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Abstract. STEREO is a novel algorithm that discovers cis-regulatory RNA interactions by assem-
bling complete and potentially overlapping same-strand RNA transcripts from tiling expression data.
STEREO first identifies coherent segments of transcription and then discovers individual transcripts that
are consistent with the observed segments given intensity and shape constraints. We used STEREO to
identify 1446 regions of overlapping transcription in two strains of yeast, including transcripts that
comprise a new form of molecular toggle switch that controls gene variegation.
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1 Introduction

Evidence has recently emerged from high-throughput expression datasets that overlapping RNA
transcripts can play an important role in gene regulation. For example, an antisense transcript can
be used to regulate its corresponding sense gene [8, 3]. In budding yeast, a sense/antisense toggle
has been shown to regulate the mating type of the cell [6]. The interference of a transcript on the
same strand as a coding transcript is also sufficient to play a repressive role in the regulation of
downstream genes [10, 11].

Discovering RNA transcript based cis-regulation requires the precise spatial localization of tran-
scripts and the identification of their overlap with other, nearby transcripts. Contemporary algo-
rithms for analyzing tiling microarray identify non-overlapping segments of coherent transcription
[15], but they do not attempt to identify the transcripts that generated and potentially span the
observed segments. A genomic locus which is multiply transcribed may produce a region of complex
segmentation, but no additional resolution of such regions into separate, overlapping transcripts can
be provided by dynamic programming or the probabilistic models used by segmentation algorithms.

We present a new algorithm, STEREO, for the computational analysis of overlapping transcrip-
tion. STEREO is organized into two phases. The first phase implements segmentation and discovers
genomic intervals which are transcribed in one of the input experiments. The identified genomic
intervals are classified into transcript or background classes using both observed probe intensities
and the 3′ to 5′ transcript intensity fall-off caused by reverse transcriptase processivity. The second
phase, transcript reconstruction, resolves this labeled segmentation into consistent arrangements
of explanatory RNA transcripts. STEREO performs a combinatorial search of all possible transcripts
given the constraints of transcript additivity and differential expression to yield a segmentation.

Fig. 1. Workflow description for segmentation and transcript recovery phases of the STEREO algorithm. The phases
operate on sequence in a genomic region tiled by a microarray. The first phase partitions the genome into intervals and
assigns each interval a local transcription label. The second phase identifies clusters of transcription. For each cluster,
transcript arrangements are enumerated and evaluated, and the optimal arrangement is chosen as the explanation
for that cluster.



STEREO is the first algorithm to computationally discover regions of complex transcription from
segmentation, and to resolve those regions into overlapping transcripts. Overlapping transcripts fall
into two mutually-exclusive categories, opposite and same-strand overlap, both of which may be
expected to exhibit mutual interference or other regulatory properties. Opposite-strand overlap in-
volves two transcripts are transcribed from complementary DNA strands and whose spatial extents
overlap despite their different directions. Sense/antisense pairs of transcripts over the same gene are
an example of opposite-strand overlap. Same-strand overlap occurs when two or more transcripts
transcribed from overlapping portions of a DNA strand.

We tested STEREO on tiling expression data from two strains of yeast and discovered 1,446
instances of transcriptional overlap. Of these, 564 (39.0%) were overlapping in the same strand, a
percentage consistent with previous estimates of alternate promoter usage in known yeast coding
regions [12]. Northern blot analysis confirmed a same-strand interaction predicted by STEREO, and
STEREO also identified opposite-strand transcripts that are organized into a novel form of molecular
toggle switch [2] that controls the state of gene variegaton.

The remainder of our paper is organized into sections that describe notation, previous work,
and experimental design (Section 2), expression segmentation and results (Section 3), transcript
discovery and results (Section 4), and a discussion (Section 5).

2 Preliminaries

2.1 Notation

We begin by outlining some basic notation for arrays and transcripts, shown in Table 1. For ge-

i, j, s, t probes i, experiments j, segments s, transcripts t
xi genomic location of probe i
yij intensity of probe i in experiment j

5′
[s,t],3

′
[s,t] 5′ and 3′ ends of segment s or transcript t

|x− x′| linear distance along the genome, in bp
ts type of segment s
θs parameters of segment s
δit the distance |xi − 3′

t| from probe i to the 3′ end of transcript t
Ti set of transcripts that overlap probe i
γtj intensity of transcript t in experiment j
λt 3’ log-linear slope of transcript t

Table 1. Array, segmentation, and transcript notation summary.

ometric descriptions of locations along the genome, we will use two terms: points and intervals.
A point will be a location of a single nucleotide in a genome assembly. Probes map to a genome
assembly as point locations, based on the center of the interval to which their sequence is uniquely



mapped. Intervals are convex subsets of the genome, single coherent loci specified completely by
start and end positions.

A breakpoint set B = (b1, . . . , bN ) is an ordered list of genomic locations which partition the
genome into a set of non-overlapping intervals called segments. A segmentation is a set of segments
which partition a complete genome. For a given set of breakpoints B, we use SB to indicate the
segmentation defined by those breakpoints. If s ∈ SB, then s is a genomic interval whose endpoints
(5′s and 3′s) are consecutive elements of the list B. A segmentation algorithm assigns each segment
a type ts and a set of parameters θs which provide a local description of the probe values within
that segment.

A transcript is a genomic interval, characterized by its start and end points 5′t and 3′t. It is a
single, coherent message transcribed from the genome in one or more cells. It may be edited or it
may be present in an unedited form, in which case it will appear as an interval when matched to the
genome which produced it. Overlapping transcripts will produce complex regions of transcription.
Transcribed regions are sections of the genome which may form part or all of a single mapped
transcript or multiple adjacent and overlapping transcripts.

2.2 Prior Work

Analysis of tiling microarray data by segmentation was originally used for the analysis of compar-
ative genomic hybridization [15, 19]. Picard et al. described the first dynamic-programming based
segmentation algorithms for discovering regions of copy number variation in array-CGH experi-
ments [15]. They later extended their algorithm to provide automatic labeling of segments using
a hybrid dynamic programming/expectation maximization approach [16]. These methods derive
their computational efficiency from the fundamental assumption that the segments they identify
form a non-overlapping partition of the genome into spatially coherent intervals, an assumption
which allows the use of dynamic programming approaches to discover optimal segmentations.

Tiling microarrays are also used to measure the transcription of genomic regions, and segmenta-
tion algorithms were similarly adapted to uncover consistently transcribed regions in those datasets
[18]. Huber et al. adapted the segmentation algorithm of Picard to identify transcribed regions from
tiling arrays [7]. This method was then used in David et al., which published the first tiling microar-
ray study of transcription in yeast [4]. One additional feature of tiling microarrays was their ability
to discover strand-specific transcription through the use of strand-specific probes and experimental
protocols which preserved the strand-specificity of the sample. The array results of David et al. were
strand-specific, and so were able to identify regions of opposite-strand overlapping transcription.

Microarrays are not the only method for analyzing transcription on a genome-wide scale and
in an unbiased manner; sequencing of cDNA has been a standard way to identifying unknown
transcripts. Miura et al. sequenced expressed cDNA tags to produce a catalog of 5′ and 3′ transcript
end-points throughput the yeast genome [12]. Sequencing measures single transcripts (and not
transcribed regions) directly, and therefore can give information about the structure of transcript
overlaps, starting, and ending points assuming that the read length is long enough relative to the
transcript lengths.



The use of new, high-throughput short read sequencing machines to investigate transcription
has led to the recent adoption of RNA-seq as a measurement of genome wide transcription [9,
21]. RNA-seq experiments sequence fragments of transcripts which are randomly selected from
the sample. Nagalakshmi et al. provided the first strand-insensitive view of transcription through
RNA-seq in budding yeast [13]. These results have been extended in a strand-specific manner in
related strains of yeast by Wilhelm et al. [20]. Unlike traditional sequencing, which produces longer
reads, these unpaired-end short read sequencing techniques are unable to give us a full picture
of the transcripts from which they were taken and suffer from the same problem of transcript
mixture as microarrays. Some sequencing protocols produce reads which are insensitive to the
strand of the underlying transcript, requiring that downstream computational analyses include
strand-differentiation as one of their goals [14].

2.3 RNA cis-regulation in S288C and Σ1278b

Using an array designed to probe the S288C genome at approximately 50 base-pair resolution, we
designed a set of experiments intended to reveal differences in transcription regulation between
two closely related strains of Saccharomyces cerevisiae: S288C and Σ1278b [5]. Each array had
two channels, Cy3 and Cy5, which were used to simultaneously measure the expression in the
two strains. In addition to the haploid (mat-α) dataset of [5], we generated diploid expression in
rich media with a technical replicate of each experiment. Treating each channel of each array as
a separate logical experiment, this design provided us with eight total experiments on which to
perform our segmentation and analysis. Data was normalized across experiments using quantile
normalization [1].

3 Segmenting expression using multiple constraints

The segmentation phase of our algorithm partitions the genome into a complete set of non-
overlapping regions. Each block, or segment, in the partition is labeled either TRANSCRIBED or
BACKGROUND and assigned a set of local parameters that model the microarray probe observations
within the segment. The segmentation considers multiple microarray experiments as input and
learns a single segmentation that jointly explains all the input experiments. Segments may be as-
signed local parameters on an experiment specific basis, but the locations of the segments and the
breakpoints that divide them are common across all experiments. Each label (TRANSCRIBED and
BACKGROUND) corresponds to a model class, each with different complexities (requiring a penalty
for the choice of a more complex class). The algorithm chooses from two classes, a flat model class
that fits a mean and a variance to a given segment and represents the BACKGROUND segment label,
and a linear model class that fits a line to the log intensities of the probes in a segment and is used
to model the TRANSCRIBED label. The linear model class captures the 3′ falloff effect created by the
reverse transcriptase step of our experimental protocol. Both model classes can be represented by



their log likelihood functions:

L(1)
j (x1, x2, µj , σ) =

1
2

log(σ)
∑

i:x1≤xi≤x2

(yij − µj)2

2σ2
(1)

L(2)
j (x1, x2, µj , λ, σ) = Π +

1
2

log(σ)
∑

i:x1≤xi≤x2

(yij − log(µjeδiλ))2

2σ2
(2)

Here the x1 and x2 parameters are the bounds of the segment, while xi and yij are the location of
probe i and the value of probe i in experiment j, respectively. Π is a penalty term which corrects for
the choice of the more complex (linear) model class, and is set through training against synthetically
generated data. For a fixed pair of segment bounds, the choice of parameters for either model
class are obtained by maximizing the corresponding log likelihood functions L(1) or L(2). For either
likelihood function, we will write θ∗ ≡ arg maxθ

∑
j Lj(x1, x2, θ) to indicate the maximum likelihood

values of the parameters given the segment boundaries x1 and x2, and L(x1, x2) ≡ L(x1, x2, θ
∗) for

the log-likelihood as a function of just the segment endpoints.

3.1 Segmentation phase uses dynamic programming to find an optimal segmentation

The algorithm finds an optimal set of segmentation boundaries such that the total log likelihood
of all probe observations from all experiments is maximized. Since a segmentation is a partition
that separates the genome into non-overlapping regions, this can be accomplished through dynamic
programming on the recursive formulation for L.

L(x1, x2) =


L(1)(x1, x2)
L(2)(x1, x2)
maxb∈[x1,x2] L(x1, b) + L(b, x2)

(3)

The identity of any segment can be tracked by remembering which choice is maximizing. Those
segments [x1, x2] for which the L(1)(x1, x2) is optimal are given the BACKGROUND label, while the
TRANSCRIBED label is assigned to those for which L(2)(x1, x2) was optimal.

3.2 Segmentation phase discovers novel regulatory transcription

We used the segmentation and labeling phase of our algorithm to analyze the tiling microarray
experiments described in Section 2.3. We ran our segmentation algorithm on each strand of the
tiling microarray dataset separately, and we identified 14, 076 segments on the Watson strand and
13, 792 on the Crick strand. From the segmentation on the Watson strand, we identified 37.0% of
the tiled genome as transcribed, and from the Crick strand we identified 40.3%; taken together,
accounting for overlap, we identified 65.2% of the complete genome sequence as transcribed.

The segmentation recovered two noncoding transcripts whose regulatory function is related to
their spatial overlap and interference with the production of a downstream coding transcript. In



Fig. 2. We are able to discover noncoding transcription which is known to play a role in the regulation both of a
downstream coding transcript (FLO11) and of each other. ICR1 and PRW1 are noncoding RNAs, reported in [2],
whose regulatory function is related to their spatial overlap. The segmentation phase of our STEREO algorithm is able
to find the complete PRW1 transcript and the 3′ end of the ICR1 transcript in the Bumgarner dataset. Regions
identified as BACKGROUND are shown in grey, TRANSCRIBED regions are shown in color. Genes are identified as arrowed
boxes. The x-axis is genomic coordinates and the y-axis is log intensity.

Figure 2, we show the locations of two noncoding transcripts, PWR1 and ICR1, that we showed
implement a new type of RNA molecular toggle [2]. We also ran an implementation of the Picard
segmentation algorithm on the S288C and Σ1278b dataset. Although this method can be easily
adapted to handle multiple experiments simultaneously, it lacks the ability to identify regions
with a shape other than a flat regions of transcription; instead, it separates the sloped regions of
transcription into “steps” of multiple flat segments. Therefore, the Picard algorithm is unable to
handle a key feature of our experimental protocol (the 3′ falloff) and unnecessarily single units of
transcription into artificially complex sets of segments.

4 STEREO assembles transcripts from expressed segments

4.1 An additive model for overlapping transcripts

Our model for overlapping transcripts employs two key constraints. First, we constrain same-strand
overlapping transcripts that are co-expressed to display additive expression in their region of over-
lap. Second, we constrain transcripts to display 3′ to 5′ fall off in intensity corresponding to the
processivity of reverse transcriptase in our experimental method. Our additivity constraint is re-
flected in the summation in Equation 4, and the slope constraint is reflected in the parameter λ



that uniformly applies to all modeled transcripts. Equation 4 models observed intensities yij as the
sum of transcript levels γtj associated with a particular transcript t in experiment j. Equation 4
makes the assumption that the noise of the array is log-normal, but that the transcripts themselves
are additive in the non-logarithmic-scale of the array.

yij = log(
∑
t∈Ti

γtje
λδit) + eij (4)

If we give the unit level error term a probability distribution, εij ∼ N (·; 0, σy), we turn Equation 4
into a probabilistic model with log-likelihood function:

L(Γ, σ, λ) = −Nσ −
∑
i

∑
j

(yij − log(
∑

t∈Ti
γtje

λδit))2

2σ2
(5)

The vector of transcript intensities Γ = {γtj}, along with the transcript slope λ and probe
level variance σ, are chosen to maximize the log likelihood function in Equation 5. Since this
equation is a non-linear function of a sum, there is not a simple closed-form solution for the
maximizing parameters. Instead, we compute the derivatives of the log-likelihood function and
maximize numerically using gradient ascent.

4.2 Enumerating and evaluating overlapping transcripts

A maximum likelihood solution to Equation 5 provides a method for finding local parameters for
a set T of overlapping transcripts. However, it does not answer the question of how we determine
T . A poor choice of T will lead to estimates of transcript intensities that do not correspond to
biological reality.

STEREO uses an enumeration-based search method to choose the transcript arrangement T which
best explains the transcribed regions that are provided as input by the segmentation and labeling
phase. We assume that the segmentation provided to the transcript discovery phase has correctly
identified the starts and ends of transcripts as breakpoints in the segmentation, and has identified
each segment as transcribed or noise. Furthermore, we assume that every transcribed segment will
be explained by at least one transcript, while noise segments will not be explained by any transcript.

We break the problem of transcript calling into independent sub-problems, called clusters. Each
cluster is a spatially-consecutive sequence of transcribed segments, separated from every other
cluster either by one or more noise segments or a chromosome boundary.

The STEREO algorithm first identifies the clusters corresponding to the input segmentation of
tiling microarray data. Then for each cluster, it enumerates all possible transcript arrangements.
Each cluster will have a finite number of arrangements, since there are a finite number of breakpoints
in the cluster and we assume that the total number of transcripts does not exceed the number of
segments in the cluster. For each enumerated transcript arrangement T , we find an optimal set of
parameters ΘT ≡ 〈ΓT , λT , σT 〉 = arg max L(Γ, λ, σ) by maximizing the log-likelihood equation of
the probes within the cluster. The penalized log-likelihood L(ΓT , λT , σT ) − C(T ) then provides a



score by which to evaluate the fit of the transcript arrangement T to the cluster. The complexity
penalty C(T ) = α|T |+ βcover(T ) assesses a constant penalty for the total number of transcripts in
T and for the number of overlaps cover(T ) in the arrangement. The penalties (α and β) are chosen
to optimize transcript discovery against synthetically-generated data.

4.3 STEREO Transcript discovery recovers appropriate SER3/SRG1 transcripts

An example of overlapping transcripts with regulatory interactions in yeast is the SER3 gene and its
upstream intergenic transcript, SRG1. The SER3 gene is involved in serine biosynthesis and under
repressing conditions its promoter is bound by significant levels of both TATA binding protein
(TBP) and RNA polymerase II (Pol II). The expression of a short transcript that runs through the
SER3-proximal TATA element is associated with decreased expression of the SER3 transcript itself
[10]. Furthermore, a nearly 2 kb read-through transcript starting from the SRG1 TATA element
and extending through the entire SER3 gene itself was observed by northern analysis in the same
study.

The SER3 and SRG1 genes, and their observed architecture of overlapping transcription, provide
a convenient test of our ability to estimate relative intensities of overlapping transcripts. In Figure
3, we show that our tiling array data in S288C (red) and Σ1278b (blue) around the SER3 and
SRG1 locus. The figure depicts the locations of three overlapping transcripts, shown as orange

Fig. 3. A Re-construction of transcript intensities at the SER3/SRG1 locus. A1. Probes which are included in either
the SER3 or SRG1 region and are included in this analysis are displayed in either red (S288C) or blue (Σ1278b).
Original probes from Martens et al. enriched for the SRG1 transcript are green. Putative transcripts A, B, and
C are shown in orange and TATA elements with red dots. Transcript A corresponds to Martens SRG1 transcript
while Transcript B corresponds to SER3 transcript. Transcript C is the “readthrough” transcript Martens detected,
extending exactly 2 kb. Transcript intensity analyses were carried out for two arrangements, (A2) just the A and
B transcripts and (A3) all three transcripts. Each transcript has reconstructed intensities for both S288C (red) and
Σ1278b (blue) experimental data. B Schematics for each category along with the total number of STEREO transcripts
identified within each category are shown.



arrows: one from the upstream SRG1 TATA element extending to the annotated start of the SER3
gene, the second from the SER3 TATA element extending to the end of the SER3 gene, and one 2
kb-long transcript starting from the SRG1 TATA element and extending through the SER3 gene
itself.

Using our transcript intensity estimation method we reconstructed relative log-intensities of
4.4 and 6.3 for the A and B transcripts respectively; these values are consistent with previously
reported concentrations for SRG1 and SER3 respectively [10]. Moreover, the fitted intensities are
anti-correlated across cell types, between the two measured strains of yeast. When the SRG1 tran-
script drops the SER3 transcript rises, consistent with the claim that SRG1’s transcription represses
that of SER3.

4.4 Identification of 1446 overlapping transcripts

STEREO resolved the collected S288C and Σ1278b expression datasets into 6609 transcripts. Most
transcripts (5233) inferred by our method were strand singletons, covering a single region without
a second overlapping transcript. However, our algorithm identified 1446 regions of overlapping
transcription, of which 564 were same-strand overlapping transcripts. Figure 3 Part B shows a
classification of transcript pairs into six categories depending on their relative orientation and
overlap, and gives the number of transcript pairs that fell into each category from our dataset.

The segmentation and labeling phase has also been able to uncover overlapping transcript pair
predictions which show differential expression between different cell types and strains, and whose
variation is consistent with potential repressive regulatory interactions between the overlapping
transcripts.

4.5 Northern analysis of overlapping predictions

In order to confirm one of our predictions we chose three of the predictions made by our algorithm
to test with northern blot analysis. To facilitate northern blot analysis we chose examples to test
that had a larger outer transcript with a smaller inner contained transcript that would readily be
immediately apparent in the experimental result. In one of the three locations tested northen blot
analysis showed same-strand overlapping transcription with transcript lengths matching those pro-
duced by STEREO. This validated locus, YCR082W, provides a new example of tandem overlapping
transcripts previously unknown in the literature. Instead of reporting overlapping transcripts in this
location, an alternate explanation would have been two tandem transcripts aligned head-to-tail; in
this case, the transcript discovery algorithm reconstructs the more complex overlap based on our
prior distribution over transcript intensities and our belief that higher-intensity transcripts are less
likely than lower ones.

Zheng et al. have previously attempted to quantify the intensities of multiple overlapping tran-
scripts using a hierarchical Bayesian model [22]. Their approach is limited, however, to the quantifi-
cation of transcript intensities whose locations have already been specificed from gene annotations
or an external datasource. Rochette et al. have reported a set of overlapping transcripts at a



Fig. 4. Northern analysis was performed at YCR082W to test for the presence of multiple overlapping transcripts.
Probes were chosen to cover the first 400 bp of the gene, shown as a blue square. The blot (A) shows two transcripts
with lengths approximately 5 kb and 600 bp. These transcripts correspond (B) to two overlapping transcripts called
by the STEREO algorithm with lengths of approximately 5 kb and 300 bp. For clarity, only the Watson strand is shown.
Probes in TRANSCRIBED regions are shown in color for S288C (red) and Σ1278b (blue) data.

genome-wide level in the parasite Leishmania [17]. These transcripts were identified by experimen-
tal means (5′-RACE) in a genome significantly smaller than yeast, however, and do not represent
a comprehensive computational approach to transcript discovery.

5 Discussion

We introduced several unique features of our STEREO algorithm. In the segmentation phase, we
simultaneously incorporated multiple experiments and utilized the slope of the transcription data
to identify transcribed segments. In the transcript discovery phase we employed both additive
intensity and differential expression to evaluate likely configurations of transcripts.

STEREO also has certain limitations. While a 3′ to the 5′ intensity fall off provides a useful
constraint, it also makes it more difficult to accurately locate the 5′ ends of long, low-abundance
transcripts. In addition, STEREO is sometimes unable to separate same-strand overlapping tran-
scripts without differential expression between conditions or strains. In these cases, overlapping
transcript calling depends on our prior distributions on transcript intensities. A better under-
standing of the distribution of transcript abundances will improve the accuracy of our transcript
reassembly algorithm. The combinatorial architecture of gene regulation is in part implemented by
RNA based cis-regulation. We are making our set of 1446 candidate interactions available for other
investigators.
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