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Abstract

We present the �rst system for estimating and using data-
dependent expression execution times in a language with
�rst-class procedures and imperative constructs. The pres-
ence of �rst-class procedures and imperative constructs
makes cost estimation a global problem that can bene�t
from type information. We estimate expression costs with
the aid of an algebraic type reconstruction system that as-
signs every procedure a type that includes a static dependent
cost. A static dependent cost describes the execution time
of a procedure in terms of its inputs. In particular, a proce-
dure's static dependent cost can depend on the size of input
data structures and the cost of input �rst-class procedures.
Our cost system produces symbolic cost expressions that
contain free variables describing the size and cost of the pro-
cedure's inputs. At run-time, a cost estimate is dynamically
computed from the statically determined cost expression
and run-time cost and size information. We present experi-
mental results that validate our cost system on three compil-
ers and architectures. We experimentally demonstrate the
utility of cost estimates in making dynamic parallelization
decisions. In our experience, dynamic parallelization meets
or exceeds the parallel performance of any �xed number of
processors.

1 Introduction

We present a new method for estimating program execu-
tion time that can be added to any statically typed pro-
gramming language with polymorphism. Reliable static es-
timates of the execution time of program expressions have
important applications such as optimization, documenta-
tion, automatic parallelization, and providing real-time per-
formance guarantees. With reliable static estimates an op-
timizing compiler can focus its attention on the most im-
portant portion of a program and analyze which expressions
might be pro�tably evaluated in parallel [G86, SH86, G88,
MKH90]. We have developed a simple dynamic paralleliza-
tion system which uses cost estimates to make parallelization
decisions based on their pro�tability.
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A cost system estimates the cost of a program in terms
of a desired metric such as time. A micro analysis system is
a cost system in which costs are expressed using constants
that describe the costs of common, elementary operations.
Micro analysis was �rst presented by Knuth [K68] and more
recently by Wegbreit [W75] and Cohen [C82]. For instance,
the cost of the Scheme expression (+ x 2) would be the sum
of:

� the cost of looking up the operator +,

� the cost of evaluating the arguments, which requires
looking up the variable x and evaluating the number
2,

� the cost of calling the operator, and

� the cost of performing the operation.

This cost is expressed as

(sum C var C var C num C call C +)

where the symbolic constants are execution target speci�c.
In the presence of �rst-class procedures it is impossible

to syntactically determine the expected execution cost of
a procedure call. In the expression (f x 2) the total cost
includes the cost of performing the operation named by f;
however, the cost of f is not syntactically apparent. The
di�culty arises from the presence of an unknown procedure
and is present even if procedures can only be passed as ar-
guments or stored in data structures but not returned as
values.

In a static dependent cost system each procedure type
is automatically annotated with a latent cost description.
A latent cost communicates the expected execution time of
a procedure from the point of its de�nition to the point of
its use. Thus in (f x 2), f would have type (T 1 � num)
C latent!T 2 where C latent denotes the cost of perform-

ing the operation named by f. This type is written in
S-expression syntax as (-> C latent (T 1 num) T 2). The
cost of the expression (f x 2) can be obtained by extract-
ing the latent cost of f from its type; giving a total cost of
(sum C var C var C num C call C latent).

Adding latent costs to procedure types provides a way
to describe the cost of higher-order procedures. Assume
the above expression (f x 2) is the body of a procedure:
(lambda (f x) (f x 2)). The latent cost of the procedure
de�ned by this lambda expression is the cost from above,
giving the procedure the following type:



(map fctn lst)

(sum C map-overhead (prod N length (sum C map-per-elem C latent)))
? ? ??

map : 8 fT 1; T 2; C latent; N lengthg :
(-> (sum C map-overhead (prod N length (sum C map-per-elem C latent)))

((-> C latent (T 1) T 2) (listof T 1 N length))
(listof T 2 N length))

Figure 1: Factors in The Latent Cost of map

(-> (sum C var C var C num C call C latent)
( (-> C latent (T 1 num) T 2)
T 1)

T 2)

The latent cost of this procedure depends on the latent cost
of its procedural argument f.

The latent cost of a procedure may also depend on the
size of the procedure's actual arguments. Consider the ex-
pression (map fctn lst) in which the familiar map operator
is used to apply the procedure fctn to each element of the
list lst. Following the above analysis, this expression would
have cost (sum C var C var C var C call Cmap) where
Cmap is the latent cost of map. The latent cost of map de-
pends on both the latent cost of the input procedure and
the length of the input list. Without any information about
the size of the list, there is no �nite value that can be chosen
for Cmap to give an upper bound for lists of all sizes.

A static dependent cost is a latent cost that depends on
the size of the procedure's arguments. In our cost system,
data structure types are annotated with a size description
that provides an upper bound on the run-time size of the
data structure. A size description communicates the data
structure's size from its point of de�nition to its point of
use in much the same way that latent costs communicate
the expected execution cost of a procedure.

Figure 1 shows how a static dependent cost is used to
describe the execution time of map. The arrows show how
the de�nition of map and the values of its arguments all con-
tribute to the cost of executing its body for the expression
(map fctn lst). The latent cost of fctn is denoted C latent

and is provided the type of fctn. N length is an upper bound
on the length of the input list lst and is provided by the
type of lst. Our system uses static dependent costs to pro-
vide accurate estimates for a complete set of data parallel
operators in a manner similar to that shown here for map.

Polymorphism is central to our static dependent cost sys-
tem. Figure 1 shows the polymorphic type of map. Cost pa-
rameters such as the latent costs of higher-order procedures
and the size of data structures are made fully polymorphic
in our cost system. Cost and size polymorphism provides
the key descriptive power required to provide reliable cost
estimates for non-trivial programs.

Our static dependent cost system contains dependent
costs for a complete set of data parallel operators. A large
number of interesting programs can be written using only
�rst-class procedures and a complete set of data parallel op-

erators [B78]. The example programs in this paper were
all written without general recursion, including Sussman's
n-body simulation [ADGHSS85].

Our cost system does not currently provide estimates for
user-de�ned recursive procedures, but still provides cost esti-
mates for non-recursive subexpressions. Predicting costs for
recursive procedures requires solving recurrence equations
which is not always possible. This problem is not addressed
as it is beyond the scope of this paper and has been the
subject of previous work [W75, L88, R89, S90]. Our cost
system could potentially be augmented with a pre-de�ned
database of recursion equations and their closed forms.

We show experimental results that demonstrate that the
estimates produced by our cost system are accurate to within
a factor of three of the actual cost incurred in the context of
multiple applications and architectures. Thus our cost esti-
mates are su�ciently accurate to be of use to programmers
and optimizing compilers.

We have used our cost estimates to make dynamic par-
allelization decisions based on a pro�tability analysis. An
expression can be pro�tably evaluated in parallel if the cost
of evaluating the expression exceeds the overhead of per-
forming the parallelization. Our system computes cost ex-
pressions for polymorphic procedures that contain free cost
and size variables. Parallelization decisions cannot be made
at compile time because the values of these free cost and
size variables are not known. By providing this information
at run-time, parallelization decisions can be made dynam-
ically. The decisions are low cost because the majority of
the cost analysis is done statically and the dynamic decision
only involves evaluating a cost expression. In our experi-
ence, dynamic parallelization meets or exceeds the parallel
performance of any �xed number of processors.

In this paper we present previous work (Section 2), our
cost analysis (Section 3), an algebraic cost and size recon-
struction algorithm (Section 4), experimental results demon-
strating our cost system predicting execution times on vari-
ous target architectures (Section 5), and results of using our
cost system to make dynamic processor allocation decisions
(Section 6).

2 Previous Work

Our work is related to previous work on pro�ling, e�ect sys-
tems, cost systems, cost estimation, automatic complexity
analysis, and range analysis.
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Pro�ling Pro�ling is a dynamic alternative to ob-
taining cost information about a program's execution time.
The general approach is to run a program once, gather
statistics about where time is spent, and feed this cost in-
formation back into the compiler to re-compile the pro-
gram. Pro�le data has been used for various optimization
e�orts including partitioning and scheduling parallel pro-
grams [SH86]. Unfortunately, the pro�le data from one run
is not always a good predictor of subsequent runs with dif-
ferent input data [W91]. The static cost estimates produced
by our system do not su�er from this disadvantage because
our system produces cost estimates that depend on the size
of the input data and thus generalize to previously unseen
data sizes. Static analysis can be done without choosing
\typical" input data that is required to gather pro�le statis-
tics.

E�ect systems E�ect systems originated the idea of
annotating procedure types with static information about
how a program computes and form the basis for cost sys-
tems. Lucassen and Gi�ord [LG88] �rst proposed e�ect sys-
tems to analyze side e�ects. Jouvelot and Gi�ord [JG91]
present an algebraic reconstruction algorithm to infer e�ect
descriptions and provide let-polymorphism using algebraic
type schemes. Talpin and Jouvelot [TJ92] extend recon-
struction to regions describing memory locations and show
how to include the notion of sube�ecting.

Cost systems Cost systems are an extension of ef-
fect systems to analyze program execution time, but to date
they have not captured dependence on data structure size.
Dornic et al. [DJG92] propose a cost system that parallels
an e�ect system but it requires explicit typing. Dornic [D92]
presents the �rst cost reconstruction algorithm and includes
a notion of subcosting, but he does not describe how to han-
dle polymorphism. Dornic [D93] presents a re�nement that
labels recursive calls, thus identifying the sources of recur-
sion. These systems cannot provide cost estimates for the
examples given in this paper because they are not powerful
enough to handle size dependencies and thus cannot describe
any form of iteration.

Cost Estimation Skillicorn and Cai [SC93] present
a cost calculus for a parallel functional programming lan-
guage that can be used in a program development system.
They use sizes and costs in a similar manner to our sys-
tem in describing costs for data parallel operators; however,
they do not deal with �rst-class procedures that may have
dependent costs.

Huelsbergen et al. [HLA94] present an automatic paral-
lelization system that statically estimates costs and makes
dynamic parallelization decisions. They use abstract eval-
uation to compute a lower bound on the cost of evaluating
an expression for various sizes of an input list. Their system
does not compute cost expressions that depend on the size of
the list. Instead Huelsbergen et al. determine the list size at
which evaluation of the expression will execute longer than
the parallelization threshold. Parallelization decisions are
made dynamically by comparing this statically determined
cuto� with run-time estimates of the list's size. Presum-
ably, the abstract evaluation is run on increasing input sizes
until the abstract cost estimate exceeds the parallelization
threshold; however, they did not implement the static por-
tion of their system and do not specify how the cuto� would
be automatically determined. Abstract evaluation seems be
expensive for �rst-class procedures. If multiple procedures
can possibly reach a point in the program (the value set for
the operator contains multiple procedures), the application

E 2 Expression
E ::= Identi�er j Primitive Operator

j Symbol j Boolean j Float j Natural Number
j (lambda (I) E) j (rec (I f I x) E)
j (E E)
j (let (I E) E) j (if E E E) j (begin E*)

Figure 2: �FX/SDC Syntax

of each procedure to the argument value set must be ab-
stractly evaluated. On the other hand, our system uses a
single type description for all the procedures that can reach
that point. Abstract evaluation may diverge for recursive
procedures, so the parallelization threshold is used during
static analysis to ensure that it halts. Lastly, their costs
are in terms of e-units that estimate the number of proce-
dure applications and conditionals in the evaluation. This
implies that iterators such as map are not primitives or their
cost would be greatly underestimated.

Complexity Analysis Automatic complexity anal-
ysis attempts to provide closed form costs by analyzing re-
currence equations, but has been developed only for lan-
guages without �rst-class procedures and mutation. Weg-
breit [W75] presents one of the earliest automatic complex-
ity analysis tools METRIC to analyze simple Lisp programs.
Le M�etayer [L88] presents the ACE system for analyzing FP
programs by rewriting to a time-complexity function and
matching against a database. Rosendahl [R89] presents a
similar system for a �rst-order subset of Lisp based on ab-
stract interpretation. Sands [S88, S90] presents a mecha-
nism to produce time-complexity expressions for a language
with �rst-class procedures (but not mutation) to extend Le
M�etayer's ACE system. It seems that his approach still ex-
poses �rst-class procedures to the ACE system which would
require a powerful deduction system to solve recurrences
containing �rst-class procedures.

Interval/Range Analysis Range analysis is rele-
vant because our system includes estimates of data structure
sizes that allow us to describe dependent costs. Chatterjee
et al. [CBF91] analyze a data parallel program graph to dis-
cover which vectors have the same run-time sizes. They
observe that their algorithm is similar to type inference.
Harrison [H77] presents a mechanism for determining the
value ranges of variables in the context of loops.

3 Cost System Semantics

In this section we de�ne our language and introduce our cost
system.

3.1 Language De�nition

The experimental work described in this paper has been
carried out in a subset of the FX programming language
[GJSO92], called �FX/SDC. �FX/SDC is statically typed
with �rst-class procedures and mutation. �FX/SDC has
been used to write a number of programs, including matrix
multiplication, the game of life, and n-body simulation.

The syntax of our language is shown in Figure 2.
�FX/SDC has symbolic, boolean, 
oat, and natural number
literals, means of declaring both regular and recursive pro-
cedures, procedure application, let bindings, a conditional
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expression and a sequence expression. The rec expression
de�nes a recursive procedure in which I f is the name of the
recursive procedure, Ix is the name of the argument, and E
is the body. We restrict our discussion to single argument
procedures for simplicity, but our implementation actually
handles multiple argument procedures. The set of primi-
tives includes a full set of data parallel operators as well
as imperative primitives for allocating, reading and writing
mutable cells.

Values include �rst-class procedures, 
oats, natural num-
bers, symbols, booleans, pairs, lists, vectors, permutations
and mutable cells. Only natural number arithmetic can be
used to compute values that are used to size data structures;
see Section 4.2.

The call-by-value dynamic semantics is shown in Fig-
ure 3. The dynamic semantics of �FX/SDC includes a
counter to measure execution cost. Evaluation rules have
the following form: �; Env ` E ! v; c; �0 which is read
\given store � and environment Env, the expression E eval-
uates to value v incurring cost c and producing the modi�ed
store �0." Each rule is assigned a symbolic cost constant al-
lowing us to calculate a micro measure of the steps required
to evaluate an expression.

Recursive bindings are implemented by unwinding the
recursive binding in the fourth component of the closure.
This binding is unwound once by the Rec function during
application and appended (::) with the current environment.
Dynamic semantics are not given for the arithmetic, mutable
cell or data parallel operators.

3.2 Static Semantics

We begin by presenting value descriptions that include cost
and size annotations and then we discuss the static seman-
tics for deducing descriptions.

Value expressions are described by descriptions. As shown
in Figure 4, legal descriptions are types, costs and sizes:

� Types include base types (unit, symbol, boolean, 
oat),
pairs, reference types (mutable cells), procedure types
and data structure types. Procedure types include a
latent cost that describes the procedure's execution
cost. Data structure types include a size that is a static
upper bound on the run-time size of the data structure.
The numof type includes an upper bound on the value
of natural numbers that is used to predict execution
times of primitive iterators, such as make-vector, that
require a numeric argument.

Polymorphism is expressed with type schemes that ab-
stract a type T over a set of description variables Dvi :
8 fDvig:T .

In the remainder of this paper we will not discuss
the following types: base types (unit, sym, bool, and
float), pairof (analogous to refof), vectorof and
permutationof (analogous to listof and numof).

� Costs are upper bounds on the execution time of ex-
pressions. Costs are described by expressions that in-
clude symbolic constants, the constant long denoting
an unbounded estimate, and the sum or maximum of
two cost estimates. Cost can also be proportional to
the size of a data structure. We interpret sum, prod
and max as the usual algebraic operators with associa-
tivity and commutativity.

v 2 Value = BaseValue+ Closure+DataStructure
BaseValue = Boolean+ Symbol

+Float+ funitg+ Ref + Pair
Closure = hId; Expression;Env; Envi
DataStructure =

Natural + List +Vector + Permutation
Env 2 Environment = Identi�er ! Value

� 2 Store = Location! V alue
c 2 Cost

(num)
�; Env ` Nat ! Nat; C num; �

(var)
[I 7! v] 2 Env

�; Env ` I ! v; C var; �

(lambda)

�; Env ` (lambda (I) E b)
! hI ; E b; Env; [ ] i; C lambda; �

(rec)

�; Env ` (rec (I f I x) Eb)
! hI x;Eb; Env; [I f 7! hIx;Eb; Env; [ ]i ]i; C rec; �

(call)

�; Env ` Eop ! hI ; Eb; Env
0; Env00i; cop; �op

�op; Env ` Earg ! varg; carg; �arg
�arg; Env

0[I 7! varg] :: Rec(Env
00) ` E b ! v; c; �0

�; Env ` (Eop Earg)! v; (sum C call cop carg c); �
0

(let)

�; Env ` E ! v1; c1; �1
�1; Env[I 7! v1] ` Eb ! v; c; �0

�; Env ` (let (I E) E b)! v; (sum C let c1 c); �
0

(if-true)

�; Env ` E test ! true; ctest; �
0

�0; Env ` E con ! v; c; �00

�; Env ` (if E test Econ Ealt)! v; (sum C if ctest c); �
00

(if-false)

�; Env ` E test ! false; ctest; �
0

�0; Env ` Ealt ! v; c; �00

�; Env ` (if E test Econ Ealt)! v; (sum C if ctest c); �
00

Rec([I f 7! hIx;E ; Env; [ ] i]) =
[I f 7! hIx;E ; Env; [I f 7! hIx;E ; Env; [ ] i] i]

Rec([ ]) = [ ]

Figure 3: �FX/SDC Dynamic Semantics
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D 2 Desc ::= T j C j N

T 2 Type
T ::= I j unit j sym j bool j float

j (refof T) j (pairof T T)
j (-> C (T) T)
j (numof N) j (listof T N)
j (vectorof T N) j (permutationof N)

C 2 Cost
C ::= I j Symbolic Constant (eg: C call) j long

j (sum C C) j (prod N C) j (max C C )

N 2 Size ::= I j Nat j long
j (sum N N) j (prod N N) j (max N N)

Figure 4: �FX/SDC Descriptions

� Sizes are upper bounds on the run-time size of data
structures and have an algebra similar to that for costs.
Size in this context refers to the dimension of the data
structure over which the primitive iterators work: the
length of vectors and lists and the magnitude of num-
bers.

The static semantics for �FX/SDC is shown in Figure 5.
Judgments in the static semantics are of the form:
A ` E : T $ C which is read \in type environment A, the
expression E has type T and maximum cost C ." The type
environment A binds identi�ers to types or type schemes;
types are just type schemes with no free description vari-
ables.

The static semantics contains rules for each language
construct. The rule for each language construct computes
the cost of the subexpressions and adds a symbolic constant
representing the overhead of that construct. For example,
the cost computed by the let rule includes the overhead
C let, the cost of the named expression, and the cost of the
body. The if rule uses max to choose the larger cost of the
consequent and alternative subexpressions.

The latent cost of a procedure is communicated from its
point of de�nition to its point of use by the lambda, rec,
and call rules. Procedure types are annotated with latent
costs by the lambda and rec rules. The rule for procedure
application extracts the latent cost of the procedure from
the operator type. The cost of the application includes the
overhead of calling the procedure, the cost of the subexpres-
sions, and the latent cost of the operator. We have not dis-
tinguished between primitives and general procedures as has
been done in other cost analysis systems such as [W75, S90].
To be conservative, we must assume that every application
incurs the overhead of general procedure call.

The static semantics includes some 
exibility in deduc-
ing size and cost descriptions. For example, the num rule
allows us to report a numof type with any size at least as
large as the literal. Without this subsizing 
exibility, the
expression (if #t 1 2) would not type-check because the
types (numof 1) and (numof 2) would not be equivalent.
The num rule allows us to claim that 1 has type (numof 2)
and thus the entire expression also has type (numof 2). We
could also claim that the expression has an even larger type,
but doing so will produce overly conservative estimates.

(num)
Nat vsize N

A ` Nat : (numof N) $ C num

(var)
[I : 8 fDvig:T ] 2 A
[D 0

i=Dvi ]T vtype T
0

A ` I : T 0 $ C var

(lambda)

A[I : Targ] ` Eb : T return $ C
C vcost C latent

A ` (lambda (I) Eb)
: (-> C latent (T arg) T return) $ C lambda

(rec)

A[I f : (-> C latent (T arg) T return); Ix : T arg] ` E
: T return $ C

C vcost C latent

A ` (rec (I f I x) E) : (-> C latent (Targ) T return) $ C rec

(call)

A ` Eop : (-> C latent (Targ) T ret) $ C op

A ` Earg : Targ $ C arg

T ret vtype T
0

ret

A ` (Eop Earg) : T 0

ret $ (sum C call C op C arg C latent)

(let)

E non-expansive
A ` E : T $ C

A[I : Gen(T ;A)] ` Eb : T b $ C b

A ` (let (I E) Eb) : T b $ (sum C let C C b)

(if)

A ` E test : bool $ C test

A ` Econ : T $ C con

A ` Ealt : T $ C alt

A ` (if E test Econ Ealt)
: T $ (sum C if C test (max C con C alt))

Gen(T ;A) = 8 fDvig : T
where fDvig = FV (T ) n FV (A)

Figure 5: �FX/SDC Static Semantics
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(subtype-numof)

N vsize N 0

(numof N) vtype (numof N
0)

(subtype-listof)

N vsize N
0

(listof T N) vtype (listof T N 0)

(subtype-arrow)

C vcost C
0

T 0

arg vtype T arg

T ret vtype T
0

ret

(-> C (T arg) T ret) vtype (-> C 0 (T 0

arg) T 0

ret)

Figure 6: Subtyping Relation

The lambda and rec rules report a latent cost that is
larger than the cost deduced for the body expression. This
subcosting 
exibility allows us to report the larger of two
latent costs when two procedures are constrained to have the
same type. These two rules provide the same functionality
as Dornic's subcosting rule [D92].

The var rule must incorporate the same subcosting and
subsizing 
exibility as the num and lambda rules because
the identi�er may be bound to a natural number or a proce-
dure. This 
exibility is expressed by the subtyping relation
shown in Figure 6. No subtyping is provided on mutable
data types such as the types in refof and listof types.

Notice the latent cost determined by the rec rule may
be unbounded if there is a recursive call in the body. The
latent cost of the procedure C latent must be greater than
or equal to the cost of the body C , but this cost includes
both the latent cost and the call overhead: C latent � C =
(sum C latent C call), forcing C latent = long.

Let-polymorphism is provided for non-expansive [T87]
expressions by the use of type schemes. (The rule for ex-
pansive expressions is straightforward and omitted.) Previ-
ous e�ect reconstruction systems have used substitution to
provide let-polymorphism, but substituting the let-bound
expression may arti�cially increase the cost estimate of the
body. The Gen function generalizes the type by abstract-
ing over the description variables that occur free in T but
are not bound in A (Figure 5), where FV computes the set
of free description variables in a type or type environment.
The type scheme is instantiated by the var rule.

Type schemes abstract over costs and sizes as well as
types. A procedure has a static dependent cost if a de-
scription variable denoting the size of one of its arguments
occurs free in the procedure's latent cost. The initial type
environment contains type schemes for the primitive opera-
tors. Below we give the static dependent costs for some of
the data parallel primitives that we use to \bootstrap" the
system.

Primitive operator types

The set of primitives includes 
oating point and natural
number arithmetic, mutable cell operators, and a complete
set of data parallel operators from FX including list, vector,

+ : 8 fn1; n2g : (-> C + ((numof n1) (numof n2))
(numof (sum n1 n2)))

* : 8 fn1; n2g : (-> C * ((numof n1) (numof n2))
(numof (prod n1 n2)))

- : 8 fn1; n2g : (-> C - ((numof n1) (numof n2))
(numof n1))

map : 8 ft1; t2; c; leng :
(-> (sum C map-overhead

(prod len (sum C map-per-elem c)))
((-> c (t1) t2) (listof t1 len))
(listof t2 len))

reduce : 8 ft1; t2; c; leng :
(-> (sum C reduce-overhead

(prod len (sum C reduce-per-elem c)))
((-> c (t1 t2) t2) (listof t1 len) t2)
t2)

make-vector : 8 ft; ng :
(-> (sum C make-vector-overhead

(prod n C make-vector-per-elem))
((numof n) t)
(vectorof t n))

Figure 7: Primitive Operator Types

and permutation iterators. We give the types of a few se-
lected primitive operators in Figure 7 to demonstrate how
size estimates are computed and used in costs.

The size contained in a procedure's return type may de-
pend on the size of the procedure's arguments. The return
size for + is the sum of its input sizes. The return size for - is
the same as the size of its �rst argument because our size al-
gebra does not have a subtraction operator; see Section 4.2.

Primitive iterators such as map and reduce have a static
dependent cost. These primitives have an execution time
proportional to the size of the data structures over which
they iterate. Our system assumes that the latent cost of the
procedural argument is the same for all applications so the
cost of the iterator can be written in closed form.

3.3 Correctness Issues

The static semantics is consistent with the dynamic seman-
tics if the static semantics computes a valid typing for the
resultant value and reports a cost estimate that is an upper
bound on the actual cost. An inspection of Figures 3 and 5
shows that the static semantics closely mirrors the dynamic
semantics. The main di�erence being that the procedure
body is dynamically evaluated when the procedure is used
(third antecedent in the call rule of Figure 3), but it is stat-
ically analyzed at the procedure's point of de�nition (�rst
antecedents of the lambda and rec rules of Figure 5). A
formal proof of consistency must deal with the complication
that an expression can be assigned more than one type (see
the discussion of the num rule above). We further discuss
correctness issues in Section 4.3.
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4 Cost Reconstruction

Cost analysis is most useful when cost estimates can be au-
tomatically generated. This frees the programmer from the
burden of cost declarations and allows the compiler to iden-
tify expensive expressions for possible automatic paralleliza-
tion. We provide an algebraic cost reconstruction algorithm
for our cost system that computes the type and cost of an
expression. It reconstructs size bounds on data structure
types and uses let-polymorphism to compute static depen-
dent costs. Algebraic reconstruction has three major com-
ponents:

� The reconstruction algorithm R walks over the expres-
sion calculating the type and cost along with a set of
constraints on cost and size variables.

� The uni�cation algorithm U produces a substitution
on description variables that makes types equivalent.

� The constraint solver CS generates minimal assign-
ments to cost and size variables that are consistent
with the constraints discovered by the reconstruction
and uni�cation algorithms.

Given an expression and a type environment, the recon-
struction algorithm returns the expression's type and cost
along with a substitution on description variables and a con-
straint set on cost and size variables:

R :Type environment� Exp
! Type �Cost � Substitution� Constraint set

The algorithm is shown in Figure 8. A substitution is repre-
sented as [D=Dv] where D is substituted for the description
variable Dv. Substitutions can be applied to a type, cost,
size, or constraint set. The constraint set is denoted K and
each constraint is represented as a pair (C v; C ) where C v

must be greater than or equal to C .
The reconstruction algorithm maintains two invariants.

First, the resultant type, cost, and constraint set have had
the substitution applied to them. Second, and more impor-
tantly, cost and size descriptions within types are always
variables. This allows uni�cation of size and costs to be
trivial because constraints are recorded in the constraint set.
The type schemes for the primitive operators must be con-
verted to algebraic type schemes to insure only size and cost
variables appear in types. An algebraic type scheme is a pair
of a type and constraint set that are abstracted over a set
of description variables [JG91].

The reconstruction algorithm directly implements the
static semantics. For compound expressions, R is applied
to the subexpressions and the results are combined appro-
priately. For example, the case for if applies R to each
subexpression, uni�es the type of the predicate with bool,
uni�es the consequent and alternate types, and returns an
appropriate cost and a merged constraint set.

The subtyping 
exibility contained in the static seman-
tics is implemented by the constraint set. For example,
the case for natural number literals creates the constraint
f(N v, Nat)g. This constraint ensures that the size of the
reported type is at least as large as the literal itself. Sim-
ilarly the cases for lambda and rec include constraints for
the reported latent cost.

The subtyping algorithm shown in Figure 9 implements
the subtyping relation of the static semantics (Figure 6).
The subtyping algorithm consists of two algorithms: lift-type

R(A, E ) = case E in
Nat ! N v fresh,

return ((numof N v), C num, [ ], f(N v, Nat)g)
I ! if [I : 8 fDvig:(T ; K )] 2 A then

let S = [D 0

vi=Dvi ], D
0

vi fresh
let (T 0; K 0) = lift-type(ST )
return (T 0; C var; [ ]; SK [K 0)

else fail
(lambda (I : T s) E)
! C v fresh

let T 0 = newtype(T s)
let (T ,C ,S ,K ) = R(A[I : T 0], E)
return ((-> C v (ST 0) T); C lambda; S ;K [ f(C v; C )g)

(rec (I f Ix : T x) E : T ret)
! C v fresh

let T 0

x = newtype(Tx)
let T 0

ret = newtype(T ret)
let A0 = A[I f : (-> C v (T 0

x) T 0

ret); I x : T
0

x]
let (T b;C b;Sb;K b) = R(A0; E)
let S = U (T b; SbT

0

ret)
return S(Sb(-> C v (T 0

x) T 0

ret); C rec;
Sb; K b [ f(S bC v; C b)g)

(Eop Earg)
! T v, C v fresh

let (T op, C op, Sop, K op) = R(A, Eop)
let (Targ, Carg , Sarg, Karg) = R(SopA, Earg)
let S = U (SargT op, (-> C v (T arg) T v))
let (T 0;K 0) = lift-type(ST v)
return (T 0; S(sum C call SargC op C arg C v),

SSargSop; SSargK op [ SK arg [ K 0)
(let (I E) Eb) !
if E expansive then

let (T ,C ,S,K ) = R(A, E)
let (T b;C b;Sb;K b) = R(SA[I : T ], Eb)
return (T b; (sum C let SbC C b); SbS ; SbK [K b)

else (E non-expansive)
let (T ,C ,S,K ) = R(A, E)
let fDv1 : : :Dvng = (FV (T )[FV (K )) n FV (SA)
let (T b;C b;Sb;K b) = R(SA[I : 8 fDvig:(T ; K )], Eb)
return (T b, (sum C let SbC C b), SbS , SbK [K b)

(if E1 E 2 E3)
! let (T 1;C 1;S1;K 1) = R(A, E1)

let (T 2;C 2;S2;K 2) = R(S1A; E 2)
let (T 3;C 3;S3;K 3) = R(S2S1A; E3)
let S = U (S3S2T 1, bool)
let S 0 = U (SS3T 2; ST 3)
return S 0S(T 3; (sum C if S3S2C 1 (max S3C 2 C 3));

S3S2S1; S3S2K 1 [ S3K 2 [K 3)
else fail

Figure 8: �FX/SDC Reconstruction Algorithm

7



lift-type(T ) = case T in
(-> C (T arg) T ret)
! C v fresh,

let (T 0

arg; K arg) = sink-type(Targ)
let (T 0

ret; K ret) = lift-type(T ret)
return ((-> C v (T 0

arg) T 0

ret);
f(C v; C )g [ K arg [K ret)

(numof N)
! N v fresh, return ((numof N v); f(N v; N )g)

(listof T N)
! N v fresh, return ((listof T N v); f(N v; N )g)
else return (T ; ;)

sink-type(T ) = case T in
(-> C (T arg) T ret)
! C v fresh,

let (T 0

arg; K arg) = lift-type(T arg)
let (T 0

ret; K ret) = sink-type(T ret)
return ((-> C v (T 0

arg) T 0

ret);
f(C ; C v)g [ K arg [K ret)

(numof N)
! N v fresh, return ((numof N v); f(N ; N v)g)

(listof T N)
! N v fresh, return ((listof T N v); f(N ; N v)g)
else return (T ; ;)

Figure 9: Subtyping algorithm

to compute a larger type and sink-type to compute a smaller
type. Recall, all cost and size annotations on types are vari-
ables, so the sink-type algorithm is well de�ned.

Subtyping is applied to the types of variable references
and the result type of procedure calls in both the static
semantics and the reconstruction algorithm; however, the
application of lift-type requires that the type be known. In
most type reconstruction algorithms, the lambda case intro-
duces a fresh type variable allowing the type of the variable
to be determined by the context. This implies that the type
of the variable is initially unknown and thus some uses of
the variable may be given the type variable as a type before
the determining context is reached. Such an approach is not
su�cient to implement the static semantics of the previous
section because subtyping cannot be correctly applied to the
type variable. Thus we assume that the program is explic-
itly annotated with type skeletons that provide information
about the bound variables in lambda and rec expressions.
Type skeletons are types without cost or size annotations.
In our implementation, type skeletons are computed by a
reconstruction algorithm similar to Tofte's [T87]. The type
skeletons are converted to annotated types by the newtype
algorithm (Figure 10) which inserts fresh cost and size vari-
ables. Thus the type of the variable will be known for all
references and lift-type can be correctly applied.

In the case for rec, the latent cost of the recursive pro-
cedure C v is forced to be greater than or equal to the cost
of the procedure body C b. If the recursive procedure is ever
called, then the cost of the body is at least the latent cost
of the recursive procedure plus the call overhead. Thus,
C v � C b � (sum C call C v) which implies C v = long.

newtype(T s) = case T s in
(-> (T arg) T ret)
! C v fresh,

return (-> C v (newtype(Targ)) newtype(T ret)))
(numof )
! N v fresh, return (numof N v)
(listof T )
! N v fresh, return (listof newtype(T ) N v)
(refof T) ! return (refof newtype(T ))
else return T

Figure 10: newtype

U (T 1, T 2) = case (T 1, T 2) of
(base type, base type) or (T v, T v) ! [ ]
((refof T), (refof T 0)) ! U (T ,T 0)
(T v, T ) or (T , T v) ! if T v 2 FV (T ) then fail

else [T/T v]
((-> C v (T) T r); (-> C 0

v (T 0) T 0

r))
! let S0 = U (T , T 0)

let S1 = U (S0T r, S0T
0

r)
return [C v=C

0

v]S1S0

((numof N v), (numof N
0

v)) ! [N v= N 0

v]
((listof T N v), (listof T

0 N 0

v))
! let S= U (T , T 0)

return [N v=N 0

v]S
else fail

Figure 11: �FX/SDC Uni�cation Algorithm

4.1 Uni�cation Algorithm

The uni�cation algorithm in Figure 11 is straightforward
and in the spirit of Robinson [R65]. The uni�cation algo-
rithm works on types:

U : (Type �Type) ! Substitution

Uni�cation of procedure types not only requires unifying
the input and return types, but also unifying their latent
costs. Uni�cation of data structure types such as natural
numbers and lists requires uni�cation of the size estimates.
Uni�cation of costs and sizes, however, is straightforward
because types only include cost and size variables.

4.2 Constraint Solving

The �nal phase of type and cost reconstruction involves solv-
ing the deduced constraints. Each constraint describes a
lower bound on a cost or size variable. Since costs depend
on size estimates, we must solve the constraints on size vari-
ables �rst. Since sizes and costs have the same algebra, we
can solve them with a single algorithm. We will use C to
denote both costs and sizes in the following discussion. Mul-
tiple constraints on a single variable are merged by taking
the max of the lower bounds.

The constraint set is always solvable by assigning all C vi

to long since long is greater than any size or cost. However,
long does not provide us with any useful information, so
we would like a minimal assignment to C vi that satis�es
the constraints. This is referred to as the least pre-�xpoint
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of the constraint equations [A90]. The least pre-�xpoint is
the smallest solution of a set of inequalities. Because the
operators sum, prod, and max are monotonically increasing
and continuous, the least pre-�xpoint can be calculated with
the least �xpoint. The least �xpoint is the smallest solution
to a set of equalities. The least �xpoint can be calculated by
assigning the variables to 0 and counting up, but this will
not halt if the least �xpoint of some variable is long.

The following algorithm CS computes the least �xpoint
by counting up but recognizes when it has entered a loop.
Thus it can halt and assign long to the required variables.
Assume there are n bounds in the constraint set. Let V i

be the constrained variables and F i the associated lower
bounds.

Least Fixpoint Algorithm, CS :
[Step 1] 8 i, set V i = 0.
[Step 2] Repeat n times:

8 i, set V i = F i(V 1; :::;V n).
[Step 3] 8 i, let V 0

i = V i.
Repeat n more times:

8 i, set V i = F i(V 1; :::;V n).
[Step 4] 8 i; if V i 6= V 0

i then set V i = long.

On each iteration, the value for the variable is updated based
on the values of all variables from the previous iteration. If
the least �xpoint of a variable is long, then the variable's
value will change at least every n iterations because the
circular dependency involves at most n constraints. If the
least �xpoint of a variable is �nite, then it will be computed
in the �rst n iterations and will not change on subsequent
iterations.

This algorithm is quadratic in the number of constraints
and can be improved in two ways. The easiest improvement
is to group the constraints into strongly connected compo-
nents so that the algorithm is only run on a set of constraints
that includes circular dependencies. The more important
improvement is to eliminate unnecessary constraints. When
type checking a lambda expression, the only item of inter-
est is how the output costs and sizes depend upon the in-
put costs and sizes and the costs and sizes in the type en-
vironment. However, the reconstruction algorithm inserts
constraints in every place that subtyping, subsizing or sub-
costing can be used in the static semantics. Each constraint
behaves as a \rubber band" by allowing the cost or size to
be increased as needed during constraint solving. Thus the
dependence between the inputs and outputs of a procedure
is expressed by a chain of \rubber bands," but 
exibility
within this chain is no longer needed and it can be replaced
with a single \rubber band." In our implementation, this is
done by running the constraint solving algorithm on a subset
of the constraint set that does not include constraints on the
inputs and outputs. Reducing the size of the constraint set
is particularly important if the lambda expression occurs in
a let binding and is generalized over because the constraint
set will be copied each time the variable is referenced and
its type scheme is instantiated.

Our cost algebra does not contain a subtraction oper-
ator because it complicates constraint solving. The major
problem with subtraction is that a minimal solution to the
constraint set is meaningless. Consider the constraint set
fCv1 � 5; C v2 � (sub 10 C v1)g. Minimizing C v1 makes
C v2 larger and vice versa. An alternative approach could
possibly provide better size information by using interval
arithmetic [H77]. One could allow a subtraction operator

and compute a reduced constraint set, but what should be
done with the reduced constraint set remains an open issue.

4.3 Correctness Issues

The reconstruction algorithm is sound if the type and cost
it computes are a valid solution to the static semantics.
An inspection of Figures 5 and 8 shows that the recon-
struction algorithm directly implements the static seman-
tics. Each subtyping, subcosting, or subsizing clause in the
static semantics in mirrored by the use of constraint sets in
the reconstruction algorithm. For example, the subsizing in
the num rule (Figure 5) is implemented by the constraint
f(N v, Nat)g in the case for natural number literals of R (Fig-
ure 8). The subtyping relation of Figure 6 is implemented
by the subtyping algorithm of Figure 9. The reconstruc-
tion algorithm would be sound even if it reported long for
all costs and sizes. It would only be unsound if it failed to
merge constraints to re
ect the requirement that two types
be equivalent; however, this is implemented by the uni�-
cation algorithm (Figure 11) which is straightforward and
invoked in the procedure application and if cases. Thus we
believe the reconstruction algorithm is sound even though
we have not given a formal proof.

The reconstruction algorithm is complete if the type and
cost it computes are the best solution to the static seman-
tics. Completeness depends upon two things: the recon-
struction algorithm must generate all the appropriate con-
straints and the constraint solver must compute the optimal
solution. The �rst requirement seems to be met as discussed
above for soundness; however, while overly conservative con-
straints are not a problem for soundness, they do a�ect com-
pleteness. The second requirement that the constraint solver
compute the optimal solution depends on how that solution
is expressed. Types are directly annotated with cost and
size expressions in the static semantics while the reconstruc-
tion algorithm annotates types with cost and size variables
and records information about the actual costs and sizes
in the constraint set. An argument for completeness must
compare costs and sizes from the static semantics and the
reconstruction algorithm; however, if the completeness argu-
ment is to be inductive, the constraint solver cannot replace
the cost and size variables in the resultant type with actual
cost and size expressions (because this violates one of the
assumptions of the reconstruction algorithm). Constraint
solving must proceed by reducing the size of the constraint
set while maintaining the invariants of the reconstruction
algorithm. Demonstrating that the constraint solver meets
these criterion requires establishing two things: the recon-
struction algorithm must create constraints which admit a
minimal solution and the constraint solver must compute
this solution. A solution is minimal if all other solutions to
the constraint set can be expressed in terms of the the min-
imal solution. Thus completeness remains an open issue,
but as long as the reconstruction algorithm computes good
solutions it will be useful pragmatically.

5 Using Our Cost System to Predict Execution Times

Our cost system successfully predicted execution costs within
a factor of three for various programs run on di�erent com-
pilers and architectures. We have conducted experiments
on the three di�erent compilers and target architectures de-
scribed brie
y below:
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�FX/DLX Mul-T SML/NJ
no caching

# instrs # cycles �secs

C call 39 21 1.50
C lambda 10 3 0.50
C var 10 1 1.00
C let 50 24 2.00
C if 5 4 0.00
C + 1 1 3.00
C * 5 15 4.00
C cons 8 12 1.67

C map-overhead 118 45 3.01
C map-per-elem 101 56 14.06
C map2-overhead 133 18 2.27
C map2-per-elem 118 76 10.15
C reduce-overhead 126 27 4.81
C reduce-per-elem 98 42 5.15

Table 1: Values for Symbolic Constants

� The �FX/DLX compiler is a very simple compiler used
for instructional purposes at MIT. As such, it empha-
sizes readability over performance optimizations. It
compiles �FX to Hennessy and Patterson's DLX ar-
chitecture [HP90]. We measured the actual number of
DLX instructions executed.

� The Mul-T compiler compiles a parallel version of T
to the Alewife machine. Our experiments were run
with ASIM, a cycle-by-cycle simulator for the Alewife
machine [L92]. We measured the actual number of
cycles executed in a con�guration of one processor.

� We used the SML/NJ compiler (version 0.93) on a
Sparc IPX to run experiments after a simple syntac-
tic translation from �FX/SDC to ML. We measured
actual execution time with the SML/NJ pro�le tool
[SML/NJ93].

We have implemented the reconstruction algorithm dis-
cussed in the previous section. Our implementation com-
putes the cost of program expressions in terms of symbolic
constants that describe the cost of basic language compo-
nents. We experimentally determined values for these con-
stants in the above systems. Since these constants form
the basis of our system's cost predictions, it is important to
determine accurate values while still providing conservative
upper bounds. Table 1 summarizes some of the values.

The values in Table 1 are the best conservative bounds
we could experimentally determine. Some values were de-
termined by inspecting actual machine code, but most were
picked by running small experiments and choosing an upper
bound on the actual cost over a number of trials. Some of
the constants were di�cult to estimate because they could
not be independently estimated. For instance, the cost of
C if was too small to measure for SML/NJ. The per element
costs for primitive iterators were in
uenced by caching ef-
fects as discussed below.

5.1 Experimental Results

We ran three test programs on a variety of inputs to ex-
amine the accuracy of the static cost estimates. The cost

�FX/DLX Mul-T SML/NJ
no caching

Matrix Multiply 1.39 { 1.11 1.23 { 1.09 1.72
Game of Life 1.24 1.20
N-body Simulation 1.51

Table 2: Ratio of Estimated Cost to Actual Cost

estimates were always within a factor of three of the ac-
tual cost and correctly captured how the costs depended on
problem size. Table 2 presents the ratio of estimated cost
to actual cost. Not all programs were run on every system
because some systems did not provide su�cient facilities.
We describe each program below and discuss the results in
detail for matrix multiply.

Matrix multiply We implemented matrix multipli-
cation using data parallel operators as shown in Figure 12.
The procedure takes a matrix x and the transpose of a ma-
trix y and uses reduce and map2 to calculate the dot product
of a row from x and a column from y. In this expression the
cost of a matrix multiply is: (the number of rows in x) �
(the number of columns in y) � (the cost to calculate the
dot product).

Figure 12 also includes the type of the procedure as in-
ferred by the system. The system has deduced that multi-
plying an Nm�Nn matrix by an N 0

n�N k matrix yields an
Nm � N k matrix. The system does not force N n and N 0

n

to be equal because it allows subsizing 
exibility for each
input matrix. Most importantly, the system infers a latent
cost proportional to the dimensions of the input matrices.
Lastly, the size of the elements in the resultant matrix are
unbounded because reduce is passed +, forcing the following
types to be equivalent:

(-> C + ((numof N 1) (numof N 2)) (numof (sum N 1 N 2))
(-> C ( T 1 T 2 ) T 2 )

This forces N 2 = (sum N 1 N 2) which has solution long.
Figure 13 plots predicted and actual cost in each system

for multiplying two square matrices of increasing size. The
predictions closely matched the actual cost for �FX/DLX
and Mul-T without caching. The ratios shown in Table 2
are for dimensions from 0 to 6 with the worst prediction for
dimension 0.

Our cost system does not model the e�ects of the cache
because it assumes primitive iterators incur the same over-
head for each element. Figure 13 contains two plots for
Mul-T: one with caching and one without. Without caching
the simulator assumes memory accesses are satis�ed in one
cycle, so the actual cost incurred with caching is slightly
larger than the cost without caching. The predictions for
the system with caching are signi�cantly larger because we
must assume worst case cache performance. As expected,
the predictions were less accurate for SML/NJ because of
caching e�ects.

To analyze the automatically generated cost expression
we �t a polynomial to the observed actual execution time.
The algorithm is O(n3) for square matrices, so we �t the ex-
perimental data to a degree-3 polynomial. We compared the
experimental polynomial term by term with the static cost
expression. For large matrices, the actual and estimated cost
are dominated by the highest order term. Thus, the amount
of overestimation is the ratio of the coe�cient for the third
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E = (let ((dot-product (lambda (r c) (reduce + (map2 * r c) 0))))
(lambda (x y-transpose)

(map (lambda (row)
(map (lambda (col) (dot-product row col))

y-transpose))
x))

E : (-> (sum C call C lambda C map-overhead (* 2 C var)
(prod Nm (sum C map-per-elem C call C lambda C map-overhead (* 2 C var)

(prod Nk (sum C map-per-elem C map2-overhead C num
C reduce-overhead (* 3 C call) (* 9 C var)
(prod (max Nn N 0

n)
(sum C map2-per-elem C *

C reduce-per-elem C + )))))))

( (listof (listof (numof Nx) N n) Nm)
(listof (listof (numof N y) N 0

n) N k))
(listof (listof (numof long) N k) Nm))

Figure 12: Matrix Multiply Code and Inferred Type

degree term. For Mul-T with caching, the coe�cient was
overestimated by a factor of three while for SML/NJ, the co-
e�cient was overestimated by less than a factor of two. The
results in Table 2 show that for the SML/NJ experiments
and the other experiments except for Mul-T with caching,
the cost estimates were within a factor of two of the actual
cost. Caching is a large source of cost overestimation, but
we were surprised its e�ects were not worse.

Game of Life We implemented the game of life us-
ing FX's permutation operators and our system is able to
predict the cost of computing a single generation. We ran
experiments for the game of life on a �ve by �ve grid.

N-body simulation We translated Sussman's code
for the n-body problem [ADGHSS85] as found in [M87] to
�FX/SDC. This code simulates the movement of the solar
system by using di�erential systems. Our cost system is able
to assign a �nite cost to a single step of the simulation which
depends on the number of bodies being simulated.

5.2 Sources of Overestimation

As shown above, our cost system successfully predicted ex-
ecution times for data parallel programs within a factor of
three. Variances between the static cost estimate and the
actual cost incurred arose for a variety of reasons:

� Our cost analysis does not distinguish between prim-
itives such as + that can be in-lined and procedures
that require general procedure call overhead. Thus, we
must assume that every application incurs this over-
head.

Other optimizations such as common subexpression
elimination and constant folding can also contribute
to overestimation.

� We overestimate sizes and costs where necessary to
avoid reporting a type error because of con
icting size
or cost descriptions. This approximation results in
overestimation when the smaller size or cost is dy-
namically incurred. The same holds true for the two
branches of an if expression.

We must also make conservative approximations on
the cost of �rst-class procedures. This allows us to

express the cost of higher-order procedures in closed
form, but also gives rise to overestimation. For exam-
ple, the cost of map assumes its procedural argument
has the same cost for all elements of the list.

� As discussed above, our system does not model the
e�ects of caching. Since we are guaranteeing upper
bound cost estimates, we must assume worst case cache
performance.

Our cost system also does not model the e�ects of garbage
collection which can cause the system to underestimate the
actual cost. The cost of garbage collection is an important
factor, but it is di�cult to predict when garbage collection
will be initiated and how to account for its distributed costs.
Thus, the measurements in this section do not include the
cost of garbage collection.

6 Dynamic Parallelization

E�orts in automatic parallelization have been primarily con-
cerned with identifying expressions that can be safely exe-
cuted in parallel [HG88, JG89, TJ93, HL92]. However, a
static cost system provides information about what expres-
sions can be pro�tably evaluated in parallel. It is only worth-
while to evaluate two expressions in parallel if the time saved
is greater than the cost of setting up the parallel computa-
tion. Gray [G86] introduced a system for inserting futures
that estimates costs based on a local, syntactic method.

Our cost system provides static cost estimates that can
be used to make parallelization decisions at compile time.
If the cost expression contains no free cost or size variables,
then a dynamic parallelization decision can be made at com-
pile time. If there is a de�nite bene�t to be gained by paral-
lel execution, the appropriate code can be inserted. If cost
analysis shows there is no bene�t, then the code is left un-
changed.

If the cost estimate contains free cost or size variables,
then the parallelization decision must be made dynamically.
This can occur if the cost of a procedure is polymorphic in
the cost or size of some of its inputs. When such a poly-
morphic procedure is called, dynamic information must be
passed to convey free costs and sizes. Then a decision can be
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made dynamically on which parts of the body can be prof-
itably evaluated in parallel. Thus, once type and cost recon-
struction is complete, the program can be annotated with
dynamic information where appropriate. In our simple dy-
namic parallelization system, this annotation was performed
by hand. There is no fundamental obstacle to automating
this annotation; a similar mechanism has been used with
e�ect systems [TJ93, HL92].

We use maximum cost estimates for parallelization deci-
sions even though they cannot guarantee speed up. If the
maximum cost is much larger than the actual cost then we
may parallelize when it is not pro�table. On the other hand,
if the maximum cost is in fairly close correspondence with
the actual cost then parallelization will have been success-
ful. As shown in Section 5, our cost estimates were within
a factor of two for the majority of the experiments, so we
correspondingly adjusted our parallelization threshold by a
factor two. Minimum cost estimates could ensure speed up,
but may overlook opportunities for parallelism if the mini-
mum estimate is too low.

We built a simple dynamic parallelization system on an
SGI IRIX computer with four processors using SML/NJ
with a multiprocessor interface [MT92]. Our system ex-
ploits data parallelism by performing vector map operations
in parallel. Since there are a limited number of processors,
the vector is broken into segments and each processor per-
forms the vector map on a given segment. The extra pro-
cessors busy wait until there is work for them to do.

Adding multiprocessor support to our program slowed
its single-processor performance by 40%. This overhead was
traced in part to the SML/NJ multiprocessing support soft-
ware and possibly could be eliminated. The overhead im-
posed by dynamic cost and size information is not notice-
able.

We tested our dynamic parallelization system with the
game of life. The program was manually annotated with
the cost and size information computed by our reconstruc-
tion algorithm. We experimentally determined values for
the symbolic constants and the fork cost for SML/NJ on
the SGI IRIX computer as explained in Section 5. Then we
ran trials in which the program decided dynamically how
many processors to use for each vector map. Five strategies
were considered:

� Always use a constant number of processors for all
vector maps, either 1, 2, 3 or 4.

� Dynamically choose how many to use based on the
latent cost of the procedure being mapped and the
cost of forking o� a new thread.

Figure 14 shows these tests for the game of life with the
grid size ranging from 10 to 80. To reduce the e�ects of
garbage collection, a major garbage collection was forced
before each trial. Trials for grid sizes above 60 incurred one
major garbage collection while those bellow 60 ran without
requiring a major garbage collection. To reduce other sys-
tem noise each trial was repeated ten times and the number
reported is the average of the smallest �ve.

The dynamic strategy chooses the optimal number of
processors for small and large grid sizes. For grid sizes less
than 25, using a single processor is clearly the best strategy,
while for large grids (above 60 or so) using all four processors
is best. At these extremes, the dynamic strategy is choosing
to use the optimum number of processors.

The dynamic strategy performed better than all other
strategies for grid sizes in the range from 25 to 50. This
may seem impossible at �rst as the dynamic strategy is sup-
posed to simply pick the optimum number of processors for
a particular grid size. In fact, the dynamic strategy is able
to make multiprocessing decisions independently for di�er-
ent subcomputations. Thus the superior performance in this
range is the result of the dynamic strategy using a di�erent
number of processors on di�erent parts of the computation.
For instance when the grid size is 42, the dynamic strat-
egy chooses to use two processors to compute the number of
neighbors for each cell, three processors to apply the liveness
criterion to each cell, and four processors to shift grids in
preparation for the neighbor calculation.

Conclusion

We introduced the notion of static dependent costs to de-
scribe the execution times of expressions that depend on the
size of data structures. Our cost system uses static types to
provide bounds on the size of data structures and to provide
information about latent costs. Our system includes static
dependent costs for primitive data parallel operators which
allow us to predict costs for a number of programs. We
successfully predicted the execution cost of these programs
within a factor of three on a variety of target systems. We
demonstrated the utility of static cost estimates in a simple
dynamic parallelization system that was able to selectively
choose how many processors to use based on cost informa-
tion.

Our cost system could be improved by integrating our
ideas for handling �rst-class procedures and mutation with
previous work in automatic complexity analysis. Our cost
analysis could also produce estimates of storage costs or
communication costs by re-interpreting the symbolic con-
stants. Our system could also bene�t from minimum esti-
mates on the size of data structures.
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