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Abstract

The neocortex contains an unparalleled diversity of neuronal subtypes, each defined by distinct

traits that are developmentally acquired under the control of subtype-specific and pan-neuronal

genes. The regulatory logic that orchestrates the expression of these unique combinations of genes

is unknown for any class of cortical neuron. Here, we report that Fezf2 is a selector gene able to

regulate the expression of gene sets that collectively define mouse corticospinal motor neurons

Correspondence should be addressed to P.A. (paola_arlotta@harvard.edu).

AUTHOR CONTRIBUTIONS
S.L. and P.A. conceived the work, designed the experiments, analyzed the data and wrote the manuscript. S.L. performed the majority
of the experiments. B.J.M. contributed to experimental design and performed microarray analysis. E.Z. performed the ChIP-seq
experiments. L.A.G. analyzed the RNA-seq data. H.-H.C. performed the in vitro differentiation experiment and assisted in manuscript
preparation. W.Y. performed the electrophoretic mobility shift assay experiment. A.M. assisted with FACS purification and the
microarray experiments. E.T. performed the HARDI analysis. S.M. analyzed the ChIP-seq data. D.K.G. and J.L.R supervised the
bioinformatics analyses. P.A. supervised all aspects of the project.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Accession codes. GEO: raw and processed ChIP-seq data, GSE46707; RNA-seq data, GSE56446; microarray data, GSE56451.
Mapped ChIP-seq data can be browsed at http://genome.ucsc.edu/cgibin/hgTracks?db=mm9&hgt.customText=http://
nanog.csail.mit.edu/csmn/arlotta_fezf2.csmn.tracks&position=chr9:101716317-102365165.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

NIH Public Access
Author Manuscript
Nat Neurosci. Author manuscript; available in PMC 2015 February 01.

Published in final edited form as:
Nat Neurosci. 2014 August ; 17(8): 1046–1054. doi:10.1038/nn.3757.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://genome.ucsc.edu/cgibin/hgTracks?db=mm9&hgt.customText=http://nanog.csail.mit.edu/csmn/arlotta_fezf2.csmn.tracks&position=chr9:101716317-102365165
http://genome.ucsc.edu/cgibin/hgTracks?db=mm9&hgt.customText=http://nanog.csail.mit.edu/csmn/arlotta_fezf2.csmn.tracks&position=chr9:101716317-102365165
http://www.nature.com/reprints/index.html


(CSMN). We find that Fezf2 directly induces the glutamatergic identity of CSMN via activation of

Vglut1 (Scl17a7) and inhibits a GABAergic fate by repressing transcription of Gad1. In addition,

we identify the axon guidance receptor Ephb1 as a target of Fezf2 necessary to execute the

ipsilateral extension of the corticospinal tract. Our data indicate that co-regulated expression of

neuron subtype–specific and pan-neuronal gene batteries by a single transcription factor is one

component of the regulatory logic responsible for the establishment of CSMN identity.

During development, neurons of the CNS acquire distinct molecular, anatomical and

physiological properties. Development of these traits is dictated by pan-neuronal and

lineage-specific molecular cues, which in combination define neuronal subtype–specific

identity and set the basis for neuronal diversity.

Among other regions of the mammalian CNS, the cerebral cortex stands as a prime example

of how expanded neuronal diversity served the evolution of complex behavior. Here an

extraordinary number of neuronal subtypes integrate into local and long-distance circuitry

subserving sensory, motor and high-level cognitive functions1. The majority of cortical

neurons are excitatory projection neurons. Their classification is largely based on axonal

projection targets, but it is clear that multiple traits—molecular identity, primary and

collateral axonal connections, somatodendritic morphology and electrophysiological activity

—must be taken into account to accurately distinguish individual projection neuron

subtypes2. The molecular regulatory logic that orchestrates acquisition of multiple class-

specific features is not understood for any neuronal subtype of the cerebral cortex.

CSMN are one specialized class of cortical excitatory neurons, which connect layer Vb of

the cortex to the spinal cord. At the molecular level, CSMN are the most extensively

characterized class of cortical projection neurons3,4. A master transcription factor—

forebrain expressed zinc finger 2 (Fezf2)—has been identified that is necessary for the fate

specification of CSMN5–7. In the absence of Fezf2, CSMN fail to generate. In agreement,

CSMN-specific genes are not expressed in layer Vb of the Fezf2−/− null cortex, a deficiency

accompanied by changes in dendritic morphology and a lack of axonal projections to the

spinal cord5–7.

Conversely, Fezf2 alone can cell-autonomously instruct the acquisition of CSMN-specific

features when expressed in diverse, permissive cellular contexts in vivo. Ectopic

overexpression of Fezf2 in progenitors and postmitotic neurons of different lineages is

sufficient to induce the generation of neurons that express multiple CSMN genes and extend

axons to subcerebral targets5,8–10. Beyond acquisition of lineage-specific CSMN features,

neurons expressing Fezf2 also acquire necessary cortical pan-projection neuron features.

They become glutamatergic and develop distinctive pyramidal morphology8. These data

indicate that Fezf2 is sufficient to instruct the acquisition of multiple aspects of CSMN

identity.

Here we demonstrate that Fezf2 is a selector gene for an individual class of neurons of the

neocortex: corticospinal motor neurons. We found that activation and repression of large

batteries of genes necessary to orchestrate the acquisition of CSMN defining traits was

directly co-regulated downstream of Fezf2. Fezf2 was sufficient to induce vesicular
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glutamate transporter 1 (Vglut1) and to repress glutamate decarboxylase 1 (Gad1)

expression to instruct the acquisition of glutamatergic identity. In addition, we uncovered a

new role for EphB1 as a functionally relevant effector of Fezf2, required to execute the

ipsilateral extension of the corticospinal tract through the ventral forebrain. Our data indicate

a direct role for Fezf2 as a selector gene that coordinates the expression of pan-neuronal and

class-specific genes required for the developmental acquisition of CSMN identity.

RESULTS

Fezf2 induces signature genes of corticospinal neurons

To understand the molecular logic underlying the acquisition of CSMN traits upon Fezf2

expression, we compared the in vivo gene expression of FACS-purified cortical progenitors

that ectopically expressed Fezf2 to control progenitors. We used in utero electroporation to

deliver Fezf2GFP or CtrlGFP expression vectors to neocortical progenitors at embryonic day

(E) 14.5, when they primarily generate callosal projection neurons (CPN) of the upper layers

(Supplementary Fig. 1a). Overexpression of Fezf2 in these progenitors is sufficient to

instruct a fate switch resulting in the generation of CSMN and other subtypes of corticofugal

projection neurons5,7,11. Fezf2GFP- and CtrlGFP-electroporated progenitors were FACS-

purified 24 and 48 h after surgery (Supplementary Fig. 1b,c) and acutely profiled by

microarrays.

A large set of genes was induced by Fezf2 as early as 24 h (263 genes; P < 0.001, fold

change > 1.5), while others were induced not earlier than 48 h (441 genes; P < 0.001, fold

change > 1.5) after electroporation. In addition, we identified a smaller set of genes

repressed by Fezf2 (90 genes at 24 h; 89 genes at 48 h; P < 0.001, fold change > 1.5)

(Supplementary Table 1).

To investigate whether genes induced by Fezf2 mark developing CSMN, we performed in

situ hybridization for selected candidates (Supplementary Table 1) at multiple stages of

embryonic and postnatal development of the cerebral cortex (E15.5, E18.5, postnatal day (P)

3, P7 and P14; Fig. 1 and Supplementary Fig. 2). Remarkably, we identified a series of

Fezf2 target genes (for example, Ldb2, Adcyap1, Akap12, Ephb1, Rgs16, Rgs8, Acvr1c,

Pappa2, Kif26a) that labeled developing CSMN (and related subcerebral projection neurons,

ScPN) in the early cortical plate (Fig. 1 and Supplementary Fig. 2), whereas other targets

(for example, Kif26a, Tshz2, Tmem163, Cntn6, C1ql3, Parm1) were specific to later stages

of CSMN development (Fig. 1 and Supplementary Fig. 2).

To precisely define the neuron subtype–specific expression of the identified transcripts, we

performed colocalization analyses of all the selected Fezf2-induced genes with CTIP2, a

well-established marker of CSMN and other ScPN3. As expected, all genes tested showed

various degrees of colocalization with CTIP2 (Fig. 2 and Supplementary Fig. 3a). Among

the embryonic CSMN marker genes, Adcyap1 showed restricted expression both in cortical

progenitors at E13.5, the peak of CSMN neurogenesis, and subsequently in developing layer

V (Fig. 2a). Adcyap1 expression molecularly defined a subpopulation within the broader

group of CTIP2+ neurons (Fig. 2b). At postnatal stages, Kif26a expression similarly defined
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a subset of CTIP2+ neurons (Fig. 2c), whereas Tmem163 labeled most of the CTIP2+

population in the cortex (Fig. 2d).

To investigate whether Fezf2 is required for the expression of the identified target genes, we

performed in situ hybridization for 13 genes on Fezf2−/− cortex. We found that, in the

absence of Fezf2, the expression of all genes tested was abrogated or decreased in layer Vb.

Notably, the effect of Fezf2 loss on expression was selective for layer Vb, as these genes

were maintained in other layers (Supplementary Fig. 3b). These data indicate that Fezf2

induces numerous early and late CSMN genes and that Fezf2 is required for the expression

of its targets in layer Vb.

Fezf2 induces a transcriptome shift toward nascent CSMN

To understand how early during development Fezf2 governs expression of CSMN genes, we

interrogated our target gene list against available RNA sequencing data from E14.5 cortical

plate, subventricular zone (SVZ) and ventricular zone (VZ)12. At E14.5 the cortical plate is

mostly populated by early postmitotic corticofugal neurons (including nascent CSMN). In

contrast, the SVZ and the intermediate zone (SVZ/IZ) primarily contain basal progenitors of

upper layer CPN13–15 and early postmitotic upper layer CPN16. Finally, the VZ is mostly

populated by apical progenitors generating upper layer CPN15. We found that Fezf2

overexpression upregulated 186 genes enriched in the cortical plate versus SVZ/IZ and VZ

(Supplementary Fig. 4 and Supplementary Table 2).

We next compared the Fezf2-induced genes to the available transcriptome of purified

CSMN3. Strikingly, within 48 h, Fezf2 overexpression had already induced 30 genes known

to be restricted to early postnatal CSMN (Supplementary Table 3).

Next we investigated whether Fezf2 repressed genes of alternative neuronal fates. We found

that 73 genes repressed by Fezf2 (at both 24 and 48 h) were preferentially expressed in the

E14.5 VZ and SVZ/IZ, which mainly contain progenitors of upper layer projection neurons

(Supplementary Fig. 5 and Supplementary Table 2). In agreement, comparative analysis

with the available transcriptome of purified CPN17 showed that Fezf2 repressed 17 genes

including Cux1, Zfhx4, Fzd1 and Btbd11. These included early markers of the CPN lineage,

such as Cux2, shown to mark progenitors fated to an upper layer identity15. The data

indicate that, when expressed in progenitors of upper layer CPN, Fezf2 induces a battery of

transcripts that collectively define developing CSMN and represses genes of developing

CPN.

Fezf2 associates with the proximal promoters of CSMN genes

To elucidate the strategy used by Fezf2 to instruct CSMN identity, we performed a genome-

wide DNA binding analysis for Fezf2 in cortical progenitors, using chromatin

immunoprecipitation followed by deep sequencing (ChIP-seq)18 in combination with RNA-

seq. Cortical neural progenitors were isolated at E14.5 and expanded in vitro for one passage

as neurospheres. The neurospheres were infected with retroviruses encoding epitope-tagged

Fezf2 (3xFlag-Fezf2) or control (3xFlag) and harvested 48 h after infection for anti-Flag
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ChIP (Supplementary Fig. 6a). The 3xFlag-tagged Fezf2 was confirmed to be functional by

in utero electroporation (Supplementary Fig. 6b–e).

Two replicates of the ChIP-seq data sets were analyzed independently using the GEM

(genome-wide event finding and motif discovery) integrative computational method19. In

the two replicates, GEM analysis predicted 15,665 binding events with significant

enrichment in 3xFlag-Fezf2 over control (P < 10−3; Supplementary Table 4). Of these,

81.8% fell within 5 kb of the transcription start site (TSS) of 12,860 annotated genes (Fig. 3a

and Supplementary Table 4). Genes bound by Fezf2 contained over 63% of known CSMN

genes3 (Supplementary Table 4), including those expressed at early (Fig. 3b–c), middle (Fig.

3d) and late stages of CSMN maturation (Fig. 3e–i).

To assess the relationship between DNA binding and transcriptional regulation by Fezf2, we

performed comparative RNA-seq analysis of 3xFlag-Fezf2 and 3xFlag neurospheres 48 h

after infection (Supplementary Fig. 6a). We identified 1,295 transcripts differentially

expressed upon Fezf2 induction, including 747 upregulated and 548 downregulated genes

(false discovery rate = 10%; Supplementary Table 5). The fragments per kilobase RNA per

million mapped reads (FPKM) values of Fezf2 indicate absence of transcription (FPKM =

0.42) in control progenitors and high levels upon Fezf2 overexpression (FPKM = 3,142, data

not shown). Confirming Fezf2 overexpression in vivo, 224 of the genes induced by Fezf2 in

neurospheres were preferentially expressed in the cortical plate and were enriched for

postmitotic neuronal genes (Supplementary Fig. 7a and Supplementary Table 5). In contrast,

155 genes downregulated by Fezf2 were preferentially expressed in VZ and SVZ/IZ and

were enriched for cell-cycle genes (Supplementary Fig. 7b and Supplementary Table 5).

Genes upregulated by Fezf2 in neurospheres also showed enrichment for CSMN versus

CPN signature genes by gene score enrichment analysis (GSEA) (Fig. 3j and Supplementary

Table 4). Collectively, this indicates that Fezf2 induces similar transcriptional changes in

isolated cortical progenitors to the ones observed in vivo.

We found that 64.1% of the genes induced and 77.4% of those downregulated by Fezf2 in

cortical neurospheres were promoter-bound (Supplementary Fig. 8a,b). Similar percentages

were observed when using transcripts regulated by Fezf2 in vivo (Supplementary Fig. 8c,d).

These represent a significantly greater proportion of genes than expected by chance (Online

Methods, Supplementary Fig. 8c–e and Supplementary Table 6). GSEA analysis of genes

that were both transcriptionally regulated and promoter-bound by Fezf2, against sets of

CSMN and CPN signature genes (Supplementary Table 4), showed that only CSMN

signature genes were significantly enriched in the Fezf2-upregulated targets (Fig. 3j).

GEM motif-finding analysis identified a GC-rich sequence (CGCCGC) that is enriched at

Fezf2-bound sites (Supplementary Fig. 9a). Since Fezf2-bound promoters are slightly more

GC-rich than unbound ones (64.4% versus 49.6% GC content; Supplementary Fig. 9b), it is

difficult to conclude whether Fezf2 directly binds to this motif. Nevertheless, this sequence

was present in 42.9% of Fezf2-bound TSSs compared to 11.2% of unbound TSSs. In

addition, electrophoretic mobility shift assay on selected target promoters containing this

sequence (namely, Ascl1 and Ephb1) showed binding by Fezf2 (Supplementary Fig. 9c,d).

Previously reported consensus sequences predicted either by SELEX (systematic evolution
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of ligands by exponential enrichment) in zebrafish20 or using protein-DNA arrays in the

human protein-DNA interactome (hPDI)21 were present in 15.4% for hPDI and 3.9% for

SELEX of all Fezf2-bound sites, respectively, while the GEM-defined motif was present in

48.6% of these sites (Supplementary Fig. 9b).

Together, these data indicate that Fezf2 activates and represses a broad program of neuron

subtype–specific genes by binding to proximal promoters.

Fezf2 selects glutamatergic and represses GABAergic fate

To functionally test whether genes regulated by Fezf2 control the acquisition of CSMN

traits, we concentrated on two defining features of CSMN: glutamatergic identity and axonal

extension to the spinal cord. Glutamate signaling is a terminal, necessary feature of all

cortical projection neurons. It is unknown whether fate-specifying transcription factors for

cortical neuron classes also instruct the establishment of this pan-neuronal trait. We found

that Fezf2 bound to the promoter of Vglut1, the vesicular glutamate transporter used by most

cortical projection neurons, including CSMN22, and was sufficient to induce its expression

in cortical neurospheres (Fig. 4a,b). The binding appeared specific, as Vglut2 (Scl17a6),

used only by glutamatergic neurons in cortical layer IV and outside of the cortex22, was

neither bound nor transcriptionally regulated. Concomitantly, Fezf2 bound to the promoter

of Gad1 (Gad67), necessary for establishment of GABAergic identity, but repressed its

expression (Fig. 4a,b). To test the extent to which Fezf2 can instruct neurotransmitter

choice, we established doxycycline-inducible Fezf2-IRES-GFP (iFIG) and control GFP

(iGFP) mouse embryonic stem cell lines and induced neural differentiation using the Serum-

free embryoid body quick (SFEBq) protocol23 (Fig. 4c,d and Supplementary Fig. 10). GFP+

cells were FACS-sorted and profiled by RNA-seq. Confirming our results in primary

cortical progenitors, Fezf2 overexpression induced Vglut1, had no effect on Vglut2 and

inhibited the expression of Gad1 (Fig. 4e). Together, these data indicate that Fezf2 is

sufficient to select the appropriate effector genes to establish the neurotransmitter identity of

CSMN, while repressing an alternative GABAergic fate.

Fezf2 directly controls expression of Ephb1 in CSMN

Axonal connectivity to the spinal cord is a defining class-specific trait of CSMN. Directed

axonal extension begins soon after CSMN fate specification and is strictly guided under the

control of multiple axon guidance molecules (reviewed in ref. 24). Gene Ontology analysis

of the Fezf2-induced genes showed a significant enrichment in axon guidance molecules.

Fezf2 associated with the proximal promoters of 78% of these genes (Supplementary Table

4), including neuropilin 2 (Nrp2) [and Robo1, which are known to affect the extension and

guidance of the corticospinal tract (Supplementary Fig. 11a). Among these, we selected for

further analysis Ephb1 (Fig. 1), encoding a tyrosine kinase receptor that mediates axon

guidance and is critical for midline repulsion decisions25–27 and whose function in CSMN

remains unknown.

We first profiled Ephb1 expression in the developing cortex by in situ hybridization. Ephb1

mRNA peaked in the cortical plate at E15.5, when CSMN axonal extension begins. Ephb1

expression remained restricted to developing layer V, and at lower levels in layer VI, until
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approximately E18.5 (Fig. 5a). Postnatally, Ephb1 levels drastically decreased, and by P14

expression was weak and detectable only in layer VI (Fig. 5a) in both TBR1+ projection

neurons28 and APC+ oligodendrocytes (Fig. 5b)29.

To define the neuron subtype–specific expression of Ephb1 within layer V, we used β-

galactosidase (β-gal) as a proxy for endogenous Ephb1 expression in mice in which a lacZ

cassette has been knocked into the Ephb1 locus (see Online Methods; Supplementary Fig.

11b). Virtually all of the β-gal+ neurons were CTIP2+ and negative for SATB2, a marker for

CPN30,31 (Fig. 5c). In addition, we retrogradely labeled ScPN and CPN by injecting

FluoroGold into the pons and the contralateral hemisphere, respectively. We found that β-gal

was expressed in FluoroGold-labeled ScPN and excluded from CPN labeled from

contralateral cortex (Fig. 5c). These data demonstrate that, in the developing cortex, Ephb1

is specifically expressed in neuronal subtypes that extend ipsilateral axonal projections and

is excluded from neuronal subtypes that project through the cortical midline.

To investigate whether Fezf2 is required for Ephb1 expression, we performed in situ

hybridization on cortical sections from Fezf2−/− mice at E18.5. In the absence of Fezf2,

Ephb1 was no longer expressed in ScPN, and expression was maintained only at very

reduced levels in layer VI (Fig. 5d). In agreement, our ChIP-seq data showed that Fezf2

associates with the proximal promoter of the Ephb1 gene, within a 310-base-pair region at

the TSS (Fig. 5d and Supplementary Fig. 9d). Ephb1 expression was unchanged in the

striatum of Fezf2−/− mice, a region that does not endogenously express Fezf2 (Fig. 5d).

These data demonstrate that Fezf2 is required for the expression of Ephb1 in ScPN.

Abnormal anterior commissure axon crossing in Ephb1−/− mice

To decipher the role of EphB1 during CSMN development, we examined Ephb1−/− mice.

Brains of Ephb1−/− and wild-type littermates (P28) were processed by

immunohistochemistry for myelin basic protein to visualize myelinated axons. Mutant mice

displayed clear abnormalities of major axon tracts (Fig. 6). The internal capsule comprised

smaller than wild type and partly unfasciculated axon bundles (Fig. 6a,b). These

abnormalities were accompanied by an expansion of the external capsule (Fig. 6a,c,d;

arrows) and the anterior commissure (Fig. 6a,d; arrowheads). In addition, ectopic axon

bundles extended within the internal capsule toward the external capsule and continued to

grow ventrally (Fig. 6a,d).

We hypothesized that, in the absence of EphB1, the trajectories of subcerebral axons are

rerouted, abnormally crossing to contralateral targets via the anterior commissure. To test

whether the ectopic axon tracts were of neocortical origin, we anterogradely traced

neocortical output projections with the lipophilic tracer DiI injected in the sensorimotor

cortex of Ephb1−/− and wild-type littermates at P2. DiI labeled axons were found in the

corpus callosum and internal capsule in both wild-type and Ephb1−/− mice. However, only

in the mutant mice did we observe distinct DiI-labeled axons crossing at the anterior

commissure and extending ventrally and rostrally (Fig. 6e). In wild-type cortex, only

neurons located in the most lateral cortical areas, the posterior perirhinal cortex, and the

entorhinal cortex project contralaterally through the anterior commissure32. In the Ephb1−/−
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mice, however, neurons located in dorsal areas projected ectopically through this

commissure.

To confirm and visualize the axonal projection routes in the absence of EphB1, we used

high-angular-resolution diffusion imaging (HARDI) tractography to render a three-

dimensional image of major axon tracts in mutant and wild-type brains33,34. We found that

axon fibers in the dorsal areas of the neocortex merged with the anterior commissure in the

Ephb1−/− but not in wild-type brains (Fig. 6f). To identify a potential source of EphB1

ligands, we performed in situ hybridization for the ephrin genes Efnb1, Efnb2 and Efnb3.

We found that only Efnb3 was expressed at the ventral forebrain midline and thus might

mediate EphB1-dependent repulsion of ipsilateral descending tracts (Supplementary Fig.

12).

Reduced corticospinal tract in Ephb1 null mutants

To determine whether the corticospinal tract is specifically affected by EphB1 loss, we used

the Fezf2::PLAP (placental alkaline phosphatase) reporter line7 to genetically trace CSMN

axons in control (Ephb1+/−;Fezf2PLAP/+) and EphB1-deficient (Ephb1−/−;Fezf2PLAP/+) mice

at P7. In control mice, PLAP-positive axons were exclusively observed extending along

ipsilateral, corticofugal trajectories (Fig. 7a). In contrast, in EphB1-deficient mice, a large

proportion of PLAP-positive axons extended inappropriately to contralateral targets,

crossing the midline via an enlarged anterior commissure (Fig. 7b). Most notably, this

resulted in a drastic reduction of subcerebral axons reaching the cerebral peduncle (Fig. 7b)

and of corticospinal axons in the dorsal funiculus of the spinal cord (Fig. 7b). These results

demonstrate that, in the absence of EphB1, the ipsilateral axonal trajectories of the

corticospinal tract are compromised and a distinct proportion of axons take contralateral,

crossed routes through the anterior commissure.

It is notable that Fezf2−/− mutants also show loss of axonal projections to the cerebral

peduncle and the spinal cord (Fig. 7c and refs. 5–7), accompanied by an expansion of the

anterior commissure (Fig. 7c and ref. 7). This phenotype is reminiscent of that observed in

the EphB1-deficient mice (Fig. 7b and Supplementary Fig. 13). Beyond connectivity, in the

absence of Fezf2 the global fate specification of CSMN (molecular identity,

electrophysiological properties and connectivity to the spinal cord) is abolished5–7. In

contrast, we found that loss of EphB1 did not affect the fate specification of projection

neuron classes, which showed normal expression of the canonical projection neuron

subtype-specific markers CTIP2, TBR1, SATB2 and CUX1 (Supplementary Fig. 13). The

data indicate that EphB1 is an effector molecule directly downstream of Fezf2 that executes

a specific modular aspect of the global Fezf2−/− phenotype.

DISCUSSION

Deciphering the molecular logic that orchestrates the acquisition of neuronal subtype–

specific features in the mammalian cerebral cortex is fundamental to understanding how its

neuronal diversity has evolved. These molecular rules are not yet defined for any subtype of

cortical neuron. Here we report that acquisition of defining features of corticospinal motor
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neurons is at least partly achieved by co-regulated expression of batteries of CSMN effector

molecules directly downstream of a single selector gene, Fezf2.

Precise control over activation and repression of transcription factors responsible for

acquisition of class-specific traits in projection neurons is critical to resolve neuronal fates

during cortical development. Tbr1 and Sox5 act as repressors of Fezf2 to negatively regulate

the extension of the corticospinal tract and to promote connectivity to the thalamus35–38.

Similarly, reciprocal repression of Fezf2, Satb2 and Ctip2 is employed to choose subtype-

specific long distance connectivity39,40. These studies motivate a more global analysis of the

molecular rules beyond single genes that govern the acquisition of lineage-specific traits.

We found that expression of Fezf2 in cortical progenitors fated to generate upper layer

neurons resulted in both the induction of a large series of genes expressed in nascent CSMN

and the repression of molecular programs of upper layer neurons. Given that this

transcriptional regulation largely occurred via binding of Fezf2 to the promoters of both

activated and repressed genes, the data indicate that lineage bifurcation decisions can be co-

regulated by the same transcription factor from very early stages of differentiation. Our data

also provide a molecular explanation for why, during development, cortical progenitors tune

Fezf2 expression to the lower levels observed in late-stage cortical progenitors5,7,41.

Maintenance of Fezf2 expression after the completion of neurogenesis of deep layer neurons

may be molecularly incompatible with the initiation of upper layer neurogenesis.

Much work is still required to understand the nuances of how Fezf2 can act as an activator

for some target genes and as a repressor for others. It is likely that factors such as post-

translational modification of Fezf2, the choice of interacting cofactors and the presence of

neighboring binding sites for different proteins at different loci critically contribute to these

distinct transcriptional outcomes42.

Transcription factors endowed with properties of classic selector genes have been identified

in different tissues as genes uniquely able to control ‘master’ molecular switches of distinct

cellular fates. Elegant work in Drosophila has highlighted core properties of selector genes

that clarify the logic guiding their activity. Multiple target genes are often regulated

downstream of a single selector gene, and targets often include both activated and repressed

genes43. Our evidence that Fezf2 acts as both an activator of CSMN genes and a repressor of

genes for alternative fates further supports the idea that Fezf2 is a selector gene. To our

knowledge, this is the first transcription factor endowed with these properties for any class

of cortical neurons.

During development of CSMN, expression of lineage-specific and pan-neuronal genes alike

display temporally dynamic regulation. It is intriguing that within 48 h of induction, Fezf2 is

already associated with the promoters of CSMN genes whose expression is normally

temporally spaced during CSMN differentiation. The data suggest that, in cortical

progenitors, Fezf2 might be ‘priming’ the transcriptional territory of CSMN by also

occupying genomic loci that are transcriptionally active in these neurons at later times. This

implies that temporal resolution of gene expression over the several weeks of CSMN

development likely relies on cofactors that operate by interaction with Fezf2 or work on the

Lodato et al. Page 9

Nat Neurosci. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



genomic loci that are primed by early Fezf2 binding. The fact that Fezf2 expression is

maintained at all stages of CSMN differentiation in vivo5–7 supports the view that active

binding by Fezf2 to CSMN loci may be required to poise them for transcriptional regulation

at later stages of differentiation.

Precedents exist for the use of early priming of genomic loci in progenitor cells to enable the

execution of specific differentiation programs at later stages of development. In

Caenorhabditis elegans, asymmetric distribution of gene expression in bilaterally

symmetrical ASE gustatory neurons relies on early priming of the Isy-6 microRNA locus in

progenitors of only the left neurons44. MyoD has also been shown to associate with

enhancers of both early and late myogenic genes45.

In his first definition of selectors, Antonio García-Bellido postulated that these genes would

regulate effector molecules necessary for the acquisition of specific cellular features46. Here

we identify EphB1 as an effector molecule of Fezf2. In turn, EphB1 executes CSMN axonal

repulsion from the midline in the ventral telencephalon, enabling the ipsilateral extension of

the corticospinal tract. Our data are in agreement with work demonstrating a key role for

EphB1 in mediating midline repulsion decisions. In the spinal cord, EphB1 instructs the

ventral trajectory of motor neuron axons by mediating their repulsion from the mesenchyme

of the dorsal limb25. Similarly, in the optic chiasm, EphB1 mediates the repulsion of retinal

ganglion cell (RGC) axons from the midline47. Notably, in the retina the transcription factor

Zic2 is also upstream of genes critical for both axonal guidance decisions (EphB1) and

neurotransmitter identity (Sert)48.

The regulation of axon guidance molecules in different classes of cortical projection neurons

has just begun to be explored40. Whether expression of lineage-specific axon guidance

molecules is directly controlled by the same transcription factors that govern neuron subtype

fate specification remains unknown. It is striking that the phenotypic abnormalities observed

in the absence of EphB1 mimic the axon guidance defects observed in the Fezf2−/− mutants,

without affecting the overall fate specification of CSMN. While the possibility that

expression of EphB1 in thalamus or striatum contributes to this phenotype49 cannot be ruled

out, the fact that Fezf2 is not expressed in these regions and yet Fezf2−/− mice present

similar axon guidance defects to Ephb1 mutants supports a cell-autonomous role of EphB1

in CSMN. Our data point to a direct regulation of key CSMN axon guidance receptors by

the same selector gene that governs global programs of fate specification of this neuron

subtype.

Not all selector genes have equal properties. Pioneering work in C. elegans has identified

ones termed terminal selector genes sufficient to instruct specific neurotransmitter fates50.

Our data indicate that Fezf2 controls the acquisition of glutamatergic identity by direct

binding to the promoter of Vglut1 and other genes involved in the synthesis, transport and

signaling of glutamate. This is in agreement with the fact that overexpression of Fezf2 in

progenitors of GABAergic medium spiny neurons results in a switch to a glutamatergic fate

in vivo8. In addition, like selector genes in C. elegans, Fezf2 expression is maintained in

CSMN throughout life, suggesting a requirement for Fezf2 to both establish and maintain
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CSMN traits. In the future, conditional loss of Fezf2 in adult CSMN will test this possibility

and define the extent to which Fezf2 fulfills the definition of a canonical terminal selector.

An understanding of the molecular regulatory architecture that shapes the identity of CSMN

and other classes of cortical neurons is fundamental to gaining insights into how neuronal

diversity develops in the cerebral cortex and will furthermore inspire tools to reprogram

class-specific neuronal identity in the context of neurodegenerative disease.

ONLINE METHODS

Mice

Fezf2−/− mice were generated by Hirata et al.41 (Fezf2 GenBank accession code:

AB042399). Ephb1−/− mice (Ephb1 GenBank accession code: NM_173447) were generated

by Deltagen, Inc. (Menlo Park, CA). The line was generated by targeting the Ephb1 coding

region with a cassette containing a 4.5-kb homology sequence upstream of exon 8, a Lac0-

SA-IRES-lacZ-WT Neo/Kan cassette and a 2.2-kb homology sequence downstream of exon

8. The insertion of the Lac0-SA-IRES-lacZ-WT Neo/Kan cassette resulted in a 100-bp

deletion of genomic DNA. Sequences of PCR primers employed to genotype the Ephb1−/−

line are as follows: forward primer, ACGTGGGAGGACTCTAATCCTCTTC; reverse

primer (wild-type allele), TCTAGGTTGCTGGCTACAGGACTTG; reverse primer (Neo),

GGGCCAGCTCATTCCTCCCACTCAT. Fezf2::PLAP (Fezf2PLAP/+) mice were generated

by Chen et al.7 and crossed with the Ephb1+/− mutant line to obtain Ephb1−/−;Fezf2PLAP/+

mutants. Timed-pregnant CD-1 mice were obtained from Charles River Laboratories

(Wilmington, MA) for in utero electroporation. The day of the vaginal plug was designated

embryonic day 0.5 (E0.5). The day of birth was designated postnatal day 0 (P0). All mice

were maintained in standard housing conditions on a 12-h light/dark cycle with food and

water ad libitum. No more than four adult animals were housed per cage. All mouse studies

were approved by the Massachusetts General Hospital and Harvard University Institutional

Animal Care and Use Committee and were performed in accordance with institutional and

federal guidelines.

In utero electroporation

The Fezf2GFP and CtrlGFP construct and conditions for in vivo electroporation were

described previously5,51. The 3xFlag-Fezf2 open reading frame was cloned into the CtrlGFP

construct driven by the CAG promoter. Briefly, 800 nl of purified DNA (2 μg/μl) mixed

with 0.005% fast green in sterile PBS was injected in utero into the lateral ventricle of CD1

embryos at E14.5 under ultrasound guidance (Vevo 770, VisualSonics). Five 40-V pulses of

50 ms were delivered at 1-s intervals in an appropriate orientation across the embryonic

head using 1-cm-diameter platinum electrodes placed outside the uterus, using a

CUY21EDIT square wave electroporator (Nepa Gene). Injected embryos were collected for

FACS purification either 24 h or 48 h after electroporation.

FACS purification

Pregnant dams were deeply anesthetized 24 h or 48 h after surgery. Their embryos were

removed and sensorimotor cortex was microdissected, as previously described52, from the
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electroporated cerebral hemisphere using a fluorescence dissecting microscope to precisely

visualize the labeled regions. Fezf2GFP and CtrlGFP electroporated cells were purified by

FACS directly into RNAlater53 and RNA was extracted as previously described54. To

control for biological sample variability, we processed multiple independently collected

samples for both Fezf2GFP and CtrlGFP electroporated cells at each time point of analysis

(true biological replicates) for a total of fourteen samples derived from different litters,

FACS purifications and microarray hybridizations (three each of Fezf2GFP and CtrlGFP at

24 h and four each at 48 h). Fezf2GFP- and CtrlGFP-labeled cortical tissues were

enzymatically digested in dissociation medium (20 mM glucose, 0.8 mM kynurenic acid,

0.05 mM APV, penicillin-streptomycin (50 U/ml and 0.05 mg/ml, respectively), 0.09 M

Na2SO4, 0.03 M K2SO4 and 0.014 M MgCl2) containing L-cysteine HCl (0.016 μg/μl) and

papain (10 unit/ml; Worthington Biochemical Corp., NJ) at 37 °C for 30 min. Papain

digestion was stopped with ovomucoid (10 mg/ml) and BSA (10 mg/ml) in dissociation

medium at room temperature. Progenitors were mechanically dissociated to obtain a single-

cell suspension by gentle trituration in iced OptiMEM containing glucose (20 mM),

kynurenic acid (0.4 mM) and APV (0.025 mM). All chemicals were purchased from Sigma,

and all media were purchased from GIBCO-BRL. GFP-positive cells were purified using a

BD FACS Vantage SEM DiVa cell sorter. Cells were gated on the basis of on fluorescence,

forward scatter and side scatter to select the appropriate population. FACS-purified

progenitors and neurons from both time points were collected and stored in RNAlater before

RNA extraction53.

Microarray and analysis

Approximately 10,000 to 30,000 FACS-sorted progenitors were used for each biological

replicate. RNA was extracted using the StrataPrep Total RNA Micro Kit (Stratagene), and

RNA quality was assessed using a Bioanalyzer (Agilent Technologies). RNA was amplified

per Affymetrix small sample protocol using two consecutive rounds of linear in vitro

transcription to obtain 15–20 μg of amplified and labeled cRNA for each hybridization.

Microarray hybridization was performed with an Affymetrix Mouse Genome 430 2.0 Array

according to standard Affymetrix protocol55. For microarray experiments, 3 or 4 replicates

were used at each age, which allows the identification of differential gene expression with

low false discovery rates3.

Using the Rosetta Resolver software (Rosetta Biosoftware), data from individual

microarrays were normalized with the trend function and replicates were combined.

Statistical significance of gene expression differences between Fezf2GFP and CtrlGFP

experiments was determined by pairwise comparisons at each time point using the Rosetta

Resolver error modeling method56 with P-value limit of <0.001 and fold change of >1.5.

Similar results were obtained by normalizing with GCRMA in Bioconductor57 or with the

Bioconductor implementation of MAS 5.0 and performing pairwise comparisons using

significance analysis of microarrays (SAM)58.

For comparison with RNA-seq expression data from Ayoub et al.12, BAM files were

downloaded from NCBI (accession code GSE30765), differential expression was

determined with Cuffdiff, and analysis was performed with the Cummerbund package in the
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R language and environment for statistical computing and graphics59. From a list of genes

with significant differential expression between VZ, SVZ and cortical plate (P < 0.001) in at

least one sample, those with significant up- or downregulation induced by Fezf2 were

identified and subsequently used for cluster analysis with Jensen-Shannon divergence as the

distance metric in Cummerbund.

Western blot

Brains were dissected from P1 Ephb1 knockout, heterozygous and wild-type mice and lysed

in RIPA buffer (150 mM NaCl, 1% NP40, 0.5% deoxycholate, 0.1% SDS, 1 mM EDTA, 50

mM Tris-HCl, pH 8) with proteinase inhibitors (S8830, Sigma-Aldrich). Mouse ES cells

were treated with 2 μg/ml doxycycline for 48 h and harvested in RIPA buffer. After

quantification by Bio-Rad protein assay (Bio-Rad), proteins were resolved in 4–12% SDS-

PAGE gels and transferred to a nitrocellulose membrane. The western blot was performed

using goat anti-EphB1 (M19, Santa Cruz, 1:250), rabbit anti-Fezf2/Fezf1 (F441, IBL,

1:500), rabbit anti-β-tubulin (9F3, Cell Signaling, 1:500) and mouse anti-α-tubulin (T9026,

Sigma, 1:5,000). Anti-goat, anti-rabbit and anti-mouse HRP-conjugated secondary

antibodies (HRP-linked anti-rabbit IgG, Cell Signaling Technology 7074, HRP-conjugated

goat anti-mouse IgG, Cell Signaling Technology 7076, HRP-conjugated anti-goat IgG,

Santa Cruz sc-2020, all at 1:5000), followed by ECL (Amersham), were used to visualize

proteins of interest on the membrane.

Retrograde and anterograde labeling

Pups were anesthetized by hypothermia at P2 and injected with FluoroGold (for retrograde

labeling) in the contralateral cortex or the pons, or with DiI (for anterograde labeling) in the

motor cortex as previously described17,60. The site of DiI injection was identified by

ultrasound guidance. Pups were returned to the care of their mother and deeply anesthetized

at P4 and P7 in the retrograde tracer studies, and at P4 for the anterograde tracer study,

before perfusion and collection of the brain for immunocytochemistry.

High-angular-resolution diffusion imaging (HARDI)

Four-week-old (P28) wild-type and Ephb1−/− littermates were perfused with saline followed

by 4% paraformaldehyde, postfixed for 24 h, and subsequently fixed for an additional week

in 4% paraformaldehyde solution containing 1 mM gadolinium (Gd-DTPA). For image

acquisition, the brains were placed in Fomblin. Brains were scanned on a 4.7-T Bruker

Biospec MR system. The pulse sequence used for image acquisition was a 3D diffusion-

weighted spin-echo echo-planar imaging sequence, time repetition (TR)/time echo (TE)

1,000/45.47 ms, with an imaging matrix of 96 × 96 × 128 pixels. Spatial resolution was 125

× 125 × 125 μm. Sixty diffusion-weighted measurements (b = 4,000 s/mm2) and one non-

diffusion-weighted measurement (b = 0) were acquired with δ = 12.0 ms, Δ = 24.2 ms. Total

acquisition time was approximately 2 h for each imaging session. The HARDI method was

used to reconstruct the orientation distribution function in each voxel and resulting

tractography pathways were reconstructed using a streamline algorithm for diffusion

tractography33,61 Diffusion Toolkit and TrackVis (http://trackvis.org/) were used to

reconstruct and visualize axonal pathways. Trajectories were propagated by consistently
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pursuing the orientation vector of least curvature, and tracking was terminated when the

angle between two consecutive orientation vectors was greater than the given threshold of

45° for each specimen. Brain mask volumes created by MRIcro (http://

www.mccauslandcenter.sc.edu/mricro/mricro/mricro.html) were used to terminate

tractography structures instead of the FA (Fractional Anisotropy) threshold as previously

reported61,62. Commissural pathways were isolated as fibers passing through the manually

drawn region of interest that included the entire anterior commissure at the midline, ensuring

that other fiber pathways were not contributing, as previously described61.

Immunocytochemistry, PLAP staining and in situ hybridization

Brains for immunocytochemistry were processed as previously described55,63. Primary

antibodies and dilutions used were as follows: rabbit anti-TBR1 antibody, 1:2,500 (gift from

R. Hevner); rat anti-CTIP2 antibody, 1:1,000 (Abcam ab18465); rabbit anti-GFP, 1:500

(Invitrogen A11122); chicken anti–β-galactosidase, 1:500 (ICL lab CGAL-45A); mouse

anti-SATB2, 1:50 (Abcam ab51502); rat anti-MBP, 1:500 (Millipore MAB386); and rabbit

anti-CUX1, 1:100 (Santa Cruz CDP M-222). Goat anti-rabbit IgG Alexa Fluor 488, 546, and

647 (Life Technologies A11070, A-11071, A21246), Goat anti-chicken IgG Alexa Fluor

488, 546, 647 (Life Technologies A11039, A11040, A21449), Goat anti-rat 488, 546, 647

(Life Technologies A11006, A11081, A21247), Goat anti-mouse IgG Alexa Fluor 488, 546,

647 (Life Technologies A11017, A11018, A21237) secondary antibodies were diluted

1:750. PLAP activity was detected with alkaline phosphatase staining buffer (0.1 mg/ml 5-

bromo-4-chloro-3-indolyl phosphate; 1 mg/ml nitro blue tetrazolium in 100 mM Tris-HCl,

pH 9.5; and 100 mM NaCl) as previously described7. In situ hybridization and combined in

situ hybridization with immunohistochemistry were performed following published methods

and using 40-μm-thick sections cut on a vibrating microtome and mounted on Superfrost

slides (Fisher)64. Riboprobes were generated as previously described54. The cDNA template

clone for Ldb2 was provided by J. Macklis; all other riboprobes were generated from cDNA

template clones using the primers listed below. Tissue sections were imaged using a Nikon

90i fluorescence microscope equipped with a Retiga Exi camera (Q-Imaging) and analyzed

with Volocity image analysis software v4.0.1 (Improvision). All primary data from

immunohistochemistry and in situ hybridization experiments were repeated at least three

times and analyzed by one investigator, then confirmed by a second, independent

investigator who was blinded to genotype and experimental conditions.

In situ hybridization riboprobe templates

cDNA templates for riboprobes were obtained by RT-PCR with the following primer pairs:

Gene name Forward primer Reverse primer Product length

Acvr1c AGGACTTGCCTCGAAAGTGA GAAAGCAGAAGCGGACATTC 610

Adcyap1 AATGACTTGGGGAATTGCTG GCATGAACAGCACTGGAGAA 542

Akap12 GTTGGGACCTTGAGACCAAA TGGCACACTCATCTGTCCAT 691

C1ql3 AGTGTGGTCCTTCACCTGGA CAAGAACCAAAGCTGACACG 507

Cntn6 GTATCTGTCCGAGAAGGTCA GTGGACCTTGGACACTTCTA 238
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Gene name Forward primer Reverse primer Product length

Ephb1 CACATCCATCTCCCTTTGCT TCCAGAAACCCTTTCCCTCT 618

Efnb1 ACAAGCCACACCAGGAAATC TGGGGGCAGTAGTTGTTCTC 640

Efnb2 ACCACACAGCTATGCAGCAG CGAACTCCACGTCTTCTGGT 675

Efnb3 GCAGTGTGGACATGATGGAC GCACACTAAAGAGCGGGAAG 675

Kif26a TCCTCAGCTCCAGACTCCAT GCGACAGTCTTTCCATCTCC 851

Pappa2 CCATTGTTCCACAAATGCTG CTCGCTCCACATGTTGCTTA 900

Parm1 TGCACTGACCAAGCCAGATA ACAAACAGCAAGGCAGTGAA 700

Rgs16 AAAAGGCTGTGTGTGTGGAAC CTATCACTTCTGAGTCTTACCG 752

Rgs8 TGAGGTCATGTTTGGGTTCA CAGGCTCTACGGACTTCTGG 741

Tmem163 AGGGTCTCTGCTTGACAGGA CCCTACATGTTGGCACACAC 650

Tshz2 GGCGAAGAGGACACAGACTC AAGGAGCGCTGTCGATAAAA 710

Tmem117 AACTATGCCACAACGGTGCT TTGTAGACAGTGGGCTGTGC 754

Neurosphere isolation and viral infection

Primary cortical progenitors of the dorsal telencephalon were isolated from E14.5 brains and

grown as neurospheres in the presence of growth factors as previously reported65.

Neurospheres were expanded for a maximum of one passage and then plated as a monolayer

on dishes coated with poly-D-lysine (VWR) and laminin (BD). E14.5 pregnant dams were

deeply anesthetized and the embryos removed. The presumptive somatosensory area was

microdissected in cold Hanks’ medium and mechanically triturated to obtain a single-cell

suspension. Cells were spun at 5,000g for 5 min at room temperature, and the pellet was

resuspended in neurosphere medium, containing 100 U/ml penicillin/streptomycin, 200 mM

L-glutamine, N2 and B27 supplements (Gibco), as well as 20 ng/ml epidermal growth factor

(EGF; Sigma) and 20 ng/ml β-fibroblast growth factor (FGF; Millipore) in order to promote

the survival of neural stem cells. After quantification of cell density, neural stem cells were

plated in 200-ml tissue culture flasks (untreated or low-adherence, Corning) at 200,000

cells/flask and incubated at 37 °C with 5% CO2. The medium was changed every 3–4 d and

the cells were expanded as neurospheres for one passage. Subsequently, cells were plated as

a monolayer on dishes previously coated with poly-D-lysine (VWR) and laminin (BD).

3xFlag-Fezf2 and 3xFlag were cloned into pRETROX-IRES-ZsGreen1 retroviral vectors

(Clontech Laboratories, Inc.) to generate high-titer, replication-incompetent, VSVg-coated

retroviral particles that were packaged in 293T cells (MOI = 5). 12–18 h after plating, neural

stem cells were infected with retroviruses. 16–203h after infection, cells were switched into

fresh medium. Cells were collected 48 h after infection for chromatin immunoprecipitation

(ChIP, n = 2) and for RNA-seq (n = 2). Sample sizes for ChIP-seq and RNA-seq

experiments on neural progenitors complied with the ChIP-seq ENCODE guidelines66.

Chromatin immunoprecipitation (ChIP)

ChIP analysis was performed on 1.5 × 108 neural stem cells per condition (3xFlag-

Fezf2ZsGreen1 and 3xFlagZsGreen1, 2 replicates each) as previously described67. Briefly, cells

were dissociated with 0.25% trypsin (Invitrogen), washed with PBS and chemically cross-

linked with formaldehyde solution (1%). Cells were disrupted in lysis buffer (50 mM Tris,
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pH 8.0; 10 mM EDTA; 1% SDS; and protease inhibitors) for 20 min on ice and sonicated

with a Bioruptor to shear the DNA into 200–700 bp fragments. Dynal magnetic beads (sheep

anti-mouse M-28, Invitrogen) were preblocked with 5 μg of anti-Flag M2 antibody per

reaction (Sigma-Aldrich) rotating overnight at 4 °C. Beads were then washed and

resuspended in fresh 0.5% BSA in PBS. Bead-antibody complexes were incubated at 4 °C

overnight with rotation. Beads were resuspended twice in low-salt immune complex wash

buffer (0.1% SDS; 1% Triton X-100; 2 mM EDTA; 20 mM Tris-HCl, pH 8.1; and 150 mM

NaCl), incubated for 5 min at 4 °C with rotation and resuspended in LiCl immune complex

wash buffer (0.25 M LiCl; 1% NP40; 1% deoxycholate; 1 mM EDTA; and 10 mM Tris-

HCl, pH 8.1) twice and incubated for 5 min at 4 °C with rotation. Beads were then rinsed

with ice-cold 10mM Tris-HCl; 1mM EDTA, pH8.0 and DNA was eluted in 100 μl of elution

buffer (50mM Tris-HCl; 10mM EDTA; 1%SDS, pH 8.0) at 65 °C for 15 min. Reverse

crosslinking was performed by incubating the ChIP DNA overnight at 65 °C. DNA was

purified on QIAquick PCR purification columns (Qiagen) for use as template for Solexa

library construction. To prepare an input control, whole-cell-extract DNA (reserved from the

sonication step) was also treated by reverse crosslinking and purified.

ChIP-seq data analysis

For both ChIP-seq replicates, high-throughput sequencing reads were aligned to the mouse

genome (version mm9) using Bowtie version 0.12.5 with options “-q --best --strata -m 1 -p 4

--chunkmbs 1024,” and only uniquely mapping reads were retained for further analysis.

GEM was used to detect binding events, using the options “--top 2000 --k_min 7 --k_max

12 --a 20 --q 3 --mrc 1 - constant_model_range --d_l 1000 --d_r 1000 --v 2 --nf --

refine_pwm --gc0 0.42.” Reported peaks contain a ChIP-seq enrichment level that is

significantly greater than 1.5 times the scaled read count from the corresponding region in

the control experiment (P < 10−6, binomial test, adjusted for multiple testing using

Benjamini & Hochberg’s method). GPS (genome positioning system) was also used to

confirm binding locations, using the options “--top 2000 --a 20 --q 3 --mrc 1 --

constant_model_range.” Regions of ChIP enrichment (1 Kbp) are highlighted in red or blue,

centered on the GEM-predicted binding event locations. De novo motif discovery was also

performed using GEM, which jointly estimates binding locations and primary DNA motif

patterns. Motif frequencies at binding events and gene promoter regions were defined by

scanning 100-bp windows around GPS binding locations or annotated TSSs for matches to

each motif. Motif scoring thresholds were based on a false discovery rate of 10−3, defined

using a third-order Markov model of the mouse genome. Comparison between peaks and

gene features was performed using the Ensembl v62 mouse genome annotation. Genes were

defined as bound if a Fezf2 binding event was located within 5 kb of a gene’s TSS. A chi-

squared test was used to assess the significance of associations between Fezf2 binding and

groups of differentially regulated genes in vivo.

RNA-Seq library preparation

Total RNA was isolated using QIAzol (Qiagen)/chloroform extraction followed by spin-

column purification (RNeasy mini kit, Qiagen) according to the manufacturer’s instructions.

RNA concentration and purity were measured with Nanodrop (Thermo Fisher), and RNA

integrity was assessed on a Bioanalyzer (Agilent) using the RNA 6000 Nano Total RNA kit
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(Agilent). High-quality RNA samples (RNA integrity number ≥ 8) were used for library

preparation. Poly(A)+ RNA-seq libraries were constructed using the TruSeq RNA Sample

Preparation Kit (Illumina) following the manufacturer’s protocol. 200 ng of total RNA from

neurospheres was used as input for the TruSeq libraries. Before sequencing, libraries were

run on a Bioanalyzer DNA7500 chip to assess purity, fragment size and concentration.

Libraries free of adaptor dimers and with a peak region (220–500 bp) area ≥80% of the total

area were sequenced. Individually barcoded samples were pooled and sequenced on the

Illumina HiSeq 2500 platform.

RNA-Seq analysis

Paired-end 101-bp reads were aligned to the mouse (mm9) reference genome assembly

using Tophat2 (refs. 68,69) with default options. Aligned reads and the UCSC reference

transcriptome .gtf file (UCSC genome browser; knownGene track) were used as input for

Cuffdiff2 (ref. 70) for expression quantification in fragments per kilobase RNA per million

mapped reads (FPKM) and differential testing between conditions using default options (P <

0.001). Cummerbund v2.1 (http://compbio.mit.edu/cummerbund/) was then used to process,

index and visualize the output of the Cuffdiff2 analyses.

To test for enrichment for CSMN signature genes after Fezf2 overexpression in cortical

progenitors, we performed a preranked gene set enrichment analysis (GSEA). Briefly,

CSMN signature genes were selected from Arlotta et al.54 as the intersection of genes

flagged as ‘present’ (Affymetrix; RMA) with a fold-change of CPN/CSMN ≤1/3 from the

P3 and P6 time point comparisons. Inversely, CPN signature genes were created from the

intersection of genes with a fold-change of CPN/CSMN ≥3 from the same two time points.

Additional gene sets consisting of the subset of each gene list that was also selected as

Fezf2-bound from our ChIP-Seq study were created.

We next created a ranked gene list of all expressed genes (FPKM ≥ 1) from our 3xFlag-

Fezf2ZsGreen1 versus 3xFlagZsGreen1 cortical progenitor RNA-Seq assay. Expressed genes

were rank-ordered using the value of the Cuffdiff2 test statistic. All derived gene sets were

tested for enrichment or depletion after Fezf2 overexpression using the preranked GSEA

approach71. CSMN signature and CSMN signature plus Fezf2-bound gene sets were

determined to be significant with a nominal P value ≤ 0.01.

Gene ontology enrichment analysis was performed on Fezf2-induced genes with specific

expression in the cortical plate (as determined by Ayoub et al.12) and Fezf2-repressed genes

with specific expression in either the VZ or SVZ/IZ using DAVID72. Genes within each

gene set were selected using a threshold specificity score S ≥ 0.65 (described below) for any

given condition. Gene sets were tested for significant enrichment using the GO Biological

Process FAT collection of gene sets.

We defined the specificity score Sgi for a gene (g) in a condition (i) as follows:
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where JSD is the Jensen-Shannon divergence between pg, the expression profile of a gene g

across all conditions expressed as a probability distribution, and qi, the unit vector of perfect

expression in condition i. Where applicable, genes are specifically assigned to the condition

with the highest S score above a threshold value. The threshold for specificity was selected

empirically to be 0.65 through examination of the distribution of S scores across all genes.

Hypergeometric and bootstrap analyses

To determine enrichment for Fezf2-bound genes within the set of significantly differentially

regulated genes in the E14.5 cortical neurospheres, we employed a hypergeometric test

(phyper from the stats package in R) and a bootstrap method. For the bootstrap method, gene

sets of comparable size were sampled (without replacement) from the universe of genes

10,000 times, and P values were estimated as the fraction of iterations where a greater than

or equal number of Fezf2-bound genes were selected.

Derivation and differentiation of inducible Fezf2 and GFP mouse ES lines

Mouse Fezf2-IRES-GFP was PCR-cloned from the Fezf2GFP construct5 into P2lox-40 using

the Gateway system (Life Technologies). The control GFP construct was a gift from E.

Mazzoni73. The plasmid constructs were nucleofected into the A2loxCRE mouse ES line for

inducible cassette exchange (ICE) as described in Iacovino et al.74 The cells were selected

on DR4 mouse embryo fibroblasts (GlobalStem) with 300 μg/ml G418. Single inducible

Fezf2-IRES-GFP (iFIG) clones and inducible GFP (iGFP) clones were manually picked and

expanded in standard ES+LIF medium without doxycycline (15% FBS, 1× Glutamax, 1×

non-essential amino acids, 1× penicillin/streptomycin and 1,000 U/ml mLIF (ESGROW,

Millipore) in Knockout DMEM). All media were obtained from GIBCO BRL. The iFIG and

iGFP clones were differentiated in vitro into cortical neurons using the SFEBq protocol as

described in Eiraku et al.75 Expression of Fezf2 and GFP was induced at day 10 in vitro

with 2 μg/ml doxycycline. The doxycycline was maintained in the culture until day 18, and

the SFEBqs were dissociated and FACS-sorted for GFP+PI− populations, which were then

analyzed by RNA-seq.

Electrophoretic mobility shift assay (EMSA)

GST-tagged truncated mouse Fezf2 (GST-tFezf2, AA291-455) protein was expressed in

Rossetta DE3 E. coli (Millipore) and purified on GST-agarose with standard methods. Given

that the full-length Fezf2 aggregates in solution, we chose a truncated version of Fezf2

(tFezf2) containing five of the six zinc finger motifs in the C-terminal domain of Fezf2,

highly conserved across all vertebrates. IRDye end-labeled oligonucleotide probes

(Integrated DNA Technologies) were designed against proximal promoter regions under

ChIP-seq peaks of the Ascl1 and Ephb1 genes. Negative controls for each gene were chosen

from neighboring sequences not containing ChIP-seq peaks. The probe sequences are as

follows (with GEM motifs underlined):

Ephb1 positive probe:
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GCCGAGCCCCAGCGGAGACGCGCCGCGTCCCAGGGCGCCGCTGCGCTCCCGGC

GGGTGGCTAGCCACCCGCCGGGAGCGCAGCGGCGCCCTGGGACGCGGCGCGTC

TCCGCTGGGGCTCGGC.

Ephb1 negative probe:

TGTCAGAAGACAGTCATAATGGGAAGACATGAAGAAACAGCCGAAAGTCTGAC

AACTTGTTAACAAGTTGTCAGACTTTCGGCTGTTTCTTCATGTCTTCCCATTATG

ACTGTCTTCTGACA.

Ascl1 positive probe:

GCTCTGAGCTGCCGCGGCCGCCGCCGCTGCCGCCGCCGCCGCGGTCGCAAAGAA

GCAGGCGCCTGCTTCTTTGCGACCGCGGCGGCGGCGGCAGCGGCGGCGGCCGC

GGCAGCTCAGAGC.

Ascl1 negative probe:

CCTAGTGGTTATTTTATTGCTGTAAAATAAATTTAACCCTTTCCTTACCAAGCTG

CTTTTAAAAGCAGCTTGGTAAGGAAAGGGTTAAATTTATTTTACAGCAATAAAA

TAACCACTAGG.

EMSA was performed using the Odyssey EMSA Kit (LI-COR Biosciences, USA),

following the manufacturer’s protocols. Briefly, 100 nM IRDye end-labeled probe was

incubated with 0, 10 or 20 μg GST-tFezf2 at room temperature for 30 min in 20 μl reaction

buffer (1× binding buffer, 0.2 mM DTT, 0.25% Tween 20, 0.05 μg/μl poly(dI.dC) and 5 mM

MgCl2). The reactions were resolved on 4–20% Mini-PROTEAN TBE precast gel (Bio-

Rad) and visualized by the Odyssey CLx infrared imaging system (LI-COR Bioscience,

USA).

Statistics

Bar and line graphs represent mean values of all replicates and error bars represent s.e.m.

except for RNA-seq results, in which the error bars represent 95% confidence intervals for

the Cuffdiff2 model expression estimate. Animals were assigned to groups on the basis of

genotype. Age-matched littermates were used as controls in all experiments. No

randomization was used. For all animal experiments, data distribution was assumed to be

normal, but this was not formally tested. For ISH and immunofluorescence studies, data

collection and analysis were performed blinded to the conditions of the experiment. No

animals were excluded from analyses. Except for RNA-seq and ChIP-seq sample sizes

(explained above), no statistical methods were used to predetermine sample sizes. Our

sample sizes are similar to those reported in previous publications3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Fezf2 overexpression in cortical progenitors induces genes that label corticospinal motor

neurons. Left, in situ hybridizations on coronal sections of the cerebral cortex at different

embryonic (E15.5, E17.5 and E18.5) and postnatal stages (P3, P7 and P14) (insets enlarged

from boxed areas). Right, expression levels (normalized microarray intensity, see Methods)

for each selected gene in CtrlGFP (blue) and Fezf2GFP (red) in utero electroporated cortical

progenitors that were collected at 24 h (n = 3 litters per condition) and 48 h (n = 4 litters per

condition). Vertical axes are normalized intensities (arbitrary units). Error bars indicate

s.e.m. LV, lateral ventricle; Str, striatum. Scale bars, 100 μm; 50 μm in insets. Source data

are shown in Supplementary Table 1.

Lodato et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Fezf2-induced genes identify native CSMN and label subsets of the broad CTIP2-positive

population in layer V. (a) In situ hybridization showing expression of Adcyap1 in E13.5

cortical progenitors (left) and young postmitotic subcerebral neurons in developing cortical

plate (middle and right). (b–d) Immunocytochemistry for CTIP2 combined with in situ

hybridization for Adcyap1, Kif26a and Tmem163 (boxed area enlarged in panel to the right).

Examples of double-positive cells (arrowheads) are indicated in the right column. CP,

cortical plate; LGE, lateral ganglionic eminence; LV, lateral ventricle; Str, striatum. Scale

bars, 100 μm (a; b–d left panels), 20 μm (b–d, middle panels), 10 μm (b–d, right panels).

The complete gene list is given in Supplementary Table 3.
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Figure 3.
Genome-wide binding analysis for Fezf2 shows preferential association with proximal

promoter regions of CSMN genes. (a) Fezf2 binding events preferentially occur in proximity

to promoter regions, within 5 kb of the TSS of annotated genes. (b–i) Examples of 3xFlag-

Fezf2 peaks at proximal promoters for early (Sox5 and Ctip2; b,c), middle (Crim1) (d) and

late (Pcp4, Opn3, Diap3, S100a10 and Cdh22; e–i) CSMN genes. In situ hybridizations are

shown for Crim1 (P21), Pcp4 (P21), Opn3 (P21), S100a10 (P21), Diap3 (P14) and Cdh22

(P21). Immunohistochemistry results are shown for SOX5 (E18.5) and CTIP2 (P1). Scale

bars, 100 μm (b–i). (j) The “zero cross” area represents genes where the Cuffdiff2 test

statistic is equal to 0 and no appropriate rank information is available. The color scales used

for the rank density represent kernel density estimate of gene rank positions (white = 0, red/

blue=max density). GSEA for CSMN and CPN signature gene sets. Signature gene sets (in

red) and the corresponding subsets bound by Fezf2 (in blue) were assessed for enrichment in

Fezf2-overexpressing neurospheres. Both CSMN signature genes and the subset bound by

Fezf2 were significantly enriched in Fezf2-overexpressing neurospheres. Neither set of CPN

signature genes showed significant enrichment. Source data are shown in Supplementary

Table 4.
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Figure 4.
Fezf2 promotes glutamatergic and inhibits GABAergic neurotransmitter pathways. (a)

ChIP-seq trace shows that 3xFlag-Fezf2 binds specifically to the promoters of Vglut1

(Slc17a7) and Gad1 but not Vglut2 (Slc17a6). (b) RNA-seq analysis shows the effect of

3xFlag-Fezf2 overexpression on these three genes in neural stem cells in vitro. (c) Inducible

expression of single-copy Fezf2-IRES-GFP is show by immunoblotting and fluorescence

microscopy. Uncropped original immunoblots are shown in Supplementary Figure 10. (d)

Schematic representation of directed differentiation protocol used to instruct embryonic

stem cell (ES) differentiation into mixed populations of cortical neurons23. (e) RNA-seq

analysis showing the effect of Fezf2 expression on Vglut1, Vglut2 and Gad1 in ES-derived

neurons. Clones used for RNA-seq were from the differentiation of n = 2 independently

generated iGFP and n = 2 iFIG lines. the error bars represent 95% confidence intervals for

the Cuffdiff2 model expression estimate as defined in Methods and described in Trapnell et

al., 2013.
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Figure 5.
Fezf2 controls Ephb1 selective expression in CSMN by direct association with the Ephb1

promoter. (a) In situ hybridization for Ephb1 in the forebrain at different stages of

embryonic and postnatal development shows highest expression in developing cortical plate

at E15.5, the time of initial CSMN axonal extension, and its restricted expression in

developing layer V, until approximately E18.5. (b) In situ hybridization for Ephb1 and

immunocytochemistry for TBR1 and APC show maintained expression of Ephb1 at

postnatal stages in corticothalamic neurons (TBR1-positive in layer VI) and

oligodendrocytes (APC-positive). (c) β-galactosidase immunocytochemistry in Ephb1
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heterozygous mice at P1 shows that, within layer V, expression colocalizes with CTIP2, and

not with SATB2 (arrows upper panel). The dotted rectangle area in the left panel is shown in

high magnification in the four panels on the right. Retrograde labeling of ScPN from the

pons of P1 Ephb1 heterozygous mice shows colocalization of FluoroGold with β-

galactosidase in layer Vb (arrows). Retrograde labeling of CPN in P2 Ephb1 heterozygous

mice shows no colocalization of FluoroGold with β-galactosidase in callosal neurons of

layer Va (arrowheads). Confocal images of layer V were combined to produce three-

dimensional reconstructions (Lower right panels). Sidebars represent projections along the

x–z axes (right) and the y–z axes (below). (d) Left, in situ hybridization for Ephb1 on E18.5

wild-type (left inset) and Fezf2−/−(right inset) littermates shows that Ephb1 levels

specifically decrease in layer V of the mutant cortices. Right, DNA regions spanning 5′ UTR

and first exon of the Ephb1 gene show enrichment of 3xFlag-Fezf2 binding (q = 10−15)

compared to control. Str, striatum. Scale bars, 100 μm (a; c, far left panels), 20 μm (b), 50

μm (c, top right panels; d), 20 μm (c, bottom right panels).
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Figure 6.
Cortical neurons aberrantly project through the anterior commissure in absence of EphB1.

(a–d) Immunocytochemistry for myelin basic protein (MBP) on coronal sections of P28

wild-type and Ephb1−/− littermates shows internal capsule reduction and defasciculation,

accompanied by an expansion of both the external capsule (arrows) and the anterior

commissure (arrowheads). (e) DiI anterograde injections in deep layers of the

somatosensory cortex of P2 wild-type (n = 3) and Ephb1−/− (n = 3) pups show axons

ectopically crossing at the anterior commissure and extending ventrally and rostrally (red

arrows) in the Ephb1 mutants but not in wild-type animals. (f) Color-coded three-

dimensional reconstructions based on HARDI of P28 wild-type and Ephb1−/− littermates

show distinct axon fibers originating in dorsal areas of the neocortex merging abnormally

with the anterior commissure in the Ephb1−/− (top right) compared to wild-type (top left)

brains. Red represents the anterior–posterior direction; green represents the medial–lateral

direction; blue represents the dorsal–ventral direction. Green arrows indicate axon tracts

penetrating into the cortex. AC, anterior commissure; ACa, anterior part of the anterior

commissure; ACp, posterior part of the anterior commissure; cc, corpus callosum; dCtx,
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dorsal cortex; lCtx, lateral cortex; EC, external capsule; IC, internal capsule. Scale bars: 50

μm (a), 20 μm (b–d) 100 μm (e).
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Figure 7.
Ephb1−/− mice recapitulate the axon guidance phenotype observed in Fezf2 null mutants.

(a–c) PLAP-positive axons inappropriately project through the anterior commissure in

Ephb1−/− mutants (b, arrows), mimicking the Fezf2PLAP/PLAP axonal phenotype (c,
arrows). Enlargement of the anterior commissure in Ephb1−/− mice is accompanied by a

reduction of PLAP-positive axons found in the cerebral peduncle (b, middle panel) and the

cervical spinal cord (b, bottom), canonical targets of the corticospinal tract in wild-type mice

(a, middle and bottom). No axons are found in the cerebral peduncle or spinal cord of the

Fezf2PLAP/PLAP mice (c, middle and bottom). AC, anterior commissure; Cp, cerebral

peduncle; Hp, hippocampus; CST, corticospinal tract. C6, cervical vertebra. Scale bars: 100

μm (a–c, top panels), 50 μm (a–c, middle and bottom).
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