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Abstract

We characterize how genomic variants that alter chromatin accessibility influence regulatory

factor binding with a new method called DeltaBind that predicts condition specific factor

binding more accurately than other methods based on DNase-seq data. Using DeltaBind

and DNase-seq experiments we predicted the differential binding of 18 factors in K562 and

GM12878 cells with an average precision of 28% at 10% recall, with the prediction of individ-

ual factors ranging from 5% to 65% precision. We further found that genome variants that

alter chromatin accessibility are not necessarily predictive of altering proximal factor binding.

Taken together these findings suggest that DNase-seq or ATAC-seq Quantitative Trait Loci

(dsQTLs), while important, must be considered in a broader context to establish causality

for phenotypic changes.

Introduction

Differential transcription factor occupancy offers great insights into regulatory and develop-

mental differences between cell states and cell types [1,2]. Chromatin immunoprecipitation

and sequencing (ChIP-seq) [3] is a widely used approach to study the occupancy of factors of

interest. More recently, chromatin accessibility assays such as DNase-seq and ATAC-seq has

attracted interest as an alternative indicator of factor occupancy that does not require a sepa-

rate experiment for each factor. It has been shown that in a single cell type, DNase-seq data

can be used to predict ChIP-seq binding events for certain factors [4,5]. However, the ability of

DNase-seq data to predict differential factor binding in different conditions has not been com-

prehensively studied.

Several methods have been developed to infer transcription factor binding from chromatin

accessibility data. Centipede [4] uses a Bayesian hierarchical model for DNase data to infer

bound and unbound sites. PIQ [5] uses a discriminative model to detect bound sites from

unbound sites. The key feature and strength of both methods is the integration of sequence

information (PWMs) and factor specific chromatin accessibility profiles. Centipede and PIQ

achieved mean AUROCs (area under receiver-operating curve) of 0.87 and 0.93 respectively in

predicting factor binding from DNase-seq data using binding events from 303 matched ChIP-

seq data as held out labels for scoring [5].
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Here we investigate if DNase-seq or ATAC-seq data from two conditions can be used to

predict differential transcription factor binding in two conditions. We show that a naïve adap-

tation of existing methods is inadequate for the differential binding task, and propose a new

method, DeltaBind, which extends PIQ to differential binding in a principled manner.

We examined how well DNase-seq data can predict where a transcription factor is bound

in K562 cells and unbound in GM12878 cells for 18 distinct factors. We used cell-state

matched ChIP-seq experiments to determine the differential ground truth binding for each

factor. We evaluated several approaches for the inference of differential binding from DNase-

seq data, and we found that methods based on DNase spatial read profiles are more effective

than those based on aggregate read counts. In addition, jointly modeling the binding probabil-

ities from both cell types further improves prediction accuracy. Based on these observations,

we developed a general unsupervised method called DeltaBind to infer differential binding

that outperforms other approaches for this task.

We found that the typical number of differential ChIP-seq events between K562 and

GM12878 cells is very small. Averaged across all eighteen factors we studied, only 400 out of

every 100,000 candidate binding sites (motif occurrences) are differentially bound (0.4%,

range 0.1%– 1.3%). Therefore, the positive and negative sets in this inference task are

extremely imbalanced, and a random predictor would only have an average precision or PPV

(positive predictive value) of 0.4% and AUPR (area under precision-recall curve) of 0.004.

Using DeltaBind we are able to predict differential binding with an average precision of

28% (at 10% recall) and an AUPR of 0.127. Among the factors we studied, prediction accura-

cies for individual factors vary widely, ranging from 5% up to 65% precision, showing that

some factors can be reasonably well predicted while some cannot. We find that a class of tran-

scription factors called settler and migrant factors [5] generally have higher prediction accu-

racy, while for their counterpart, the pioneer factors, DNase read profiles have less predictive

power for differential factor binding.

The above findings on the predictability of differential binding from chromatin accessibility

profiles can also be observed in other settings. We present statistics from a study of differential

CTCF occupancy and their associated DNase-seq signals at single nucleotide polymorphism

(SNP) sites, where we observe a similar level of differential binding predictability to what we

found in our experiments.

Taken together, our results suggest that chromatin accessibility information, while impor-

tant, can only partially establish differential binding for individual factors across cell states,

with an accuracy that is factor specific. In general, additional genomic data will need to be con-

sidered improve the prediction of differential factor binding.

Results

DNase-seq read counts are a poor predictor of CTCF occupancy at

CTCF motifs that contain SNPs

Using data from a study of 114 cell and tissue types from 166 individuals [6] we examined the

ability of DNase-seq data to predict CTCF occupancy at CTCF binding sites where the two

alleles differ by a single nucleotide polymorphism (SNP). Of the 11355 CTCF sites in the study

that contained an allelic SNP across all individuals, 810 (7%) of the CTCF sites exhibited differ-

ential CTCF binding, and 3079 (27%) had differential read count DNase-seq signal. Of the

8276 sites that did not exhibit DNase-seq read imbalance, 8032 (97%) had no ChIP-seq differ-

ential binding. However, of the 3079 sites that had differential DNase-seq signal, only 566

(18%) exhibited differential CTCF binding. Thus, DNase-seq imbalance does not necessarily

establish differential binding (18% precision).
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Accuracy of differential occupancy detection varies among factors

We evaluated the ability of DeltaBind and DNase-seq data to predict factors that are bound in

K562 and unbound in GM12878 cells for 18 different transcription factors (see Methods). Fol-

lowing the same practice as in [5], DNase-seq read counts are normalized per chromosome

such that average read count per base are identical for all chromosomes. For each factor, we

obtained the genomic coordinates of the top 100,000 motif matches genome-wide, and ranked

these potential binding sites in terms of likelihood of differential binding. From this ranked list

we computed prediction performance indicators including AUROC (area under receiver oper-

ating curve), AUPR (area under precision recall curve) and precision at given recall values.

The set of true differentially bound sites are constructed using matching factor and condi-

tion ChIP-seq data from ENCODE. This ground truth set is obtained by processing ChIP-seq

experiments using multi-condition GEM [7] and edgeR [8] (more details in Methods). We

combined information from both programs to set a stringent criterion for selecting ground

truth sites. This ensures that high-confidence differential sites are retained so that performance

metrics evaluated on the ground truth set are accurate.

We evaluate the performance of methods for calling differentially bound events by comput-

ing p-values for all AUPR and AUROC values. Because of the large size imbalance of the posi-

tive and negative sets in this task, we consider the precision value (equivalently the left side of

the PR curve) to be a better performance indicator as well as more interesting biologically.

We compared several methods to rank motif containing candidate factor binding sites. The

first method ranks the candidate sites according to the difference in normalized read counts

over a 600bp window at each site between K562 and GM12878. We found that this method

has an average precision of 9% at 10% recall and average AUPR of 0.056. This indicates that

simply using imbalance in DNase-seq read counts is a poor predictor of differential binding.

Our second method ranks candidate binding sites according to the difference of PIQ [5]

shape scores between K562 and GM12878. We reasoned that since PIQ shape scores capture

the conformance of DNase read profiles to the characteristic factor hypersensitivity profiles,

this would give rise to better classification performance. Indeed, the average AUPR for this

method is 0.103, and the precision is 23% at 10% recall, which is a large improvement com-

pared to the read count baseline.

Finally, we used DeltaBind to model differential binding from PIQ scores of two replicates

experiments of each cell state (see Methods). This method achieves higher precision (28%) and

AUPR (0.127). DeltaBind first transforms all PIQ shape scores to their respective ranks, and

then estimates the probability of differential binding given the ranks of PIQ scores in both

K562 and GM12878 experiments. Fig 1 shows the comparison of AUPR values for the three

methods described above. PIQ score difference and DeltaBind have higher prediction power

relative to read count difference. DeltaBind outperforms the other two in 13 out of 18 factors.

The read count based method has the worst performance in 16 out of 18 factors.

We find that DeltaBind’s rank transformation typically greatly improves predictive power.

In fact, the use of a rank transformation allows DeltaBind to be a general method for differen-

tial event detection, since it can be applied to any rank transformed scores of a given event

across two conditions produced by any algorithm. For example, DeltaBind also improves pre-

diction of differential occupancy using Centipede [4] outputs (Fig C and D in S1 File).

Our results also show that the accuracy of differential occupancy detection varies widely

among factors. Using DeltaBind, we find that precision ranges from 5.3% to 65% at 10% recall,

with an average of 28%. Therefore, while the average prediction precision is low, for some fac-

tors differential binding can be reasonably well predicted by DNase data, and for some other

factors the prediction is very poor.
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Table 1 summarizes information about the factors used in the prediction and the prediction

performance. For each factor, the number of ground truth differential sites, number of candi-

date sites and their ratios are shown. For the prediction accuracy, AUPR, AUC and precision

values are shown.

Differential binding of settler and migrant factors can be better predicted by DNase data

than pioneer factors

We hypothesized that since settler and migrant factors (non-pioneer factors) [5] bind open

chromatin, the DNase profiles around binding events of these factors would have higher pre-

dictive power than those around pioneer factors which opens chromatin with a potentially

more complex mechanism. In order to test this hypothesis, we identified 8 pioneer factors and

7 non-pioneer factors in our list of factors [5]. Fig 2 shows the boxplots of precision (10%

recall) and AUPR for pioneer and non-pioneer factors. The mean precision is 39% for non-

pioneer factors, significantly higher than pioneer factors with mean precision of 23%

(p = 0.04). AUPR also provides the same insight, although in this case it is less discriminant

than the precision metric. The mean AUPR is 0.17 for non-pioneer factors, compared to 0.12

Fig 1. AUPR for 18 tested factors using 3 different methods.

https://doi.org/10.1371/journal.pone.0179411.g001
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for pioneer factors. Thus, differential binding prediction from DNase-seq data is more accu-

rate for non-pioneer factors than pioneer factors.

Materials and methods

Data for CTCF binding in relation to allelic imbalance at SNP loci

Statistics of co-occurrence of CTCF binding and allelic imbalance are obtained from Supple-

mentary Table 11 of [6].

Data source and the generation of true ChIP-seq differential events

We ran and tested our methods on ENCODE Consortium DNase-seq experiments for K562

and GM12878 cells [9]. We chose these cells because they were also used to profile the binding

a large and diverse set of factors. We evaluated the accuracy of our predictions with matching

ChIP-seq experiments for both cell types to generate a list of high-confidence differential bind-

ing events that serve as our ground truth for prediction performance analysis. We designed a

four-step pipeline to obtain a set of high-confidence differential ChIP-seq binding events.

In the first filtering step, we process all available ChIP-seq data (including all control anti-

body experiments) for all factors and replicates of GM12878 and K562 with GEM [7]. GEM

discovers motifs for the factor in each cell type, and we discard factors whose motifs discovered

in the two cell types do not agree, as well as factors whose motifs discovered in either cell type

does not agree with JASPAR database. This filtering step retains 18 transcription factors that

share consistent motifs for both ChIP-seq experiments and the JASPAR database (Table 1).

In the second step, we process the 18 matching ChIP-seq experiments with multi-condition

GEM (a GEM adaptation of MultiGPS [10]). Multi-condition GEM assigns reads to each puta-

tive protein binding site, and makes a prediction of binding status for each. We record the

Table 1. Summary statistics of differential binding prediction for different factors.

factor name Prop. of ChIP diff. sites DeltaBind Precision DeltaBind AUC

All p<1e-4

DeltaBind AUPR

All p<1e-4

PIQ diff

AUPR

Reads diff

AUPR

factor class

CEBPB 0.0017 0.184 0.844 0.082 0.123 0.093

CREB1 0.0058 0.413 0.942 0.222 0.164 0.056 pioneer

CTCF 0.0132 0.187 0.903 0.152 0.081 0.041 pioneer

E2F4 0.0012 0.053 0.794 0.015 0.018 0.014 pioneer

EGR1 0.0077 0.242 0.887 0.136 0.108 0.04 pioneer

ELF1 0.0106 0.422 0.828 0.178 0.121 0.08 pioneer

ELK1 0.0001 0.285 0.978 0.064 0.02 0.002

FOS 0.0038 0.358 0.951 0.196 0.222 0.139 migrant

GABPA 0.0011 0.18 0.817 0.053 0.048 0.015 pioneer

MAFK 0.0026 0.65 0.962 0.277 0.211 0.128 migrant

MAX 0.0032 0.534 0.916 0.251 0.222 0.12 settler

MEF2A 0.0029 0.263 0.707 0.08 0.075 0.1 migrant

NRF1 0.0015 0.138 0.957 0.083 0.061 0.008 pioneer

REST 0.0004 0.114 0.853 0.033 0.032 0.012

SRF 0.0023 0.182 0.726 0.058 0.078 0.051 migrant

USF2 0.0025 0.402 0.965 0.2 0.15 0.047 settler

YY1 0.0079 0.359 0.865 0.141 0.093 0.051 migrant

ZBTB33 0.0023 0.08 0.928 0.057 0.022 0.008 pioneer

(P-values for DeltaBind AUC and AUPR for each factor are estimated by bootstrap; all are less than 1e-4.)

https://doi.org/10.1371/journal.pone.0179411.t001
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assigned reads and binding status of each site. We then process the recorded read counts for

all sites with edgeR to identify sites of differential binding. We check that the top differential

sites inferred by multi-condition GEM agree with those inferred by edgeR. We go down the

ordered list of differential sites from multi-condition GEM, and for each rank in the list, com-

pute the proportion of matched sites with edgeR locally. We stop including sites into the

ground truth set after the proportion becomes small (threshold is set at max proportion / 1.6).

In the third step, we use edgeR [8] to compute p-values for the read counts for all ChIP-seq

peak sites. However, edgeR can only analyze the ChIP-seq experiment reads and is unable to

account for differential reads that are present in ChIP-seq control experiments (GEM controls

for these). We remedy this by combining the results from multi-condition GEM and edgeR

to obtain our ground truth set. More specifically, we take the edgeR differential events

Fig 2. Comparison of prediction performance for pioneer class factors and non-pioneer (settler and migrant) class

factors.

https://doi.org/10.1371/journal.pone.0179411.g002
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with p-values < 0.05 and filter for the events which (1) have insignificant GEM q-value

(-log10Q1<2.5) in GM12878, (2) have significant GEM q-value (-log10Q2>2.5) in K562 and

(3) have reasonably large GEM q-value difference (-log10Q2 + log10Q1>0.5) between K562

and GM12878.

Finally, our final ground truth set is the filtered set of GEM differential sites that lie within

20 bp of a factor motif match site found by PIQ.

DeltaBind

DeltaBind infers differential binding events from single-condition binding scores for each con-

dition. DeltaBind requires two replicate experiments for the “bound” condition and at least

one replicate for the “unbound” condition. DeltaBind is an unsupervised method that assumes

data can be explained by a statistical model which can be decomposed into simpler conditional

probability components, with one component representing the probability of a given site

being bound in one condition and the second component representing the probability of the

site being unbound in the other condition. It learns the parameters of these distributions from

data, and then uses the learned model to estimate the probability of a particular site being dif-

ferentially bound given the DNase scores in both conditions. The method standardizes the

input binding scores to rank space and works primarily with ranks. (More detailed motivation

and description of DeltaBind can be found in Supplementary materials.)

More specifically, suppose we have two DNase-seq experiment replicates each for K562 and

GM12878, and we want to infer binding sites which are bound in K562 and unbound in

GM12878. Let Rj
ir, 1� i� N, j = "G" or "K", r = 1 or 2, be the rank of the PIQ shape score of

binding site i, condition j, and replicate number r, where N is the number of candidate binding

sites, j = "G" denotes a GM12878 value, j = "K" denotes a K562 value, and r indexes the repli-

cates. Let Rj
i ¼ meanðRj

i1;R
j
i2Þ be the average rank of a binding site i in condition j, and Ri be the

vector of all 4 ranks in two conditions and two replicates. DeltaBind estimates the probability

PðAi;Bi j RiÞ;

for each site i, where Ai is the event that site i is bound in K562, Bi is the event that site i is signif-

icantly more weakly bound in GM12878 than in K562. We interpret site i to be differentially

bound when Ai and Bi both occur. We decompose the above probability into

PðAi;Bi j RiÞ ¼ PðAi j RiÞ � PðBi j Ai;RiÞ;

and model each part by assuming mixture models on the relevant subset of data. We note that

Bi is not a subset of Ai. There are sites that are unbound in both conditions but have large differ-

ences between their PIQ scores in K562 and GM12878, in which case Bi occurs but not Ai. So P
(Ai, Bi | Ri) is actually not equivalent to P(Bi | Ri).

The first part, P(Ai | Ri), denotes the probability of a binding site i being bound in K562,

and we estimate this by using the notion of reproducibility of DNase-seq ranks. Reproducibil-

ity is a concept introduced in [11] and characterizes an event which produces positively corre-

lated scores in replicate experiments with high mean. Its counterpart, irreproducibility,

characterizes events that produce uncorrelated scores in replicates with low mean. Let A0i
denote a reproducible event in K562. Using the framework in the IDR paper, we estimate

PðA0i j R
K
i1; RK

i2Þ by transforming the rank values through a normal quantile function and fitting

a reproducible and irreproducible cluster (Fig A in S1 File). We then use the reproducibility

score to compute the binding probability P(Ai | Ri) as a function of mean K562 ranks RK
i .

In the second part, we estimate P(Bi | Ai, Ri), the probability of site i being weakly bound or

unbound in GM12878 relative to K562. To estimate this value, we model the difference of PIQ
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ranks between GM12878 and K562 for reproducible binding sites for each K562 PIQ rank (a

small window is used in implementation). For each K562 PIQ rank, we classify binding sites

into one of three categories: no significant rank difference between two cell types, significantly

lower ranks in GM12878 than in K562, and vice versa (Fig A in S1 File). An EM-like algorithm

is used to determine the probability of belonging to each of the three categories, giving an esti-

mate of the conditional probability P(Bi | Ai, Ri). Details for both parts above can be found in

the Supplementary Information.

Finally, taking the product of P(Ai | Ri) and P(Bi | Ai, Ri) gives an estimate of the probability

of differential binding for site i. A set of decision boundaries for CTCF derived by this proba-

bility score is shown in Fig 3 (orange). Supplementary Fig 2 shows DeltaBind PR and ROC

curves for several factors.

Fig 3. DeltaBind decision boundaries (orange) of different confidence levels. Axes are K562 PIQ rank vs. GM12878 PIQ rank. Red

represents true differential sites indicated by ChIP-seq signals.

https://doi.org/10.1371/journal.pone.0179411.g003
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Discussion

We have found that chromatin accessibility data cannot predict differential transcription fac-

tor occupancy with high precision, and the observed precision is factor dependent. Our results

on K562 and GM12878 cells show that, on average, DNase-seq experiments provide 28% pre-

cision for known differential binding. Settler and migrant factors are generally more predict-

able, with precisions up to 65%, whereas pioneer factors are overall less predictable. We also

showed that DNase imbalance at SNPs is not a good predictor of transcription factor binding

state across cell types or conditions.

We note that the factors we considered do not exhibit extensive differential binding in

K562 and GM12878. Thus predicting differential binding is a more difficult task than predict-

ing binding in each cell type. For CTCF, only 1.32% of sites were classified as being bound in

K562 and unbound in GM1287. As a consequence, DeltaBind predicts these events with 20%

precision, while PIQ predicts binding in each cell type with 80% precision.

Finally, to analyze differential binding we developed a new unsupervised classifier Delta-

Bind that improves differential binding prediction accuracy from DNase-seq data with respect

to the null model (30x better AUPR) and a read-count based method (2.3x better AUPR). Del-

taBind can used to predict condition specific binding from any single condition binding pre-

dictor that outputs a score. We found that DeltaBind improves prediction accuracy for both

PIQ and Centipede against other baseline approaches.

Supporting information
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(PDF)

S1 Dataset. DNase-seq and ChIP-seq data tables for DeltaBind.

(ZIP)
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