
Concurrent Replicating Garbage Collection

James O’Toole and Scott Nettles

Abstract

We have implemented a concurrent copying garbage collec-
tor that uses replicating garbage collection. In our design, the
client can continuously access the heap during garbage col-
lection. No low-level synchronization between the client and
the garbage collector is required on individual object opera-
tions. The garbage collector replicates live heap objects and
periodically synchronizes with the client to obtain the client’s
current root set and mutation log. An experimental imple-
mentation using the Standard ML of New Jersey system on a
shared-memory multiprocessor demonstrates excellent pause
time performance and moderate execution time speedups.

1 Introduction

As programs have become larger and more complex the use
of dynamic storage allocation has increased. Increased use
of object oriented and functional programming techniques
further exacerbates this trend. These same trends also make
automatic management of dynamic storage or garbage col-
lection (GC) increasingly necessary. GC simplifies the pro-
grammers task and increases the robustness and safety of
programs that use it.

The traditional objections to GC are primarily performance
related. It has often been considered too expensive for use

Authors’ addresses: otoole@lcs.mit.edu, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
617-253-6018
nettles@cs.cmu.edu,School of Computer Science, Carnegie Mellon Univer-
sity, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213. (412)268-3617

This research was sponsored by the Avionics Lab, Wright Research and
Development Center, Aeronautical Systems Division (AFSC), U. S. Air
Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-
C-1465, Arpa Order No. 7597, by the Air Force Systems Command and
the Defense Advanced Research Projects Agency (DARPA) under Contract
F19628-91-C-0128, and by the Department of the Army under Contract
DABT63-92-C-0012.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

in practical applications. Recent studies by Zorn [15] of
applications that make heavy use of dynamic storage suggest
that in fact explicit storage management may be as costly as
GC. However, many garbage collectors stop the application
during collection, creating pauses that are unacceptable to
many applications that might otherwise utilize GC.

Incremental collection addresses the problem of pause
times by allowing the collector and application to proceed in
tandem. We have previously demonstrated that replicating
garbage collection can be used to build incremental collec-
tors that limit these pauses sufficiently to allow applications
such as mouse tracking to use GC. In this work we show how
the same technique can be used to build collectors that are
concurrent. Because most of the collection work can be done
concurrently we are able to demonstrate both much shorter
pauses and speedups compared to our previous work.

In the next section we introduce the basic idea of repli-
cating garbage collection. Then we describe our implemen-
tation (Section 3) and present measurements of its perfor-
mance (Section 4). The results show that pause times are
mostly eliminated and that elapsed execution times are re-
duced. Finally, we discuss possible improvements to the
implementation and suggest areas for further work. We as-
sume that the reader is familiar with the basics of copying and
generational garbage collection. The survey by Wilson [14]
should be useful to readers unfamiliar with the area.

2 Concurrent Replicating GC

Concurrent garbage collectors permit the client to execute
while the garbage collection is in progress. The operations
of the client and the collector may be interleaved in any
order, yet the effects of the garbage collector must not be ob-
servable by the client. In many previous concurrent garbage
collection designs, the interactions between the client and the
collector may lead to complex and expensive synchroniza-
tion requirements. Replicating garbage collection requires
that the collector replicate live objects without modifying the
original objects. Interactions with the client are minimized,
making this design attractive for use in a concurrent collector.



read

write GC

Log RelocMap

Client

From−space To−space

Figure 1: Replication and The Mutation Log

2.1 The Client Uses From-Space

The standard technique used by copying garbage collectors
to copy an object destroys the original object by overwriting
it with a forwarding pointer. Therefore, concurrent collectors
using this technique must ensure that the client uses only the
relocated copy of an object. This requirement is referred to
as the to-space invariant.

The primary way in which replicating collection differs
from the standard approach is that the copying of objects
is performed non-destructively. Conceptually, whenever the
collector replicates an object it stores a relocation record in
a relocation map, as shown in Figure 1. In general the client
may access the original object or the relocated objects and is
oblivious to the existence or contents of the relocation map.
In the implementation we describe here the client accesses
only the original object. We refer to this as the from-space
invariant.

2.2 Mutations are Logged

After the collector has replicated an object, the original object
may be modified by the client. In this case, the same modifi-
cation must also be made to the replica before the client can
safely use the replica. Therefore, our algorithm requires the
client to record all mutations in a “mutation log”, as shown in
Figure 1. The collector uses the log to ensure that all replicas
are in a consistent state when the collection terminates. The
collector does this by reading the log entries and applying the
mutations to the replicas.

The cost of logging and of processing the mutation log
varies depending on the application and the logging tech-
nique. Mutation logging works best when mutations are
infrequent or can be recorded without client cooperation.
Mutation logging is also attractive whenever a log is already
required for other reasons, such as in generational collec-
tors, distributed applications, and transactional storage sys-
tems [11, 13].

2.3 The Collector Invariant

The invariant maintained by the collector is that the client can
only access from-space objects and that all to-space replicas
are up-to-date with respect to their original from-space ob-

jects unless a corresponding mutation is described in the
mutation log.

2.4 The Completion Condition

While the collector executes, it endeavors to replicate all the
objects that are accessible to the client. The collector cre-
ates replicas of the objects pointed to by the client’s roots.
The collector also scans replicas in to-space to find point-
ers to from-space objects and replace them with pointers to
corresponding replicas in to-space.

The collector has completed a collection when the muta-
tion log is empty, the client roots have been scanned, and
all of the objects in to-space have been scanned. When
these conditions have been met, the invariant ensures that
all objects reachable from the roots have been replicated in
to-space and are up-to-date. The replicas contain only to-
space pointers because to-space has been scanned. When the
collector has established this completion condition, it halts
the client, atomically verifies the completion condition, up-
dates the client’s roots to point at the corresponding to-space
replicas, discards the from-space, and renames to-space as
from-space.

2.5 Client Interactions

Although the garbage collector executes concurrently with
the client, the from-space invariant ensures that there is no
low-level interaction between the collector and client. The
client executes machine instructions that read and write the
objects that reside in from-space. The collector reads the ob-
jects in from-space and writes the objects in to-space. Con-
ceptually, the relocation map shown in Figure 1 is used only
by the collector.

The collector does interact with the client via the mutation
log and the client’s roots. The collector must occasionally
obtain an up-to-date copy of the client’s roots in order to
continue building the to-space replica. Also, the collector
reads the mutation log, which is being written by the client.
These interactions may be asynchronous and do not require
the client to be halted.

However, when the collector has established the comple-
tion condition, it must halt the client in order to atomically
verify the completion condition and update the client’s roots.



After the roots have been updated, the client can resume ex-
ecution. The duration of this pause in the client’s execution
depends on the synchronization delay due to interacting with
the client thread and also on the size of the root set. In
a generational collector the root set may include the set of
cross-generational pointers that point from older objects to
newer objects.

3 Implementation

Our concurrent replicating collector is based on a version of
Standard ML of New Jersey (SML/NJ) that has been extended
to support multiprocessors. The collector uses a separate gc
thread to perform scanning and replication work, but the
current prototype processes mutation log entries only while
the client is paused. The concurrent collector can be enabled
for one or both of the two generations present in the original
SML/NJ collector.

3.1 The SML/NJ Runtime System

SML/NJ (version 0.75) has a good compiler and a simple
generational garbage collector. The runtime system has no
stack and therefore places heavy demands on the memory
management system. Providing efficient garbage collection
in this environment is challenging because of SML/NJ’s high
allocation rates. However, the SML language encourages a
mostly functional programming style, so mutations are rare.

In the SML/NJ collector, there are two generations: old
and new. Objects are allocated in new-space. The size of the
new-space is controlled by the runtime parameter N. When
new-space fills, a minor collection is initiated to copy the live
data into old-space. Old-space is divided into from-space
and to-space. Another parameter, O, controls the initiation
of a major collection. When the amount of memory copied
into from-space by minor collections exceeds O, a major
collection occurs, copying all live data into to-space and then
exchanging the roles of to-space and from-space. The spaces
and associated parameters are shown in Figure 2.

minor major

A

ON L

New−space From−space To−space

Figure 2: SML/NJ Heaps with GC Parameters

3.2 Logging and Replication

Generational collectors must identify mutations that might
create pointers from older spaces into younger spaces. The
SML/NJ collector uses a log called the “storelist” to track

such mutations. In our previous work on replicating garbage
collection, we modified the SML/NJ compiler and all ap-
propriate runtime system operations so that all mutations are
recorded in the storelist.

The easiest way to implement the relocation map is to
store a forwarding pointer in an extra word in each replicated
object. However, most objects in the SML/NJ runtime system
are only three words long, so the forwarding words would be
relatively costly in space. Therefore in our implementation
we overwrite the object header word with the forwarding
pointer.

As shown in Figure 3, the client operation that reads the
header word was modified to follow the forwarding word.
Our previous results showed that the runtime cost to the
client due to this change was not significant [9]. However, in
the presence of concurrency, this change creates a potential
read-write conflict between the collector and the client. If
the client is reading the header word at the same time the
collector is installing a forwarding pointer, we must make
sure that the client gets the correct header word.

read

write

Log

getheader

original replica

fwd ptr hdr word

Client

From−space
Object

To−space
Object

Figure 3: Getheader Operations Follow the Forwarding Word

The code sequences used by the client and the collector
for these operations were designed to avoid any possible
race condition. The client reads the from-space header word
only once and then dereferences the value obtained if it is
a forwarding pointer. The collector replaces the from-space
header word with the forwarding pointer only after storing
the correct header word in the to-space replica. This method
works provided that the memory system performs single-
word write operations atomically and that several write op-
erations issued from a single processor are performed in the
order issued.

3.3 Controlling Client Allocation

The SML/NJ system uses an allocation limit to control the
amount of memory that can be allocated by the client. The
allocation limit is initially set to the size of new-space (N).
Whenever the client is about to exceed its current alloca-
tion limit, it traps into the garbage collection module and
triggers a collection. In our current implementation, when
the garbage collection is first triggered the client processes
its mutation log, awakens the gc thread, and immediately
resumes execution.



In order to continue execution, the client’s allocation limit
must be increased. Another parameter (A) is used to con-
trol the minimum amount additional allocation that will be
granted to the client (see Figure 2). Each time the client
exhausts its current allocation limit, our implementation pro-
vides (last amount + A)=2 units of additional memory,
where last amount is the previous amount of memory given
to the client. If the client repeatedly consumes its allocation
limit then this formula causes the allocation increment to
decay to A, the minimum acceptable amount.

In the worst case, the client may be allocating more live
data per unit time than the gc thread can copy. In this case
the client must be slowed down enough to enable the gc
thread to keep up. We currently do this by pausing the client
thread to perform replication work if it exceeds its allocation
increment and a garbage collection is already active.

In order to control the pause time, the algorithm restricts the
amount of work it does using a parameter L. The L parameter
limits the total amount of memory copied by the collector
and directly controls the pause times. This policy essentially
makes the collector incremental rather than concurrent when
the client is allocating very aggressively.

3.4 Controlling GC Activity

The gc thread also interrupts the client asynchronously when-
ever it has established the completion condition. The gc
thread does this using a Unix signal mechanism taken from
the SML/NJ MP system by Morrisett and Tolmach [8]. The
signal causes the client to enter the garbage collection module
and attempt to complete the collection. The client processes
the mutation log and scans to-space to perform a limited
amount of replication work.

If the completion condition can be established without
exceeding the work limit L, then the client’s roots are updated
and the from-space and to-space exchange roles. Otherwise,
the client’s roots are copied into a shadow root set used by
the concurrent gc thread and the client resumes execution
using from-space while the gc thread continues to perform
collection work.

The Unix signals used by the current implementation seem
to be a very expensive way to get the client into the garbage
collection module. In version 0.75 of SML/NJ, the client
always transfers control to the garbage collector using an
arithmetic trap that causes a Unix signal. Version 0.93 uses
a goto for this purpose. Using a goto may decrease the cost
of synchronous client/collector interactions, but our imple-
mentation may still need to asynchronously signal the client.
We are investigating other solutions to this problem. In
addition, our current implementation requires the client to
asynchronously pause the collector. This is currently imple-
mented by having the gc thread poll periodically to detect a
synchronization request from the client.

Our implementation uses a fixed value for the parameter
L, but we would like to investigate whether the amount of
inline garbage collection work done by the client should start

small and slowly increase to L, depending on the number of
times the client has trapped into the collector.

4 Performance

The goals of the performance study were to demonstrate
that pause times are significantly shorter than those for the
incremental version of the algorithm and to measure the
speedup provided by the use of another processor for con-
current garbage collection work. The measured performance
is good; the concurrent collector achieves pause times in the
neighborhood of 5 milliseconds and eliminates most of the
garbage collection work from the elapsed execution time.

4.1 Benchmarks

Three benchmarks were used to test our implementation.
Each was chosen because it stressed the memory management
system in a different way. All benchmarks require many
major and minor garbage collections during execution.

� Primes is a prime number sieve implemented in a simple
lazy language which is in turn interpreted by an SML
program. It allocates memory at a very high rate (ap-
proximately 10 megabytes per second), but few objects
survive garbage collection. It is typical of compute-
bound programs in SML/NJ.

� Comp is the SML/NJ compiler compiling a portion of
itself. This is the most realistic benchmark; the SML/NJ
compiler is a large optimizing compiler and is in daily,
production use. Comp does not allocate as much data as
Primes, but more of it survives collections. The amount
of live data fluctuates depending on the phase of the
compilation.

� Sort is a sorting program based on futures which are in
turn implemented using SML threads. Sort does more
mutation than a typical SML program and it creates a
large amount of live data. Both the large mutation rate
and the substantial survival rate make this a challenging
example for our technique.

All benchmarks were executed on a Silicon Graphics
4D/340 equipped with 192 megabytes of physical memory.
The clock resolution on this system is approximately 1 mil-
lisecond. The machine contains four MIPS R3000 processors
clocked at 33 megahertz. Each processor has a 64 kilo-
byte instruction cache, a 64 kilobyte primary data cache, and
a 256 kilobyte secondary data cache. The secondary data
caches are kept consistent via a shared memory bus watching
protocol and there is a five word deep store buffer between
the primary and the secondary caches. Because of the store
buffers, processors can observe out-of-date values. The av-
erage copying rate achieved by the garbage collector while
running the benchmarks on this hardware platform was be-
tween 1 and 2 megabytes per second.



4.2 Parameter Settings

To test our system we chose values for the parameters N,
O, L and A. For O we used the values 2 megabytes and
100 kilobytes. The larger value is typical for running SML/NJ
in our environment, while the lower setting was chosen to
emphasize overheads present in major collections. For N we
chose 1 megabyte and 500 kilobytes. Again, the larger value
is typical for use with the stop-and-copy collector, while
the lower value showed good performance with our system.
Unlike in our previous work on incremental collection, small
values of N are not important for providingshort pause times.

In all cases we set L to 3 kilobytes. The L parameter
determines how long the client might remain in the garbage
collector. Choosing a low setting allows us to achieve max-
imum speedups and short pauses. This result contrasts with
our incremental collector, where short pause time conflicted
with good elapsed time performance. Empirically, the 3 kilo-
byte limit appears to be a good compromise between greater
overhead and larger pause times. We arbitrarily chose A to
be 10 kilobytes in all cases. Our studies showed that per-
formance was not strongly coupled to the choice of A in our
current implementation.

Unfortunately, trying to compare SML/NJ’s stop-and-copy
collector to our concurrent collector is difficult. Ideally we
would like each collector to do the same amount of work and
for this amount of work to be repeatable. Unfortunately con-
currency introduces a degree of nondeterminism that makes
such repeatability almost impossible to achieve.

4.3 Pause Times

One motivation for using a concurrent garbage collector is
to eliminate the pause times normally experienced by the
client while the garbage collector executes. In this section
we report on the pause times achieved by our collector.

Figures 4, 5, and 6 show plots of pause times for each
of the benchmarks. The plots shown are for the setting that
achieved the best absolute performance. In general we see
that the pauses are very short, around 5 milliseconds. The
pause times are generally an order of magnitude shorter than
the delays due to virtual memory when page faults must
access the disk.

We are concerned about the long tail of longer pause times
that appear in these results, although they make up only a tiny
fraction of the pauses. We don’t yet have a good explanation
for them. Another interesting anomaly is the second peak of
longer pause times occurring in the primes benchmark (see
Figure 4). This is due to processing the mutation log. The
implementation does not account for log processing under
the work limit parameter L. We hope to fix this.

The measurements show that the concurrent collector is
largely successful at eliminating the pauses. Its pauses are
minuscule in comparison to those produced by the stop-and-
copy collector, which are often one second or more.

0 5 10 15 20 25 30 35 40 45 50

Pause Time (ms)

0

500

1000

1500

2000

N
um

be
r 

of
 P

au
se

s

Figure 4: Primes Benchmark Pause Times

0 5 10 15 20 25 30 35 40 45 50 55

Pause Time (ms)

0

20

40

60

80

100

N
um

be
r 

of
 P

au
se

s

Figure 5: Compiler Benchmark Pause Times

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Pause Time (ms)

0

100

200

300

400

500

600

700

N
um

be
r 

of
 P

au
se

s

Figure 6: Sort Benchmark Pause Times



O N Stop+Copy Concurrent Major-Only
Kb Kb Elapsed Major Minor Elapsed Speedup Major Minor Elapsed Speedup Major Minor

1000 100 119.36 10.3% 15.7% 133.46 111.8% 4.5% 31.4% 112.84 94.5% 4.3% 24.5%
1000 2000 108.71 1.2% 17.7% 132.33 121.7% 4.4% 33.9% 109.33 100.6% 1.6% 19.4%
500 100 132.68 16.8% 17.9% 135.09 101.8% 4.8% 29.7% 116.79 88.0% 4.8% 24.8%
500 2000 112.20 2.2% 22.2% 132.19 117.8% 5.8% 35.0% 114.16 101.7% 2.1% 22.6%

Table 1: Primes Benchmark Elasped Times

O N Stop+Copy Concurrent Major-Only
Kb Kb Elapsed Major Minor Elapsed Speedup Major Minor Elapsed Speedup Major Minor

1000 100 87.86 34.8% 10.9% 60.92 69.3% 3.2% 12.9% 60.45 68.8% 2.1% 16.1%
1000 2000 58.96 4.0% 16.8% 57.82 98.1% 3.4% 16.1% 57.11 96.9% 1.3% 20.1%
500 100 102.42 43.7% 11.9% 64.91 63.4% 4.0% 12.6% 63.76 62.3% 2.7% 15.6%
500 2000 60.21 4.9% 20.1% 60.16 99.9% 4.8% 18.1% 58.99 98.0% 2.2% 22.8%

Table 2: Compiler Benchmark Elasped Times

O N Stop+Copy Concurrent Major-Only
Kb Kb Elapsed Major Minor Elapsed Speedup Major Minor Elapsed Speedup Major Minor

1000 100 80.60 26.3% 30.1% 72.24 89.6% 8.3% 38.3% 81.73 101.4% 1.2% 56.5%
1000 2000 61.90 3.0% 39.4% 73.37 118.5% 11.0% 50.0% 81.78 132.1% 1.7% 78.4%

500 100 94.50 33.1% 31.0% 79.57 84.2% 12.7% 37.2% 82.77 87.6% 2.3% 48.9%
500 2000 65.44 4.5% 45.2% 79.17 121.0% 18.1% 53.2% 82.55 126.1% 3.4% 70.5%

Table 3: Sort Benchmark Elasped Times

4.4 Elapsed Times

The other primary motivation for using a concurrent garbage
collector is to reduce the elapsed time of the client program by
allowing the collection work to be performed concurrently.
Because garbage collection time is a relatively small com-
ponent of total execution time such speedups are difficult to
achieve and hard to measure.

Tables 1, 2, and 3 contain the elapsed time performance
results for the three benchmarks. The columns shown in
the tables are the total elapsed time using all three collector
configurations, the speedup of the concurrent configurations
relative to the stop-and-copy collector, and the percentage
of time spent doing major and minor collection work. All
percentages are shown as percentage of the original elapsed
time using stop-and-copy. Each row of the table corresponds
to a different choice of the parameter values controlling how
much allocation takes place before collections are triggered.

In general we are successful at reducing the time spent
in major collections and the cases in which we achieve rea-
sonable speed ups are those in which the major collection
overhead is high. In the case of minor collection times the
results are harder to interpret. The time spent (by the client)
in the minor collector increases relative to the stop-and-copy
collector when concurrent major collection is enabled. We

believe this is in part due to high synchronization costs and
the addition of log processing work. Then when concurrent
minor collection is enabled (center columns in tables) the
minor gc time usually is reduced.

Earlier measurements [9] of these benchmarks indicate
that the log processing costs are small, but they do explain
some of the increase in minor gc time observed here. More
significantly, the delay imposed when the client waits for the
gc thread to detect a synchronization request appears to be
about 2 milliseconds on average. (In the benchmark results
shown here the gc thread was polling to detect a synchro-
nization request from the client after copying 3 kilobytes.)
This delay is not strictly required by our algorithm, and can
be eliminated by using fine-grained locking locking within
the garbage collection module to control access to particular
collector state variables. We therefore expect that further
experience with the collector will allow us to improve this
aspect of its performance.

4.5 Future Benchmarking Plans

All of the benchmarks we have measured so far use single-
threaded client programs, but the implementation does sup-
port multithreaded clients. We hope to obtain measurements
of some multithreaded applications soon. We have heard



from Tolmach that the speedups achieved on the benchmarks
in his work with Morrisett [8] may have been limited because
the garbage collector was stop-and-copy and single-threaded.
It is possible that those speedups would be closer to linear
using a concurrent collector.

We are also interested in investigating performance ques-
tions about the collector that are not answered by this paper.
We expect to be able to measure the trapping and GC syn-
chronization costs in the current implementation. These and
other measurements might answer the policy questions raised
in Sections 3.3 and 3.4.

5 Related Work

There is a long history of incremental and concurrent copying
collectors dating back to Baker [2]. Essentially all of these
collectors require the client to access the to-space version of
an object during collections. The technique of Ellis, Li, and
Appel [1] enforces this restriction by using virtual memory
protection to force clients to use only to-space objects. Our
technique does not require any unusual operating system or
hardware support and it imposes smaller demands on the
client than software versions of Bakers algorithm. To-space
methods also constrain the order in which objects are copied.
We believe that the ability to freely choose the order in which
objects are copied and traversed is especially important in a
system that may need to optimize access to the disk.

The idea of a separate forwarding pointer word first ap-
peared in the context of to-space methods. Brooks’ tech-
nique [4], later implemented by North and Reppy [12], re-
quires the client to follow a forwarding pointer that leads to
the relocated object. This eliminated a test in favor of extra
space and an indirection.

Work by Boehm, Demers and Shenker [3] on a concur-
rent mark-and-sweep collector uses mutation logging to track
changes made by the client. The mutation log is implemented
by periodically sampling the dirty page bits maintained by the
virtual memory system. The authors observed the possibility
of using a from-space invariant for a copying collector.

Two recent collectors for ML are quite closely related to
ours and employ variations of the replication idea. Doligez
and Leroy [6] implemented a concurrent collector that uses
a mixed strategy to provide collection for a multithreaded
version of CAML. Huelsbergen and Larus [7] implemented
a concurrent collector for SML/NJ that uses replicating col-
lection. Both of these collectors depend heavily on the fact
that ML implementations can distinguish mutable from im-
mutable data. Our technique does not depend on this feature
of ML and is therefore more generally applicable.

In Doligez and Leroy’s system, immutable objects are al-
located in private heaps that are collected by a replicating
stop-and-copy collector. The collector copies live immutable
objects into a shared heap. To avoid the issue of inconsis-
tent mutable values, all mutable objects are allocated in the
shared heap. The shared heap is collected using a concurrent

mark-and-sweep algorithm based on Dijkstra [5]. When a
mutation causes immutable objects that reside in a private
heap to become reachable from the shared heap, then these
objects are immediately copied into the shared heap. The use
of replicating collection allows the original owner of these
objects to continue to access the copy in the private heap.

The critical difference between their approach and ours is
that they do not use replicating collection to implement the
concurrent collector. They also avoid the issue of mutable
object consistency by not replicating mutable objects. Their
approach has several disadvantages when compared to ours.
First, the need to allocate mutable objects in the shared heap
makes such allocation expensive. Second, the need to copy
values assigned to mutable value may lead to unnecessary
overhead. If the same location is overwritten before the next
collection then extra copying will be done. Finally, the use of
a stop-and-copy collector for minor collections means such
collections are bounded in duration only by the size of the new
area. They deal with this problem by limiting the new area
size to 32 kilobytes. This is acceptable for their byte-code
interpreter, but would not be for SML/NJ. Their technique
has one important advantage over ours. In their collector
each thread can perform its minor collection independentlyof
every other thread and in general no global synchronization is
needed between the clients and the collector. We believe this
is an important advantage and are attempting to understand
how to achieve it in our system.

Huelsbergen and Larus’s collector uses an invariant that
requires the client to use the to-space version of a mutable
object if it exists. Because the client sometimes uses to-
space objects, all operations on mutable objects must suffer
some additional overhead due to synchronization with the
collector. As a result, their implementation is more closely
tied to the semantics of mutable values in SML and to the
details of their processor memory consistency model.

In addition, their collector is not generational,which makes
it less efficient than the original SML/NJ collector despite
the use of multiple processors. This also makes it difficult to
assess the overhead of their technique. Less importantly,
their implementation does not merge forwarding pointers
with header words and thus has a substantial space penalty.
We hope to implement their invariant along with some of the
others we have described elsewhere [10] and obtain a direct
comparison.

The work described in this paper extends our previous
work on incremental and real-time collection [9, 10] by sup-
porting concurrency among multiple clients and the garbage
collector. We are already using this concurrent collector
in conjunction with a transaction manager for a persistent
heap in which the mutation log also serves as the transaction
log. That work [13] focuses on how to provide good perfor-
mance for a garbage collected persistent heap and describes
the concurrent garbage collection algorithm at a high level.
In contrast, this paper explains the concurrent collector de-
sign and implementation in detail and explores some of the



policy issues that are relevant to providing hard real time
bounds on garbage collection pauses.

6 Future Work

We plan to make additional performance measurements and
test various control policies for the concurrent collector (see
Section 4.5). Another area that requires further study is how
to schedule the work of the concurrent gc thread opportunis-
tically so as to minimize its impact on overall client perfor-
mance. In an interactive or disk-bound system, collection
work could be scheduled to coincide with I/O activity. Also,
the resources consumed by the garbage collection thread in
a multiprocessor system are not free; understanding the col-
lector’s impact on overall system performance is therefore a
natural area for future work.

7 Conclusions

We have implemented a simple concurrent garbage collec-
tor using replicating garbage collection. The from-space
invariant permits the collector and the client to operate con-
currently without imposing low-level synchronization delays
on individual heap operations. The client communicates to
the collector via a mutation log. We have examined vari-
ous synchronization costs in an implementation that relies
on client cooperation for logging. Our prototype implemen-
tation shows moderate speedups and excellent pause time
performance for applications with bounded allocation rates.

Acknowledgements

We would like to thank the DEC Systems Research Center for
support as summer interns in 1990, when we first explored
the idea of replicating collection. We also thank Sally McKee
for showing us how to use jgraph.

References
[1] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time Con-

current Garbage Collection on Stock Multiprocessors. In SIG-
PLAN Symposium on Programming Language Design and
Implementation, pages 11–20, 1988.

[2] H. G. Baker. List Processing in Real Time on a Serial Com-
puter. Communications of the ACM, 21(4):280–294, 1978.

[3] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker.
Mostly Parallel Garbage Collection. In SIGPLAN Sympo-
sium on Programming Language Design and Implementation,
pages 157–164, 1991.

[4] Rodney A. Brooks. Trading Data Space for Reduced Time and
Code Space in Real-Time Garbage Collection. In SIGPLAN
Symposium on LISP and Functional Programming, 1984.

[5] E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and E. Stef-
fens. On-the-fly Garbage Collection:An Exercise in Coopera-
tion. Communications of the ACM, 21(11):966–975, Novem-
ber 1978.

[6] D. Doligez and X. Leroy. A Concurrent Generational Garbage
Collector for a Multi-Threaded Implementation of ML. In
Proceedings of the 1993 ACM Symposium on Principles of
Programming Languages, pages 113–123, January 1993.

[7] Lorenz Huelsbergen and James R. Larus. A Concurrent
Copying Garbage Collector for Languages that Distinguish
(Im)mutable Data. In Proceedings of the 1993 ACM Sym-
posiym on Principles and Practice of Parallel Programming,
1993.

[8] J. Gregory Morrisett and Andrew Tolmach. Procs and Locks:
A Portable Multiprocessing Platform for Standard ML of New
Jersey. In Proceedings of the 1993 ACM Symposiym on Prin-
ciples and Practice of Parallel Programming, pages 198–207,
1993.

[9] Scott M. Nettles and James W. O’Toole. Real-Time Repli-
cation Garbage Collection. In SIGPLAN Symposium on Pro-
gramming Language Design and Implementation, pages 217–
226. ACM, June 1993.

[10] Scott M. Nettles, James W. O’Toole, David Pierce, and
Nicholas Haines. Replication-Based Incremental Copying
Collection. In Proceedings of the SIGPLAN International
Workshop on Memory Management, pages 357–364. ACM,
Springer-Verlag, September 1992.

[11] S.M. Nettles and J.M. Wing. Persistance + Undoability =
Transactions. In Proceedingsof the 25th Hawaii International
Conference on System Sciences, volume 2, pages 832–843.
IEEE, January 1992.

[12] S. C. North and J.H. Reppy. Concurrent Garbage Collec-
tion on Stock Hardware. In Gilles Kahn, editor, Functional
Programming Languages and Computer Architecture (LNCS
274), pages 113–133. Springer-Verlag, 1987.

[13] James O’Toole, Scott Nettles, and David Gifford. Concurrent
Compacting Garbage Collection of a Persistent Heap. In Pro-
ceedings of the 14th ACM Symposium on Operating Systems
Principles. ACM, SIGOPS, December 1993.

[14] Paul R. Wilson. Uniprocessor Garbage Collection Techniques.
In Proceedingsof the 1992 SIGPLAN International Workshop
on Memory Management, pages 1–42. ACM, Springer-Verlag,
September 1992.

[15] Benjamin Zorn. The measured cost of conservative garbage
collection. Software—Practice and Experience, 23(7):733–
756, July 1993.


