A Scalable Processor with Embedded Software for
Large-Scale Scientific Applications

Daniel Alex Finkelstein and Haldun Hadimioglu
Computer and Information Science
Polytechnic University
Brooklyn, NY 11201
Email: dfinke01@cis.poly.edu haldun@photon.poly.edu

1. PrREFACE

We present a scalable, dynamically reconfigurable proces-
sor design that encompasses both reconfigurable circuitry and
software-capable programmability for supercomputing appli-
cations on FPGAs. Advanced FPGA chips contain both recon-
figurable logic blocks and embedded processor cores, provid-
ing the developer with an environment for embedded system
desiglﬂ Since the reconfigurable fabric and the embedded
processor cores can be programmed and used independently of
each other or in any combination with each other, the designer
has a flexible platform in which new avenues of research are
possible.

II. RELATED WORK

The necessity of simulation to measure performance and
validate computer architectures is widely accepted, however
the expense with respect to simulation time and computer
resources required to execute simulations is an ongoing chal-
lenge. Current CPU simulators can produce cycle-accurate
results with reasonable hardware resources (a desktop PC may
be sufficient) [5] [12] [4]. System simulators have gained
in popularity and relevance as workloads beyond traditional
kernels or programs from the SPEC CPU 2000 suite are tested
[2]; they require both more sophistication in the simulator en-
vironment as well as greater investment in hardware resources
to run them within tolerable execution times. The Virtutech
Simics system simulator [3] requires a complete operating
system image and sufficient dedicated memory to test work-
loads that often involve transaction and application services.
Full system simulators such as Simics require dedicated hosts
with resources (CPU, memory, and disk) that exceed those
commonly found on workstations.

Nonetheless, software-based cycle accurate simulators are
considerably slow [6]. Object-oriented processor simulators
allow differing levels of granularity in the algorithm’s model
[12] [4] and extensions to full system simulators utilize the
simulator’s API to provide narrower and more focussed areas

IXilinx Virtex II Pro [14] and higher devices include so-called ‘hard’
PowerPC embedded RISC processor cores, while the same Xilinx products
and Altera FPGAs support ‘soft’ cores, which are functionally similar RISC
processor cores configured within the FPGA CLB fabric.

of investigation for architects within a larger framework [10].
In contrast to these software-only simulation environments,
FPGAs offer a bifurcated simulation path for hardware algo-
rithm modeling, prototyping, and performance testing.
FPGAs can be classified into two general areas: FPGAs as
a prototype substrate (with the eventual goal of fabrication on
silicon) and FPGAs as a reconfigurable substrate. FPGA-based
systems Molen [13] and Garp [7] use FPGAs as a prototyping
platform for dynamic application acceleration, although Garp
suggests that the FPGA will remain part of the final processor
architecture. However, Garp binds a RISC processor externally
to an FPGA as opposed to embedding it within the FPGA
fabric as in the case of the Xilinx Virtex II Pro processors.
This may be nothing less than a semantic difference or could,
upon further inspection, result in fundamentally different
instruction- and data-flow properties. The Raw project [11]
and Heithecker’s paper [8] use FPGAs to rapidly implement
hardware algorithms and obtain performance measurements
prior to silicon fabrication. The Cray XD1 uses the Virtex
II Pro FPGA purely as an application accelerator, coupled
between AMD processors and DRAM main memory [1].

III. CONTRIBUTION

We expand the notion of reconfigurability by introducing a
processor that is both reconfigurable and programmable. The
processor is reconfigurable in the sense that the configurable
logic blocks of the FPGA fabric can be remapped to perform
different functions at will. The processor is programmable in
the sense that the embedded RISC core runs both application
code as well as dedicated internal-only code that serves control
and monitoring functions.

A. Platform

Our development environment consists of Xilinx ML310
development boards [14] with Virtex I Pro XC2VP30 FPGA
processors, ISE Foundation programmable logic design tool
(ISE) 7.1i, Embedded Development Kit and Platform Studio
(EDK) 7.1i, and ModelSim 6.1.

The ML310 contains a Virtex II Pro XC2VP30 FPGA
with more than 30,000 logic cells, over 2,400 Kb of BRAM,
and dual PPC405 processors, provides onboard Ethernet
MAC/PHY, 256 MB DDR memory, multiple PCI slots, and
standard PC I/O ports within an ATX form factor board. An

integrated System ACE CF controller is deployed to perform
board bring-up and to load applications from the included
512MB CompactFlash card. The Virtex II Pro can be partially
and dynamically reconfigured.

The ISE provides an integrated development environment
for custom VHDL and Verilog programming while the EDK
produces a processor environment through a base system
builder, to which custom hardware resources are added in
Verilog or VHDL. The EDK is required for programming the
hard (PowerPC) and soft (MicroBlaze) cores on the FPGA as
well as integrating the peripheral components included on the
development board.

B. Design

We use both the reconfigurable logic blocks (the ‘hard-
ware’) and the programmable embedded processor cores (the
‘software’) in varying combinations so that applications can
be rapidly tested for performance by selectively partitioning
the algorithm into portions suitable for the hardware and
software resources on the FPGA. In contrast, current FPGA
research concentrates on application acceleration to find op-
timal partition points of algorithms (or programs, as they
are often identified) in which computationally challenging
portions are split off into dedicated hardware as in an ASIC
through either static analysis of program code or dynamic
runtime performance measurement. Our use of the hybrid
FPGA device, instead, extends the processor’s capabilities.
The programmable embedded processor core has dual roles: it
controls the flow of execution and data movements within the
processor as well as executing instructions on the application’s
behalf.

The logic blocks are reconfigured by the Xilinx-provided
IP communicating with peripherals on the development board.
We insert our own design for the application and for most
of the processor’s other functionality. Higher level control
and monitoring, which is typically dynamic, is relegated to
the embedded software portion of the processor design. This
includes Xilinx-provided hardware drivers and the code we
write as an interface between the application and Xilinx
drivers. Communication between the hardware and software
on the hybrid FPGA is accomplished through software-visible
registers that are mapped to VHDL ports in the custom
hardware.

The hybrid FPGA is conducive to a flexible execution
platform encompassing both traditional processor components
and dynamic programmable structureﬂ Traditional processors
can be fashioned wholly in the FPGA reconfigurable fabric
or by using on-chip processor cores (or both), however the
hybrid FPGA contains more logic available for the architect’s
use. Expansion of the processor’s role in execution is possible
by integrating this logic within the boundary of the processor,
including the functions of controllers. With an inclusive execu-
tion platform, supervisory (control and monitoring) software

2Programmable cores are akin to microengines found in network processors
where dedicated circuits are not required yet high execution speed is desired.

tasks signal the processor to dynamically adjust its perfor-
mance in reaction to operational parameters.

We plan to implement parameterized execution through a
vector of parameters in which power requirements, memory
availability, disk latencies and availability and throughput, net-
work latencies and throughput, and priority weightings among
them are passed to the processor so that control decisions
can be modified to cause the processor’s performance to more
closely match the desired performance. Memory access is of
particular interest due to its inextricable relevance to overall
performance; to that end, the bifurcated processor environment
enables a new method for reducing random access penalties
in DRAM and cache misses in cache memories. If a program
can be treated as two streams — instruction and data — and
the entry point for the instruction stream is the high level, or
software-based, controller of the processor, then the processor
may selectively retrieve data from peripherals based on values
in the performance vector and the availability of computational
resources tracked by the processor.

Retrieving data from tertiary storage, whether from local
or networked fixed disks in addition to traditional network
data, is often orders of magnitude slower than other resources
further down the memory hierarchy closer to the CPU. A
persistent challenge is to prevent the CPU from waiting for
data no matter from what source it must be retrieved, but
we posit that the load-store architecture is not optimal for
this task. As networks approach throughput speeds closer to
that of the processor local bus and chip designs include the
network controller directly on the processor local bus [9],
network latencies become less pressing an issue, especially in
comparison to fixed disks. In large systems, however, clusters
of disks can be controlled in a multiplexed manner such that
overall throughput may approach that of network throughput
we currently observe.

IV. CoNcLUSIONS

We present a scalable reconfigurable processor with em-
bedded software for large-scale scientific applications. The
tasks assigned to the hardware and software can be varied
dynamically based on run-time and user parameters.

Because the processor includes HDL code, it can more
easily scale in a multiprocessor configuration through dynamic
data structures that are challenging to implement in fixed,
nonprogrammable circuits. Though we don’t address the im-
portant issue of control in a distributed system here, a system
consisting of several hybrid processors can cooperatively exist
through processor-processor interaction enabled by adding
elements to the performance vector.

V. ACKNOWLEDGMENTS

We wish to acknowledge the support of Xilinx in providing
us with ML310 development boards, design tools, and tech-
nical support. This work was supported in part by a research
fellowship from the U.S. Department of Education GAANN.

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

REFERENCES

Cray XD1.

SPEC CPU 2000, http://www.spec.org/cpu2000.

Virtutech Simics, http://www.virtutech.com.

N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-Oriented
Full-System Simulation using M5. Sixth Workshop on Computer
Architecture Evalution using Commercial Workloads, February 2003.
D. C. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0.
Technical Report CS-TR-1997-1342, University of Wisconsin—Madison,
1997.

D. Chiu. FAST: FPGA-based Acceleration of Simulator Timing Models.
Workshop on Architecture Research using FPGA Platforms, February
2005.

J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. In Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 12-21. IEEE,
April 1997.

S. Heithecker and R. Ernst. Traffic shaping for an FPGA based SDRAM
controller with complex QoS requirements. In DAC ’05: Proceedings
of the 42nd annual conference on Design automation, pages 575-578,
San Diego, California, 2005. ACM Press.

Intel IOP331 I/O Processor. http://www.intel.com/design/iio/iop331.htm.
M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset.
Computer Architecture News, 2005.

M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffmann, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf,
M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,
and A. Agarwal. The Raw Microprocessor: A Computational Fabric
for Software Circuits and General Purpose Programs. [EEE Micro,
22(2):25-35, March-April 2002.

M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. 1.
August. Microarchitectural Exploration with Liberty. In Proceedings of
the 35th International Symposium on Microarchitecture (MICRO), pages
271-282, November 2002.

S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN pu-coded
processor. Lecture Notes in Computer Science, 2147:275-285, 2001.
Xilinx ML310 Embedded Development Board. http://www.xilinx.com.

