
An Infrastructure for HW/SW Partitioning and Synthesis of Architectural
Simulators

David A. Penry Zhuo Ruan Koy Rehme
Department of Electrical and Computer Engineering

Brigham Young University
Provo, UT 84602

Abstract

Many researchers are interested in using FPGAs to ac-
celerate architectural simulation. Partitioning of the simu-
lator between hardware and software is an important prob-
lem which has not been explored because of the enormous
effort required to develop different RTL and communication
infrastructure for each potential partition. We are develop-
ing a hybrid HW/SW simulation infrastructure which will
provide tools for partitioning architectural simulators and
synthesizing RTL for the hardware portions. This infras-
tructure will allow the community to explore and under-
stand the partitioning problem and will eventually lead to
automated partitioning algorithms.

Introduction and Motivation

Recently there has been much interest in accelerating ar-
chitectural simulation through the use of FPGAs. Many ef-
forts to do so have been presented in the last two meetings of
the Workshop on Architectural Research using FPGA Plat-
forms (WARFP). For all of these efforts, an important issue
which must be addressed is partitioning: what portion of
the simulation should be computed by reconfigurable logic
and what portion should remain in software? The approach
taken to partitioning affects both the speed of simulation
and the size of the model which can be simulated.

There have been three main approaches to partitioning:

1. Place all simulation functionality into hardware, e.g.
[8, 10, 14]. This approach creates a full system proto-
type, but requires a complete RTL-level design of the
hardware and is limited by hardware capacity.

2. Partition the simulator into functional and timing por-
tions, placing the timing portion in hardware and leav-
ing the functional simulator in software[6]. This ap-
proach mimics the structure of several microarchitec-
tural simulators, requires fewer hardware resources
than the previous approach, and may reduce the design
effort. A related partitioning has the software handling
only system calls[4].

3. Partition the simulator based upon hierarchical struc-
ture in the simulator and allow hardware to communi-
cate with the simulator. Such hybrid simulation was
suggested in [7]; a hybrid simulation mode has been
demonstrated[11] within the Liberty Simulation Envi-
ronment (LSE)[13]. Hybrid simulation allows incre-
mental implementation of hardware components.

No work has yet evaluated the relative effectiveness or
the speed vs. capacity tradeoffs of different partitioning
strategies; in part this is because researchers have had to
manually partition and create RTL-level descriptions of the
hardware portion of the simulator. This manual work is
very time-consuming; indeed some projects announced in
WARFP ’05 still did not have complete hardware designs
by WARFP ’06. As a result, researchers do not have the
human resources to explore partitioning.

In this talk we describe a hybrid simulation infrastructure
under development which will support research into parti-
tioning and HW synthesis of simulator components. The
ultimate goal is to automatically partition a microarchitec-
tural model, generating both the RTL required and commu-
nication code within the simulator to allow hybrid HW/SW
simulation.

This infrastructure will have several components:

• A platform-independent “front-end” communication
API which hides platform communication details from
both the user and the generated simulator code.

• A partitioning tool which accepts user input about
the partitioning to perform, provides feedback on the
quality of the partitioning, automatically partitions
simulator code into SW-implementation and HW-
implementation portions, and inserts calls to the com-
munication API into the SW-implementation code.

• A synthesis tool which generates RTL for the HW-
implementation portion of the simulator.

We expect to use this infrastructure to investigate parti-
tioning tradeoffs of speed vs. capacity and to develop auto-
mated partitioning algorithms which take into account com-
munication costs and hardware capabilities. The infrastruc-
ture will be made available to the community.



Methodology and Status

Our work builds upon the hybrid hardware/software sim-
ulation described in [11]. In that work, we integrated Pow-
erPC cores into a structural microarchitectural model of a
chip multiprocessor. Structural microarchitectural models
are an excellent design entry point because they allow rapid
specification of accurate, detailed microarchitectural sim-
ulators within weeks[12] and because they provide a nat-
ural starting point for partitioning based upon either de-
sign hierarchy or functional/timing boundaries. We sup-
port the Liberty Simulation Environment[13], Unisim[1],
and SystemC[2] for design entry.

The platform-independent communication API is de-
signed to support a variety of partitioning approaches, thus
it must support not simply transfer of signals between the
hardware and software and control of hardware clocks, but
also library calls and means for sharing data with the soft-
ware simulation. The API hides implementation details
from the user; one API call is as simple as “send data to
the hardware,” with the implementation being able to trans-
late and route the data as needed. We present the API def-
inition in the talk. We intend to demonstrate the platform-
independence of the API by implementing the API for two
platforms: the DRC Development System DS1000 system,
and the BEE2 system[5]; the implementation is ongoing and
extends work begun in [11].

The partitioning tool accepts a user specification of the
partitioning to be done. In the talk we present a compact,
easy-to-use partition specification language and outline the
range of partitions which are supported. Such partitions in-
clude both high-level partitions such as design hierarchies
and functional vs. timing and low-level partitions based
upon control flow or data flow. The partitioning tool will
be based upon a C++ compiler; we plan to use extensions
to LLVM[9] to parse elements of the simulator descriptions,
perform data and control flow analysis, generate simulator
code with calls to the communication APIs, and provide
parsed input to the synthesis tool. The tool will provide
feedback on the quality of the partitioning, reporting met-
rics such as the size of the partitions and the estimated com-
munication bandwidth required.

The synthesis tool will be based upon existing C-to-gates
synthesis technology; we plan to use the Trident C-to-gates
framework[3]. This synthesizer is able to handle a reason-
ably large subset of C++ code. It also uses LLVM to deal
with its IR, allowing us to easily integrate the partitioning
and synthesis tools.

The completed infrastructure will allow the community
to investigate partitioning and to understand the speed vs.
capacity tradeoffs for different models and hardware. We
intend to use the results of such investigation to develop au-
tomatic partitioning algorithms that take into account com-

munication costs, hardware capacity, and resources such as
memories or processors.

References

[1] UNISIM: UNIted SIMulation Environment home page.
http://www.unisim.org.

[2] IEEE Std 1666-2005: IEEE Standard SystemC Language
Reference Manual. IEEE, 2005.

[3] Trident: An FPGA compiler framework for floating-point
algorithms. In Proceedings of the International Confer-
ence on Field-Programmable Logic and Applications (FPL),
pages 317–322, 2005.

[4] Arvind, K. Asanović, D. Chiou, J. C. Hoe, C. Kozyrakis, S.-
L. Lu, M. Oskin, D. Patterson, J. Rabaey, and J. Wawrzynek.
CRI: RAMP: Research accelerator for multiple processors
- a community vision for a shared experimental parallel
HW/SW platform. Technical report, Ramp Project, 2005.

[5] C. Chang, J. Wawrzynek, and R. W. Broderson. BEE2: A
high-end reconfigurable computing system. IEEE Design
and Test, 22(2):114–125, Mar/Apr 2005.

[6] D. Chiou, H. Sunjeliwala, D. Sunwoo, J. Xu, and N. Patil.
FPGA-based fast, cycle-accurate, full-system simulators. In
Proceedings of the 2nd Annual Workshop on Architecture
Research using FPGA Platforms, 2006.

[7] E. S. Chung, J. C. Hoe, and B. Falsafi. ProtoFlex: Co-
simulation for component-wise FPGA emulator develop-
ment. In Proceedings of the 2nd Annual Workshop on Ar-
chitecture Research using FPGA Platforms, 2006.

[8] J. D. Davis, L. Hammond, and K. Olukotun. A flexible ar-
chitecture for simulation and testing (FAST) multiprocessor
systems. In Proceedings of the 1st Workshop on Architecture
Research using FPGA Platforms, 2005.

[9] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis and transformation. In Pro-
ceedings of the International Symposium on Code Genera-
tion and Optimization (CGO), pages 75–86, 2004.

[10] E. Nurvitadhi and J. C. Hoe. Full-system architectural ex-
ploration sandbox. In Proceedings of the 1st Workshop on
Architecture Research using FPGA Platforms, 2005.

[11] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I.
August, and D. Connors. Exploiting parallelism and struc-
ture to accelerate the simulation of chip multi-processors.
In Proceedings of the Twelfth International Symposium on
High-Performance Computer Architecture (HPCA), pages
29–40, February 2006.

[12] D. A. Penry, M. Vachharajani, and D. I. August. Rapid de-
velopment of a flexible validated processor model. In Pro-
ceedings of the 2005 Workshop on Modeling, Benchmarking,
and Simulation, June 2005.

[13] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
and D. I. August. Microarchitectural exploration with Lib-
erty. In Proceedings of the 35th International Symposium on
Microarchitecture, pages 271–282, November 2002.

[14] S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Ge,
C. Kozyrakis, and K. Olukotun. A practical FPGA-based
framework for novel CMP research. In Proceedings of the
15th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, 2007.


