
structure was assumed to be pre-specified. We extend this work, by
allowing the model to learn the number of groups and the
memberships of tissues in these groups. Thus, groups themselves
are generated by a Dirichlet Process, which uses samples from the
root of the Hierarchical Dirichlet Process as the base distribution. See
Protocol S1 for complete details.

Model inference and summarization. The posterior distribution for
the model is approximated via MCMC sampling [30]. Our inference
method is based on the technique described for efficient MCMC
sampling in Hierarchical Dirichlet Processes [13], with additional
steps added for sampling the tissue group assignments and usage
variables. See Protocol S1 for complete details.

The final step of the GeneProgram algorithm summarizes the
approximated model posterior probability distribution with con-
sensus tissue groups and recurrent expression programs. The posterior
distributions of Dirichlet Process mixture models are particularly
challenging to summarize because the number of mixture compo-
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nents may differ for each sample. Previous approaches for
summarizing Dirichlet Process mixture model components have
used pairwise co-clustering probabilities as a similarity measure for
input into an agglomerative clustering algorithm [14]. This method
is feasible if there are a relatively small number of items to be
clustered, and we employ it for producing consensus tissue groups.
Consensus tissue groups are constructed by first computing the
empirical probability that a pair of tissues will be assigned to the
same tissue group. The empirical co-grouping probabilities are then
used as pairwise similarity measures in a standard bottom-up
agglomerative hierarchical clustering algorithm using complete
linkage [56]. See Protocol S1 for complete details. However, this
method is not feasible for summarizing expression programs in
large datasets because of the number of pairwise probabilities that
would need to be calculated for each sample.

We developed a novel method for summarization of the model
posterior distribution, which discovers recurrent expression pro-
grams by combining information from similar expression programs
that reoccur across multiple MCMC model posterior samples. Each
expression program in each sample is compared against recurrent
programs derived from previous samples. If the Hellinger distance
between a program’s distribution of gene occurrences and that of a
recurrent program is sufficiently small, the programs are merged;
otherwise, a new recurrent program is instantiated. Statistics are
tracked for each recurrent expression program, including the number
of posterior samples it occurs in, its average usage by tissues, and
average expression levels of genes in the program. After all recurrent
expression programs have been collected, infrequently occurring
programs are filtered out. See Protocol S1 for complete details.

Synthetic data. We generated four synthetic gene sets used by 40
tissue samples divided equally among four tissue populations. Each
gene set contained 40 genes with varying mRNA levels; gene sets three
and four overlapped in ten genes. Each tissue population specifies the
mean number of genes from each gene set used by tissue samples in
the population. For each tissue sample, the number of genes used
from each gene set was sampled from the population mean, and then
genes were picked from each gene set with a probability weighted by
the gene’s underlying mRNA level. Finally, the mRNA level for each
gene was perturbed by additive and multiplicative noise to simulate
microarray noise. See Protocol S1 for complete details.

Tissue and gene dimension category enrichment analysis and
correspondence plots. We manually classified tissues from Novartis
Gene Atlas version 2 and Shyamsundar et al. datasets into ten and
eight high-level, physiologically based categories respectively (see
Tables S6 and S7).

We mapped genes to GO biological process categories [27] and
KEGG pathways [28] using the IDConverter software [54]. For
calculating enrichment scores, we considered human GO categories
or KEGG pathways containing between five and 200 genes.

For determining enrichment significance of GO categories, KEGG
pathways, or NF-jB family transcription factor binding, we used the
hypergeometric distribution to compute p-values. We corrected for
multiple hypothesis tests using the procedure of Benjamini and
Hochberg [57]. We used a false-discovery rate cutoff of 0.05.

Correspondence plots have previously been used for sensitive,
graphical comparisons of biclustering algorithm performance [5].
These plots depict log p-values on the horizontal axis and the fraction
of biclusters with p-values below a given value on the vertical axis.
Depicted p-values are from the most abundant class for each bicluster
(i.e., that with the largest number of genes or tissue in the overlap)
and calculated using the hypergeometric distribution. Note that
biclusters with large p-values are not significantly enriched for any
class, and may represent noise.

Software availability. Complete Java source code is available upon
request.

Supporting Information

Figure S1. Schematic of Six Pre-Defined Temporal Patterns Used in
Analyzing the Infection Time-Series Compendium

Found at doi:10.1371/journal.pcbi.0030148.sg001 (133 KB JPG).

Figure S2. Examples of Genes from the Infection Time-Series
Compendium That Match the Six Pre-Defined Temporal Patterns

Found at doi:10.1371/journal.pcbi.0030148.sg002 (312 KB JPG).

Figure S3. Expression Programs 1–25 Discovered in the Infection
Time-Series Compendium

See Figure 6 for figure legend.

Found at doi:10.1371/journal.pcbi.0030148.sg003 (1.0 MB JPG).

Figure S4. Expression Programs 26–50 Discovered in the Infection
Time-Series Compendium

See Figure 6 for figure legend.

Found at doi:10.1371/journal.pcbi.0030148.sg004 (1.1 MB JPG).

Figure S5. Expression Programs 51–75 Discovered in the Infection
Time-Series Compendium

See Figure 6 for figure legend.

Found at doi:10.1371/journal.pcbi.0030148.sg005 (1.2 MB JPG).

Figure S6. Overview of the Wnt Signaling Pathways and Relevant
Genes in EP 50 (Pink Shading) and EP 84 (Green Shading); Adapted
from the KEGG Pathway Graphic

Found at doi:10.1371/journal.pcbi.0030148.sg006 (564 KB JPG).

Figure S7. Overview of the Toll-Like Receptor Signaling Pathways
and Relevant Genes in EP 99 (Pink Shading); Adapted from the KEGG
Pathway Graphic

Found at doi:10.1371/journal.pcbi.0030148.sg007 (481 KB JPG).

Figure S8. Correspondence Plots for Gene and Tissue Dimensions
from Analysis of Novartis Gene Atlas Version 2 Using Samba, NMF,
and Two, Three, and Four Discretization Levels in GeneProgram

Found at doi:10.1371/journal.pcbi.0030148.sg008 (277 KB JPG).

Protocol S1. Detailed Descriptions of GeneProgram Probability
Model, Inference Methods, and an Overview of Dirichlet Processes

Found at doi:10.1371/journal.pcbi.0030148.sd001 (607 KB PDF).

Table S1. Summary of Data Sources Used in the Infection Time-
Series Compendium

Found at doi:10.1371/journal.pcbi.0030148.st001 (73 KB PDF).

Table S2. Summary of Individual Experiments in the Infection Time-
Series Compendium

Found at doi:10.1371/journal.pcbi.0030148.st002 (26 KB XLS).

Table S3. Details for All 104 Expression Programs Discovered in the
Infection Time-Series Compendium

Found at doi:10.1371/journal.pcbi.0030148.st003 (1.8 MB XLS).

Table S4. Summary of Selected GO Biological Process Categories and
KEGG Pathways for Which Expression Programs Discovered in the
Infection Time-Series Compendium Were Significantly Enriched

Found at doi:10.1371/journal.pcbi.0030148.st004 (65 KB PDF).

Table S5. Complete List of GO Biological Process Categories and
KEGG Pathways for Which Expression Programs Discovered in the
Infection Time-Series Compendium Were Significantly Enriched

Found at doi:10.1371/journal.pcbi.0030148.st005 (57 KB XLS).

Table S6. Manual Classification of Novartis Gene Atlas Version 2 [20]
Tissue Samples into Ten High-Level, Physiologically Based Categories

Found at doi:10.1371/journal.pcbi.0030148.st006 (12 KB PDF).

Table S7. Manual Classification of Tissue Samples from the
Shyamsundar et al. [19] Data Compendium into Eight High-Level,
Physiologically Based Categories

Found at doi:10.1371/journal.pcbi.0030148.st007 (12 KB PDF).
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