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Abstract

An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse
transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing
constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover
novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method,
genome wide event finding and motif discovery (GEM). GEM resolves ChIP data into explanatory motifs and binding events
at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a
generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE
human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new
motifs for factors with unknown binding specificity. GEM’s adaptive learning of binding-event read distributions allows it to
further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution
and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific
transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found
37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and
other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding,
including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial
constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help
elucidate genome function and the implementation of combinatorial control.
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Introduction

Genomic sequences facilitate both cooperative and competitive

regulatory factor-factor interactions that implement cellular

transcriptional regulatory logic. The functional syntax of DNA

motifs in regulatory elements is thus an essential component of

cellular regulatory control. Appropriately spaced motifs can

facilitate cooperative homo-dimeric or hetero-dimeric factor

binding, while overlapping motifs can implement competitive

binding by steric hindrance. Cooperative and competitive binding

are an integral part of complex cellular regulatory logic functions

[1,2]. The binding of regulatory proteins to the genome cannot at

present be predicted from primary DNA sequence alone as

chromatin structure, co-factors, and other mechanisms make the

prediction of in vivo binding from sequence empirically unreliable

[3]. Thus it is not possible to use primary DNA sequence to

determine the aspects of genome syntax that are employed in vivo.

To discover novel pair-wise factor spatial binding constraints in

vivo, we have developed a new method called GEM that

simultaneously resolves the location of protein-DNA interactions

and discovers explanatory DNA sequence motifs with an

integrated model of ChIP-Seq or ChIP-exo reads and proximal

DNA sequences. We define a binding event location as the single

base position at the center of a protein-DNA interaction. GEM

reciprocally improves motif detection using binding event loca-

tions, and binding event predictions using discovered motifs. In

doing so, GEM offers a more principled approach than simply

snapping binding event predictions to the closest instance of the

motif, and indeed, GEM does not require that all binding events

are associated with strong motifs. GEM offers both improved

spatial accuracy of binding event predictions and improved motif

discovery in ChIP-Seq and ChIP-exo datasets.

GEM’s unbiased computational approach has enabled us to

discover novel binding constraints between transcription factors

from sequenced ChIP experiments. These spatial constraints

directly suggest biological regulatory mechanisms that will be

useful in future studies. Other methods to resolve binding events in

sequenced ChIP data identify statistically enriched regions of

ChIP-Seq read density and the peak points of enrichment within

those regions [4–9], and binding calls can be offset from the bound

site by dozens of bases [10]. Recent studies have integrated peak

detection and motif discovery by including motif occurrences to
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score the significance of predicted binding events [11,12], or by

using ChIP-Seq read coverage as a positional prior to improve

motif discovery [13,14]. However, no study has yet used the motif

position information to reciprocally improve the spatial accuracy

of binding event prediction. SpaMo studied the motif spacing

using ChIP-Seq events to infer transcription factor complexes but

the predicted motif spacing does not necessarily indicate in vivo

binding in the specific cellular conditions [15].

Here we review our GEM derived results, discuss these results in

the context of current data production projects, and detail our

methods.

Results

GEM improves the spatial resolution of binding event
prediction

We compared GEM’s spatial resolution to six well known ChIP-

Seq analysis methods, including GPS [8], SISSRs [6], MACS [4],

cisGenome [7], QuEST [5] and PeakRanger [9]. We used a

human Growth Associated Binding Protein (GABP) ChIP-Seq

dataset for our evaluation because GABP ChIP-Seq data were

previously reported to contain homotypic events where the reads

generated by multiple closely spaced binding events overlap [5].

Thus the GABP dataset offers the opportunity to test if integrating

motif information and binding event prediction improves our

ability to deconvolve closely spaced binding events with greater

accuracy. We also evaluated the methods using ChIP-Seq data

from the insulator binding factor CTCF (CCCTC-binding factor)

[16], as it binds to a stronger motif than GABP. These two factors

are representative of relatively easy (CTCF) and difficult (GABP)

cases for ChIP-Seq data analysis. They are also used by other

studies as benchmarks allowing for the direct evaluation of our

results. GEM performance on other factors may vary.

We found that GEM has the best spatial resolution among

tested methods. Spatial resolution is the average absolute value

difference between the computationally predicted locations of

binding events and the nearest match to a proximal consensus

motif. From all observations, spatial resolution is corrected for a

fixed offset by subtracting the mean difference before averaging

the absolute value differences. To ensure a fair comparison, we

used 428 shared GABP binding sites that are predicted by all seven

tested methods and which contain an instance of the GABP motif

within 100 bp. GEM exactly locates the events at the motif

position in 56.5% of these events (Figure 1A). For a dataset with a

stronger consensus motif, ChIP-Seq data from CTCF, GEM

exactly locates the events at the motif position in more than 90%

of the shared events, significantly improving the spatial accuracy of

predicted binding events over other methods (Figure 1B). Alter-

native evaluations with all the binding sites that have a motif at a

distance less than 100 bp are also performed for both GABP and

CTCF data, and the results (Figure S1) are similar to those above.

Thus, GEM’s joint model of ChIP-Seq read coverage and

sequence is able to more accurately predict the location of binding

sites than other approaches, which do not use motif information in

their binding event predictions.

GEM is also better at resolving closely spaced binding events [17]

in the GABP data than the other methods we tested. For example,

GEM uniquely detects two GABP events over proximal GABP

motifs that are 32 bp apart on chromosome 2 (Figure 1C). To

evaluate binding deconvolution on a genome-wide scale, we

identified 477 candidate clusters of closely spaced binding events.

Each candidate cluster was detected as bound by all seven tested

methods and contained two or more proximal GABP motifs

separated by less than 500 bp. GEM identified two or more closely

spaced events in 144 of the candidate clusters, significantly more

than GPS(108), SISSRs(77), QuEST(77), PeakRanger(36), MACS(4)

and cisGenome(5) (Figure 1D).

GEM accurately discovers DNA-binding motifs in
ENCODE ChIP-Seq data

We tested GEM’s ability to discover biologically relevant DNA-

binding motifs in data from the ENCODE project [18]. We chose

this large collection of experiments because we expected they would

be representative of the typical range of ChIP-Seq data noise and

sequencing depth. Noise can be caused by low antibody affinity and

deviations from ideal experimental procedure. We used a set of 214

ChIP-Seq experiments and associated controls comprising 63

distinct transcription factors that were profiled in one or more cell

lines by the ENCODE project and for which validated DNA-

binding motifs exist in public databases (Dataset S1). GEM analyzed

these ChIP-Seq data, and the most significant GEM-discovered

motifs from each analysis (Table S1 and Dataset S2) were compared

to corresponding known binding preferences of the same transcrip-

tion factors using STAMP [19]. A motif alignment with E-value less

than 1e-5 was considered a match. For comparison, we also used

four popular traditional motif discovery tools covering a range of

computational techniques, including MEME [20], Weeder [21],

MDScan [22], and AlignACE [23], and three ChIP-Seq oriented

tools, POSMO [24], HMS [13] and ChIPMunk [14] on the same

data. A set of 100 bp sequences extracted from the 500 most highly

ChIP-enriched GPS peaks calls are examined by the motif-finders

MEME, Weeder, MDScan, AlignACE, or POSMO. For HMS and

ChIPMunk, a set of 100 bp sequences and corresponding read

coverage profiles are extracted from the 500 most highly ChIP-

enriched GPS peaks calls.

We found GEM outperforms all of the compared motif

discovery approaches, even when allowing each method to make

multiple motif predictions (Figure 2, Table S2, S3). Therefore, the

GEM approach to integrating ChIP-Seq event detection with

motif analysis not only improves the spatial resolution of binding

events, but also more accurately finds the expected binding motifs

present at those events. We note that GEM sometimes failed to

find the known motif in datasets where one of the other algorithms

succeeds. The complete evaluation is in Table S2, S3.

We then tested GEM on ENCODE ChIP-Seq experiments for

9 distinct transcription factors with no publically described DNA

binding motif. For 6 of these transcription factors, GEM discovers

novel motifs that are consistent with expected binding sequences

based on a small number of binding sites characterized in the

literature, or similarity to the known binding preferences of related

proteins (Table S4). For example, GEM confirms that BATF has a

similar binding preference to other members of the AP1 family of

Author Summary

The letters in our genome spell words and phrases that
control when each gene is activated. To understand how
these words and phrases function in health and disease,
we have developed a new computational method to
determine what word positions in our genomic text are
used by each genome regulatory protein, and how these
active words are spaced relative to one another. Our
method achieves exceptional spatial accuracy by integrat-
ing experimental data with the text of our genome to find
the precise words that are regulated by each protein
factor. Using this analysis we have discovered novel word
spacings in the experimental data that suggest novel
genome grammatical control constructs.

Transcription Factor Spatial Binding Constraints
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transcription factors. The similar TGAC/G binding preference

has previously been supported by EMSA assays on regions

upstream potential BATF regulated genes [25].

GEM improves the spatial resolution of ChIP-exo binding
event prediction

ChIP-exo aims to improve transcription factor binding spatial

resolution by extensively digesting ChIP fragments down to the

DNA that is protected by the bound protein complex [26]. While

ChIP-exo experiments provide high-resolution binding informa-

tion, typical peak-finding methodologies may fail to achieve single-

base resolution binding event predictions if they do not account for

the properties of the ChIP-exo experiment. An example is

provided by the published CTCF ChIP-exo experiment [26],

where ChIP-exo reads are bimodally distributed around binding

sites on both strands because CTCF is cross-linked at two distinct

sites of DNA. The published event predictions did not account for

this characteristic distribution, and are thus often offset from

CTCF binding motif instances. Since GPS and GEM automat-

ically learn a model of sequence reads around binding events, GPS

and GEM may be directly applied to ChIP-exo data without

modification. We first verified that GEM’s model of binding events

is able to automatically adapt to the read distribution produced by

the ChIP-exo protocol. We compared GEM’s final computed read

distribution to the expected empirical distribution of ChIP-exo and

found that they were consistent (Figure 3B and Figure S2).

GEM improves upon the spatial resolution of binding event

detection over other methods for ChIP-exo data (Figure 3A). To

investigate the performance of GEM on ChIP-exo data, we

compared the binding event predictions of GEM and GPS on

ChIP-exo CTCF binding and the ‘‘middle of peak-pair’’ method

from the original ChIP-exo study [26]. To ensure a fair

comparison, we used 5074 shared binding sites that are predicted

by all tested methods and that contain a strong CTCF motif match

within 100 bp of the binding positions. The original ChIP-exo

study [26] had 5.4% of the binding event calls centered on the

motif match position, 40.3% of the calls within 10 bp, and an

average spatial resolution of 15.85615.29 bp. Applying GPS to

the ChIP-exo data improved the spatial resolution, with 8.8% calls

at 0 bp positions, 59.7% of calls within 10 bp, and average spatial

resolution of 10.38611.26 bp. Applying GEM to the ChIP-exo

data located 76.5% calls exactly at the motif match positions,

89.7% of calls within 10 bp, and an average spatial resolution of

3.3569.71 bp. These results demonstrate that GEM can signif-

Figure 1. GEM improves spatial accuracy in binding event prediction and the resolution of proximal binding events. A) Fraction of
predicted GABP binding events with a motif within the given distance following event discovery by GEM, GPS, SISSRs, MACS, cisGenome, QuEST and
PeakRanger. Events shown were predicted by all seven methods and had a GABP motif within 100 bp. B) Fraction of predicted CTCF binding events
with a motif within the given distance following event discovery by GEM, GPS, SISSRs, MACS, cisGenome, QuEST, FindPeaks, spp-wtd and spp-mtc.
Events shown were predicted by all nine methods and had a CTCF motif within 100 bp. C) Example of a predicted binary GABP event that contains
coordinately located GABP motifs. D) Numbers of GABP binding events discovered by GEM, GPS, SISSRs, MACS, cisGenome, QuEST and PeakRanger in
477 regions that contain clustered GABP motifs within 500 bp.
doi:10.1371/journal.pcbi.1002638.g001

Transcription Factor Spatial Binding Constraints
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Figure 2. GEM motif discovery outperforms other methods when detecting motifs in ChIP-Seq data. The motif detection performance
of GEM is compared to the motif detection performance of various motif-finders on 214 ENCODE ChIP-Seq experiments.
doi:10.1371/journal.pcbi.1002638.g002

Figure 3. GEM improves the spatial resolution of ChIP-exo data event prediction. A) Fraction of predicted CTCF binding events with a
motif within the given distance following event discovery by GEM, GPS, and the peak-pair midpoint method of Rhee, et al. B) GEM automatically
adapts to the ChIP-exo read spatial distribution.
doi:10.1371/journal.pcbi.1002638.g003

Transcription Factor Spatial Binding Constraints
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icantly improve the spatial accuracy of ChIP-exo binding event

predictions.

GEM reveals known Sox2-Oct4 distance-constrained
transcription factor binding distances

We examined if GEM could detect pairs of transcription factors

that bind to the genome with characteristic pair-wise spacing,

beginning with the well-known hetero-dimeric pair Sox2-Oct4

[27]. In general, distance-constrained transcription factor binding

cannot be predicted based solely on sequence motifs as motif

presence does not guarantee binding. Such spatial binding

constraints may be caused by combinatorial binding, alternative

binding, binding that is orchestrated by multimeric protein

complexes, or the spread of constrained enhancer syntax.

We were able to discover Sox2-Oct4 transcription factor spatial

binding constraints by combining GEM binding calls from Sox2

and Oct4 ChIP-Seq data. We applied GEM independently to

mouse ES cell Sox2 and Oct4 ChIP-Seq data [15] to call the

respective binding sites, and then computed the distance between

Oct4 sites from Sox2 sites within a 201 bp window. The sequence

strand of the GEM binding predictions is oriented using the Sox2

motif when a match to the motif is present. As expected, GEM

predicted Oct4 binding sites are predominantly (630 sites out of

2525 in the 201 bp window) located at 26 bp position relative to

GEM predicted Sox2 sites (Figure 4A and Figure S3). However,

this spacing cannot be observed from the binding calls of GPS or

other event discovery methods alone because of their more limited

spatial accuracy (Figure 4B). An alternative approach is to snap

binding calls to the nearest instance of the transcription factor’s

binding motif. We tested this approach using GPS binding calls as

the starting points and found that the alternate approach captures

fewer (277 sites out of 2753) instances of Oct4-Sox2 spatial binding

constraints (Figure 4C), presumably because some of the bound

motifs do not pass the motif scoring threshold or because some

unbound motif instances are located closer to the binding calls

than the true motif instances.

Enhancer grammar elements deduced from transcription
factor binding sites predicted by GEM

We next studied pair-wise binding relationships between 14

sequence-specific transcription factors (Oct4, Sox2, Nanog, Klf4,

STAT3, Smad1, Zfx, c-Myc, n-Myc, Esrrb, Nr5a2, Tcfcp2l1,

E2f1 and CTCF) and two transcriptional regulators (p300 and

Suz12) in mouse ES cells by applying GEM to a large

compendium of ChIP-Seq binding data [16,28]. Binding predic-

tion by GEM enables the detection of 37 pairs of statistically

significant spatial binding constraints, involving Oct4, Sox2,

Nanog, Klf4, Esrrb, Nr5a2, Tcfcp2I1, E2f1, c-Myc, n-Myc and

Zfx (Figure S4, the full list of TF pairs are in Table S6, S7, motifs

are in Table S5 and Dataset S3). Interestingly, we found that Klf4,

one of the ES cell reprogramming factors, exhibits strong distance-

specific binding with many other factors, including Nanog, Sox2,

Zfx, c-Myc, n-Myc, E2f1, Esrrb, Nr5a2 and Tcfcp2l1 (Figure S5).

The discovered pair-wise spatial binding constraints reveal

complex relationships among the factors. For example, Klf4

exhibits constrained binding with Sox2 but much less significantly

with Oct4 (Figure S5). However, we did observe strong distance-

specific binding between Oct4-Sox2 (Figure 4A). This raises the

question of whether the detected Klf4-Sox2 and Oct4-Sox2 spatial

binding constraints are on the same genomic regions. We

therefore studied all Sox2 bound regions that are co-bound with

Klf4. Out of a total of 5609 Sox2 bound regions with a Sox2 motif

instance that can be oriented, 123 regions are co-bound by Klf4 at

position +25 bp (Figure 5A). However, only region

show co-binding of Klf4 at position +25 bp and Oct4 at position

26 bp. More surprisingly, the distance-constrained Sox2/Klf4

regions are co-bound by 6 ES cell factors within a 70 bp window,

including Sox2 (at 0 bp), Nanog (at 1 bp), Klf4 (at 25 bp), Esrrb (at

56, 59 bp), Nr5a2 (at 55, 58, 61 bp) and Tcfcp2I1 (at 66, 69 bp).

Inspecting the underlying sequences of these regions, we found

that the binding motifs of these factors are embedded at the

positions consistent with the binding positions (Figure 5B). In

addition to the consistent spatial arrangement of motifs, these

sequences (spanning from 270 bp to 100 bp) exhibit a high

degree of similarity. A subset of the sequences is shifted 3 bases by

some insertion/deletions, consistent with the 3 bp shift of some of

the factor binding positions. Comparing with p300 and H3K27ac

ChIP-Seq datasets [29], we found that almost all (119 out of 123)

of these regions are bound by p300, a histone acetyltransferase and

transcriptional coactivator that predicts tissue-specific enhancers

[30]; the majority of these regions are also marked by H3K27ac, a

histone modification associated with active enhancers [29],

suggesting that they may be active enhancer regions (Figure S6).

These results demonstrated that GEM analysis enables detection

of coordinated binding of multiple factors that are driven at least

partly by the underlying sequences.

Of the 123 regions where Sox2, Klf4, and other sites display

constrained spacing, 109 (89%) are annotated instances of the

RLTR9 ERVK family of long terminal repeat elements. It is

interesting to note that while Bourque, et al. found an association

Figure 4. GEM reveals transcription factor spatial binding constraints. A), B), and C) Genome wide spatial distribution of Oct4 binding sites
in a 201 bp window around Sox2 binding sites, obtained by using GEM binding calls, GPS binding calls, or GPS binding calls snapping to the nearest
motifs within 50 bp, respectively. Dashed lines represent the Sox2 binding sites at position 0.
doi:10.1371/journal.pcbi.1002638.g004
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Figure 5. Enhancer grammar elements deduced from mouse ES cell transcription factor binding sites predicted by GEM. A) The
binding site distribution of Sox2, Klf4, Nanog, Oct4, Esrrb, Nr5a2 and Tcfcp21l in 123 regions that exhibit Sox2-Klf4 spatial binding constraints. The
Sox2 sites are aligned at the 0 bp positions, and Klf4 sites are at the 25 bp positions. The rows are ordered by Esrrb offset positions. B) Color chart
representation of 201 bp sequences in the same regions as in A. Each row represents a 201 bp bound sequence. Green, blue, yellow and red indicate
A, C, G and T. The motif logos are generated by STAMP [19] from the motifs discovered using all the binding sites in the respective datasets.
doi:10.1371/journal.pcbi.1002638.g005
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between Oct4/Sox2 co-binding sites and other members of the

ERVK repeat class [31], we find a set of repetitive elements that

encode the binding of Sox2 and other factors without Oct4 in ES

cells. Kunarso, et al. suggested that transposable elements have

rewired the core regulatory network of ES cells [32]. Our analysis

found that the repetitive sequences constrain the in vivo binding of

a number of key transcription factors in ES cells.

Spatially constrained human factor binding in ENCODE
data

We computed statistically significant pair-wise spatially con-

strained binding events between 46 transcription factors charac-

terized in 184 ENCODE ChIP-Seq data sets in five different cell

lines. Each transcription factor ChIP was processed independently

by GEM so that we could assess any differences in observed

binding between cell lines and biological replicates.

We found that 390 pairs of transcription factors have significant

binding distance constraints within 100 bp of each other (Figure 6–

7, Figure S7, S8, S9, S10, the full list of TF pairs are in Table S8,

S9). The number of pairs found in each cell line differed as did the

number of transcription factors assayed: K562 (152 pairs/37 TFs),

GM12878 (148 pairs/29 TFs), HepG2 (107 pairs/29 TFs), HeLa-

S3 (48 pairs/15 TFs), and H1 (23 pairs/11 TFs). Certain factor-

pairs exhibited a highly significant single binding spacing offset

within 100 bp, such as the 4 bp distance between Egr1 and CTCF

in K562 cells (Figure 6). Other factor pairs exhibited a large

number of significant offsets, such as the 167 significant spacings

between JunD and Max with the most significant being at 4 bp

(Figure 6–7). Our analysis confirmed known interaction pairs

MYC-MAX [33], the FOS-JUN heterodimer [34], and CTCF-

YY1 [35] (Table S8, S9).

Observed novel genome wide spatial binding constraints include

c-Fos:c-Jun/USF1, CTCF/Egr1, HNF4a/FOXA1. We find that

USF1 often binds 4 bp from c-Fos:c-Jun (Figure 8A and Figure

S11). This binding is consistent with Fra1’s facilitation of a

complex between USF1 and c-Fos:c-Jun [36]. We find a

Figure 6. Spatial binding constraints detected from ENCODE ChIP-Seq datasets. Matrix representation of pairwise spatial binding
constraints between factor B (column) and factor A (row) detected from 3 ChIP-Seq dataset in human K562 cells. The colors represent the
significance levels (corrected p-value) of the strongest spacings. The numbers represent the distances between the factors in the strongest spacings.
doi:10.1371/journal.pcbi.1002638.g006
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Figure 7. Spatial binding constraints detected from ENCODE ChIP-Seq datasets. Matrix representation of pairwise spatial binding
constraints between factor B (column) and factor A (row) detected from 37 ChIP-Seq dataset in human K562 cells. The colors and numbers represent
the number of positions exhibiting significant spatial binding constraints within the 201 bp window around the binding sites of factor B (column).
doi:10.1371/journal.pcbi.1002638.g007

Figure 8. Examples of transcription factor spatial binding constraints detected from GEM analysis. A) Genome wide spatial distribution
of USF1 binding sites in a 201 bp window around c-Jun binding sites. B) Egr1 binding sites around CTCF binding sites. C) FOXA1 binding sites around
HNF4a binding sites. Vertical dashed lines represent the centered factor binding sites at position 0; horizontal dashed lines represent the number of
occurrences at a position corresponding to corrected p-value of 1e28.
doi:10.1371/journal.pcbi.1002638.g008
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significant number of cases where CTCF co-binds 4 bp from Egr1

(Figure 8B and Figure S12). Egr1 promotes terminal myeloid

differentiation in the presence of deregulated c-Myc expression,

and Egr1 has been implicated in down regulating c-Myc in

conjunction with CTCF [37]. In addition, the co-binding of

CTCF and Egr1 at the EPO regulatory region has been suggested

[38]. FOXA1 binds at a large number of significant positions close

to HNF4a (total 4215 regions with a spacing within 30 bp,

Figure 8C and Figure S13), and there are also significant binding

constraints between HNF4a and HNF4c and FOXA1, FOXA2 in

HepG2 cells (Table S8, S9). While co-binding of HNF4a/FOXA2

has been reported [39], co-binding of HNF4a/FOXA1, HNF4c/

FOXA1 and HNF4c/FOXA2 are not known. We note that

HNF4a and any one of FOXA1, FOXA2, or FOXA3 is sufficient

to reprogram cells towards a hepatocytic fate [40].

Discussion

Collectively, our results demonstrate that it is now possible to

reveal aspects of functional genome syntax by surveying in vivo

binding relationships between transcription factors at high spatial

resolution. Our analysis has been made possible by sequenced

ChIP data and a new computational method, GEM, which

provides exceptional spatial resolution.

GEM makes binding predictions and observes spatial con-

straints by discovering significant events utilizing both motifs and

observed read coverage information. Prior work has documented

specific genomic regions extensively targeted by multiple tran-

scription factors (TFs) [16]. However, we have shown that the

functional syntax of DNA motifs in regulatory elements cannot be

fully elaborated with the imprecise ChIP-Seq event calls provided

by previous methods. Motif analysis approaches such as SpaMo

discover enriched motif spacing by scanning a list of known motifs

in sequences anchored by ChIP-Seq data of a single factor [15].

Since the existence of motif instances does not guarantee condition

specific in vivo binding, SpaMo cannot confidently determine the

spacing between binding events and the factors involved, especially

for motifs that are shared by a family of TFs. Furthermore, SpaMo

excludes repetitive sequences [15]. In contrast, GEM predicts

binding based on uniquely-mapped reads and is able to detect

spatial binding constraints in transposable elements. Such

elements have been implicated in rewiring the core regulatory

network of human and mouse ES cells [32].

We expect that the genome grammatical rules that are

suggested here will be examined in further studies to elucidate

mechanisms of transcriptional control, and potential protein-

protein interactions that have regulatory consequences. Explora-

tion of other genome grammatical constructs can be accomplished

with the use of further ChIP experiments and GEM.

Methods

The GEM algorithm consists of six phases:

1. Predict protein-DNA binding event locations with a sparse

prior

2. Discover the set of enriched k-mers at binding event locations

3. Cluster the set of enriched k-mers into k-mer equivalence

classes

4. Generate a positional prior for event discovery with the most

enriched k-mer equivalence class

5. Predict improved protein-DNA binding event locations with a

k-mer based positional prior

6. Repeat motif discovery (Steps 2–3) from the Phase 5 improved

event locations.

Predicting protein DNA-binding events with a sparse
prior

Initial protein-DNA binding event locations are predicted by

GPS [8], which employs a negative Dirichlet sparse prior.

Discovery of the set of enriched k-mers at binding event
locations

GEM discovers a set of enriched k-mers by comparing k-mer

frequencies between positive sequences and negative control

sequences. The positive set consists of 61 bp sequences centered

on the predicted binding locations from Phase 1, and a negative set

consists of 61 bp sequences that are 300 bp away from binding

locations and that don’t overlap positive sequences. We count the

number of positive and negative sequences that contain instances

of each possible k-mer (hit count), treating each k-mer and its

reverse complement as the same sequence. A k-mer is considered

enriched if the hypergeometric p-value [41] of its enrichment is

less than 0.001 and it has at least 3-fold enrichment in terms of

positive/negative hit count. In this study, values of k from 5 to 13

are used on each dataset, and the final k value is chosen as the one

that gives the most significantly enriched primary PWM as

described below. Each k-mer carries with it its expected offset from

a binding event as averaged over the positive set.

Clustering the enriched k-mers into k-mer equivalence
classes

GEM next clusters the enriched k-mers into equivalence classes

that describe similar DNA binding preferences (Figure S14). Each

equivalence class is a collection of k-mers. A genomic sequence is

said to match a k-mer equivalence class if the genomic sequence

contains any of its component k-mers. GEM clusters enriched k-

mers into k-mer equivalence classes by (Figure S14):

1. A k-mer class is initialized with the most enriched k-mer and

any other enriched k-mers that differ by a single base from the

most enriched k-mer.

2. Positive set sequences that match the k-mer class are selected,

and any enriched k-mer that appears in a 2k+1 bp window

around a class match are tested for addition to the class. An

enriched k-mer must have the same alignment offset to window

sequences in at least one third of its occurrences to be added to

the class.

3. A Position Weight Matrix (PWM) is constructed from positive

set sequences that match the class. A PWM is constructed with

weighted matched positive set sequences centered on the class

match and a zero order Markov model learned from negative

set sequences. For PWM construction a positive set sequence is

weighted by its binding event read count and the distance in

bases between the sequence’s class match and the estimated

binding event position. The distance weighting function we use

was fit to characterized ChIP-Seq data, and is the logistic

distribution with mean 0 and variance 13. PWMs are trimmed

to find the PWM with the most significant hypergeometric p-

value between the positive and negative sequences. PWM

matching is defined as at least 60% of the maximum PWM

score [42].

4. Positive set sequences that match the resulting PWM are

extracted and aligned by the PWM instances and any enriched

k-mer that appears in a 2k+1 bp window around a PWM
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match are tested for addition to the class. An enriched k-mer

must have the same alignment offset to window sequences in at

least 1/3 of its occurrences to be added to the class.

5. Step 3 and 4 are iterated until the PWM hypergeometric p-

value between the positive and negative sequences no longer

improves.

After finding the primary k-mer equivalence class, GEM

searches for other classes. To accomplish this, the previous seed

k-mer is removed from the enriched k-mer pool and PWM motif

occurrences are masked in the sequences. The process of building

new k-mer equivalence classes is repeated until no more

significantly enriched PWMs can be constructed. Rarely, a

secondary motif PWM can become more significantly enriched

than the primary motif. If this happens, the motif finding process is

restarted using the seed k-mer of this secondary motif.

Positional prior generation
Phase 4 of GEM uses the primary k-mer equivalence class to

compute a Dirichlet prior that will be used for binding event

discovery in Phase 5. The genome is segmented into independent

separable regions (typically a few kb long) by dividing at read gaps

that are larger than 500 bp and further excluding regions that

contain fewer than 6 reads [8]. At each evaluated genome region,

we simultaneously search the occurrences of all the k-mers of the

primary k-mer equivalence class using the Aho-Corasick algorithm

[43], and matches are marked at the expected binding event

location for every matching k-mer. The position-specific prior for

a sequence base is defined as the number of positive set sequences

that contain one of the enriched k-mers whose binding offsets

match that base. The concept of using informative positional

priors for motif discovery has been explored previously [44,45].

Binding event prediction with a positional prior
GEM employs a generative mixture model that describes the

likelihood of a set of ChIP-Seq reads being generated from a set of

protein-DNA interaction events originating at specific DNA

sequences. The model generates protein-DNA interaction events

that are biased to occur at explanatory DNA sequences by a k-mer

based positional prior. Each event then independently generates

reads following an empirical read spatial distribution that describes

the probability of reads given the distance from the event [8] (see

Figure 3B for an example).

Formally, in an evaluated region of length M, we consider N

ChIP-Seq reads that have been mapped to genome locations

R = {r1, …, rN} and M all possible protein-DNA interaction events

at single base locations B = {b1, …, bM}. We represent the latent

assignments of reads to events that caused them as Z = {z1, …,

zN}, where indicator function 1(zn = m) = 1 when read n is caused

by the event m.

The probability of a read n is based on a mixture of possible

binding events:

p(rnDp)~
XM
m~1

pmp(rnDm),
XM

m~1
pm~1

where M is the number of possible events; p denotes the parameter

vector of mixing probabilities, and pm is the probability of event m;

p(rn | m) is the probability of read n being generated from event m

and can be determined from the empirical spatial distribution of

reads given the event [8].

The overall likelihood of the observed set of reads is:

p(RDp)~ P
N

n~1

XM
m~1

pmp(rnDm)

We make two prior assumptions about the binding events: 1)

binding events prefer to occur at the sequence specific DNA motif

positions; 2) binding events are relatively sparse throughout the

genome. To incorporate these assumptions, we place a negative

Dirichlet prior [8,46] p(p) on binding event probabilities p:

p(p)! P
M

m~1
(pm){aszam

where as is the uniform sparse prior parameter governing the

degree of sparseness, as.0; am denotes the binding event specific

prior parameter and its value is proportional to Cm, the positional

prior count underlying event m (as defined in Phase 4):

am~asm
Cm

max
m0

Cm0

where m is a parameter to tune the effect of motif based prior,

0#m,1. In this study, we choose m = 0.8.

The rationale is that if the k-mers mapped to position m have

more occurrences at binding events genome wide, it is more likely

to cause a binding event at that genome position. The parameter

am is scaled such that all the values of possible am will be less than

as. Therefore the k-mer based prior will not force the model to

predict a binding event at a motif position when the observed

reads do not provide sufficient evidence of a protein-DNA

interaction event.

Since the k-mers underlying the possible binding event positions

and their counts are known, the value of term 2as+am remains

constant when we estimate the parameters in the mixture model.

Therefore, we can solve the mixture model using Expectation-

Maximization (EM) algorithm [47].

The complete-data log penalized likelihood is:

ln p(R,Z,p)~
XN

n~1

XM
m~1

1(zn~m) ln pmzln p(rnjm)ð Þ
" #

z

XM
j~1

({aSzam)ln pm

where 1(zn = m) is the indicator function.

In the E Step we have:

c(zn~m)~
pjp(rnDm)PM

m0~1

pj0p(rnDm0)

where c(zn = m) can be interpreted as the fraction of read n that is

assigned to event m.

In the M step, on iteration i we find parameter p̂p(i) to maximize

the expected complete-data log penalized likelihood:

p̂p(i)
m ~ arg max

pm

XN

n~1

XM
m~1

c(zn~m) ln pmzln p(rnjm)ð Þ
" #

z

(

XM
j~1

({aSzam)ln pm

)

under the constraint
PM

j~1 pj~1. By simplifying we find the close-

form solution of the maximization as:
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p̂pm
(i)~

max(0,Nm{aSzam)PM
m0~1 max(0,Nm0{aSzam)

, Nm~
XN

n~1
c(zn~m)

where Nm is the effective number of reads assigned to event m, or

the binding strength of event m. Intuitively, the effective read count

of an event is decreased by a pseudo-count as for the sparseness

penalty, and is increased by a pseudo-count am for the k-mer motif

at position m. If for event m, the value of pm becomes zero, the

model is restructured to eliminate it [46].

The EM algorithm is deemed to have converged when the

change in likelihood falls below a small value, for example 1e25.

Since the value of term 2as+am is negative, a binding event

supported by enriched k-mers may still be eliminated if it is not

sufficiently supported by read data. In addition, a binding event

not supported by enriched k-mers may still survive if it is

sufficiently supported by the read data.

The predicted binding events are tested for significance as

described previously [8]. Briefly, if a control dataset is available,

we compare the number of reads in the ChIP event to the number

of reads in the corresponding region in the control sample using a

Binomial test. If control data is not available, we apply a statistical

test that uses a dynamic Poisson distribution to account for local

biases. To correct for multiple hypothesis testing, a Benjamini-

Hochberg correction [48] is applied. It is worth mentioning that

we only use read counts of events to test for significance.

The read spatial distribution of binding events is updated after

each round of binding event prediction.

Motif discovery using improved event locations
Phase 6 repeats Phase 2 and 3 motif discovery using the binding

events predicted from Phase 5. As described in the results section

(Figure 1), the spatial accuracy of binding events discovered from

Phase 5 (GEM) is significantly improved from Phase 1 (GPS).

Thus, these events will be more accurately centered on motifs and

the performance of motif discovery is correspondingly improved.

GEM software
GEM is a stand-alone Java software that takes alignment files of

ChIP-Seq reads and a genome sequence as input and reports a list

of predicted binding events and the explanatory binding motifs. It

can be downloaded from our web site (http://cgs.csail.mit.edu/

gem). For analysis with mammalian genomes, GEM requires

about 5–15 G memory.

Datasets
214 ENCODE ChIP-Seq datasets that have an embargo date

before Oct 28, 2011 and have known motifs in public databases

were downloaded from the ENCODE project website [18]. 16

mouse ES cell factor ChIP-Seq datasets published in references

[16] and [28] were downloaded from GEO. ChIP-exo data were

provided by Ho Sung Rhee and B. Franklin Pugh. FastQ files of

the ChIP-Seq/ChIP-exo data were then aligned with genome

(human hg19, mouse mm9) using Bowtie [49] version 0.12.7 with

options ‘‘-q --best --strata -m 1 -p 4 --chunkmbs 1024’’. The GABP

ChIP-Seq data was downloaded from QuEST website (http://

mendel.stanford.edu/SidowLab/downloads/quest/) and was pre-

aligned to hg18 genome.

Motif-finding performance metrics
GEM was applied to 214 ENCODE ChIP-Seq data. The motif

PWMs output by GEM were collected. An alternate pipeline used

the GPS peak-finder [8] to call binding events and used 7 different

motif finding methods (AlignACE v4.0 [23], MDscan v2004 [22],

MEME v4.7.0 [20], Weeder v1.4.2 [21], POSMO v2 [24], HMS

v0.1 [13] and ChIPMunk v3 [14]) to discover motifs indepen-

dently. For AlignACE, MDscan, MEME and Weeder, 100 bp

sequences were extracted from the top 500 peaks from each

dataset, as suggested by the MEME Suite’s documentation based

on the typical resolution of ChIP-Seq peaks. For POSMO, we

extracted a set of 100 bp sequences from the top 500 GPS peaks.

This set of sequences provided superior results when compared

with sequences taken from the top 5000 1000 bp sequences (as

suggested by the author of POSMO). For ChIP-Seq oriented

methods, HMS and ChIPMunk, a set of 100 bp sequences and

corresponding read coverage profiles were extracted from the top

500 GPS peaks. We found these conditions provided superior

results than using sequences taken from the top 5000 200 bp

sequences (as suggested by the authors of these methods). MEME

was run with ‘‘-nmotifs 6’’ and Weeder was run with option

‘‘large’’. POSMO was run with options ‘‘5000 11111111

sequence_file 1.6 2.5 20 200’’. ChIPMunk was run with options

‘‘6 15 yes 1.0 p:read_coverage_profile 100 10 1 4 random 0.41’’.

HMS was run with options ‘‘-w motif_width -dna 4 -iteration 100 -

chain 50 -seqprop 0.1 -strand 2 -base read_coverage_profile -dep

2’’; motif_width was determined by width of motif discovered by

MEME for the same data. All other parameters were the defaults

specified by the authors.

We collected known binding preference motifs from the

TRANSFAC [50], JASPAR [51], and Uniprobe [52] databases.

We only include motifs of the factors of interest or motifs for the

TF family but not motifs of factors in the same family because

factors in the same family may have very different binding motifs.

The list of database matrices is provided in Dataset S1. Discovered

motifs were compared to known motifs using STAMP [19]. A

motif with E-value less than 1e-5 was considered a match. For

each program, we counted the number of datasets that had a motif

matching at least one known motif of that transcription factor. In

some cases, the correct motifs are not matched by the first motif

that a method outputs, but by the second or later motifs. Therefore

we compare the motif-finding performance using the top 1, top

2… or top 6 motifs. Little improvement is observed after the 6th

motifs.

Evaluating spatial resolution of ChIP-Seq event calls
The genome-wide performance of spatial resolution in ChIP-

Seq event calls is evaluated as following. We define effective spatial

resolution as the average absolute value of the distance between

genome coordinates of predicted binding events and the middle of

the corresponding high-scoring binding motif hit. Because the

center of the motif hit may not represent the true center of a

binding event, the offsets to the motif were centered by subtracting

the mean offsets. We compare spatial resolution on the ‘‘matched’’

set of predictions that are called by all the methods and correspond

to the same high-scoring binding motif. Only those events within

100 bp of a motif match are included in the calculation. An

alternative evaluation with all the events that have a motif at a

distance less than 100 bp is also performed.

Evaluating performance in deconvolving proximal
binding events using GABP ChIP-Seq data

The genome-wide performance of proximal event discovery in

ChIP-Seq data is evaluated as follows. For GABP dataset, we

compared GEM against other 6 methods (GPS, SISSRs, MACS,

cisGenome, Quest and PeakRanger) genome wide. We define a set

of candidate sites that all have at least one event detected by all

seven methods, and that contain two or more GABP motifs
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separated by less than 500 bp. We discovered 477 such sites. For

each of these sites, we count the number of events discovered by

different methods. GABP motif was retrieved from TRANSFAC

database (M00341) [50]. A motif score threshold of 9.9, which is

60% of maximum PWM score, is used in this analysis.

Analysis of ChIP-exo data
In this study, to test GEM’s ability to automatically adapt to

ChIP-exo data, we initialized GEM with a ChIP-Seq empirical

read distribution, and ran GEM with one extra run (phase 5 and 6)

so that GEM could use more accurately positioned events to refine

the read distribution and use it for final prediction. In practice, the

user can directly initialize GEM with a ChIP-exo empirical read

distribution (provided with GEM software) and apply GEM the

same way as analyzing ChIP-Seq data.

Computing the pair wise transcription factor spatial
relationships from binding calls

To study the in vivo binding spatial relationship between a pair of

transcription factors A and B in the certain cell type and condition,

we apply GEM independently to ChIP-Seq data from A and B to

predict the respective binding sites. To compute the distribution of

spacing between A relative to B, we compute the offsets of A

binding sites from B binding sites within a 201 bp window. The

sequence strand of the binding predictions is oriented using the B

motif when a match to the motif is present, and B is placed in the

middle of the window. The occurrences of A at each offset position

are summed over all the B sites to produce the empirical spatial

distribution. In this study, we evaluate three different methods to

call binding sites: GEM binding calls, GPS binding calls, and GPS

binding calls that are snapped to a motif within 50 bp if one is

present. Another motif distance for snapping binding calls, 100 bp,

was also tested and the result was very similar to the 50 bp

distance.

To determine if a specific spacing is significant, we compute the

p-value of the number of occurrences of factor A at that offset

position using a Poisson test. The parameter of Poisson

distribution is set as the mean number of occurrences across all

the positions in the [2400 bp 2200 bp] and [200 bp 400 bp]

windows, assuming there are no significant spatial binding

constraints in these windows. The p-value is corrected for multiple

hypotheses testing using Bonferroni correction by multiplying the

p-value by the number of positions in the window and the total

number of pair wise tests across all cell types. The significance

threshold for corrected p-value is 1e28. Because the strand

orientation of bound sequences cannot be oriented consistently

when comparing multiple factor pairs, we report the absolute

distance between the most significant interacting factor pairs in

Figure 6.
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