
FPGA-based Fast, Cycle-Accurate, Full-System
Simulators

Derek Chiou, Huzefa Sunjeliwala, Dam Sunwoo, John Xu and Nikhil Patil
University of Texas at Austin, Electrical and Computer Engineering

{derek,sanjeliw,sunwoo,zxu,npatil}@ece.utexas.edu

Abstract— An ideal computer simulator is (i) fast, (ii) accurate
to cycle level resolution, (iii)complete, modeling the entire system
and running unmodified applications and operating systems,(iv)
transparent providing visibility into all aspects of the system with
minimum impact to simulation performance, (iv) inexpensive and
(v) easy to create, extend and modify. Conventional wisdom says
that no simulator can simultaneously have all these properties[1]
and none currently does. Instead, simulators are specialized,
emphasizing some desired properties over others. For example,
architectural simulators traditionally trade speed for accuracy
while full-system simulators traditionally trade accuracy for
speed.

This paper describes an approach to simulation that potentially
has all of the characteristics of an ideal simulator listed above.
It achieves its capabilities by partitioning a simulator into a
software component and a hardware component implemented
in FPGAs. The resulting simulators are capable of 1M to
100M cycles per second, full cycle-accuracy, the ability torun
unmodified applications and operating systems and full visibility
at a reasonable price. Such a simulator could potentially result in
simulator convergence, where different groups can use the same
simulation infrastructure, resulting in more coherent architec-
tures, implementations and software.

I. I NTRODUCTION

Being able to accurately and quickly predict properties of
computer systems is useful for architects, designers, software
developers and users of computers. Simulators provide a
window into the inner workings of the computer that help
foster understanding and enable the accurate evaluation of
ideas and theories. Because simulators often do not have the
same constraints as a real implementation, they can be made
easier to probe, examine and modify.

A myriad of simulators exists. Architects traditionally use
software-based cycle-accurate simulators to evaluate next gen-
eration processor and system architectures. There are many
such simulators in academia and industry[10], [4], [1], [18],
[2], [15], [19] and simulator builders[23]. Such simulators are
transparent and can beaccurate but are generally slow, sim-
ulating a single complex processor at around 10K cycles per
second. Thus, such simulators are too slow to run real applica-
tions on real data sets. Benchmarking[22] and sampling[20],
[9] can reduce the number of instructions while attempting to
maintain accurate performance prediction capabilities but are
still simplifications that can miss complex interactions between
the application and the operating system, external events and
parallelism.

The only real solution is a cycle-accurate simulator fast
enough to run real applications. Even with perfect speedup,

however, a software-based cycle-accurate simulator would
require tens to hundreds of thousands of processors which is
currently infeasible and would be very costly. It is clear that
faster cycle-accurate simulators require hardware support.

Several companies such as Cadence (Quickturn and Palla-
dium), Axis, IKOS and Tharas sell field-programmable gate
array (FPGA) based accelerators or emulators to improve
cycle-accurate simulator performance. In such systems, reg-
ister transfer logic (RTL) code is compiled for an acceler-
ator/emulator box or card, sometimes in conjunction with
components executing in software. Such systems can befast
(up to 100M cycles per second),accurate, complete and
transparent, but are so expensive that even large companies
can only afford a few copies and often noteasy-to-use. In
addition, these systems require a complete version of the RTL,
further increasing the cost and time-to-simulation.

There are several projects, many that were presented at the
first WARFP, that implement some components of a computer
system, such as the processor, memory controller[8], [14] or
both[7], [12], [5], [16], in FPGAs and the rest in real hardware.
Such systems arefast and generallycomplete, but are not
accurate unless all components are implemented in FPGAs
which makes such systems difficult to initially develop and
often difficult to modify.

II. U NIVERSITY OF TEXAS FPGA-ACCELERATED

SIMULATION TECHNOLOGIES(UT FAST)

A cycle-accurate computer simulator can be partitioned into
(i) a timing model that simulates only the micro-architectural
structures that affect timing and resource arbitration and(ii)
a functional model that simulates only the instruction set
architecture (ISA). The timing model implements only the
control path and not the datapath, making the model itself
extremely small, simple and easy to build up out of com-
posable functional units. For example, the timing model only
implements cache tags and not the data itself. ALUs become
pipeline stages. Likewise, the functional model knows nothing
about timing issues, also making it small and easy to extend.

This partitioning is not novel. For example, Asim[10] and
Simplescalar[1] are both partitioned in this fashion. However,
since both components are running on the same processor
in such simulators, no effort was made to minimize the
communication between the two models. In such simulators,
there is also much more processing done in the timing model
due to the large number of parallel structures to simulate than



Timing

Model

FPGA

(micro-arch, stats)

Functional

Model

software

(ISA)

Inst

stream

feedback

Fig. 1. A High-Level View of a FAST simulator

in the functional model. In addition, most statistics gathering
is done within the timing model since it produces performance
information, further slowing down the timing model.

FAST attacks the performance bottleneck inherent in soft-
ware simulators by implementing the timing model in hard-
ware. Hardware is inherently parallel and thus can efficiently
implement the parallel structures found in the timing model.
The separation between functional model and timing model
eliminates the need to support the data path, dramatically
reducing the hardware resources required. Thus, very complex
processors can fit in a relatively small amount of hardware. In
addition, hardware can be applied to gather statistics, enabling
full speed statistics gathering and processing.

Unlike existing software-only simulators, FAST simulators
are carefully optimized to minimize communication between
the functional model and timing model. By doing so, the two
models can be more loosely coupled and thus be implemented
in different technologies with little impact on performance.

Unlike other hybrid FPGA/software simulators that are
partitioned on target system module boundaries such as a
cache, a floating point unit or even a processor core, FAST is
partitioned on the simulator boundary between the function-
ality and timing. This architecture pushes all of the hard-for-
software-easy-for-hardware components to hardware and the
hard-for-hardware-easy-for-software components to software,
minimizing bottlenecks.

A. FAST Basics

An instruction set simulator capable of booting operating
systems and running unmodified applications is used as the
functional models. Existing simulators such as Simics[11],
SimOS[18], Bochs[13], QEMU[17], M5[2], Mambo[4] and
AMD’s SimNow[21] can all serve as full-system functional
models. Such functional simulators are capable of running in
excess of 100M instructions per second, though not all do.

Figure 1 is a high-level view of a FAST simulator. The
functional model implemented in software pipes an instruction
stream to the timing model implemented in FPGAs1. The
functional model’s job is to decode and execute one instruction
at a time and generate a “perfect” instruction stream with
correctly resolved branches. It pipes the decoded instruction
including a decoded opcode, source and destination register

1Though initial implementations use a software-based functional model,
hardware-accelerated and hardware implemented functional models[16] are
possible. The entire FAST simulator can also be implementedin pure software
if FPGA-board availability is an issue.

Fetch

Decode/Rename

ALU Load/Store/Cache

Writeback

Memory Bus

Reservation Station Reservation Station

Fig. 2. A simple superscalar processor implemented in FAST.The solid
white circles indicate the DGR of anadd instruction while the lined circles
indicate the DGR of aload instruction.

names, instruction and data virtual addresses and data writ-
ten to special registers such as software-filled TLB entries.
Additional and/or redundant information, such as physical
addresses, can also be passed from the functional model to
the timing model to further simplify the latter at the expense
of a larger instruction stream.

Each decoded instruction is “executed” by the timing model
by arbitrating for and consuming the required resources in
the correct order as required by the instruction. The timing
model transforms the decoded opcode, by some combination
of table lookup and combinational logic, into a directed graph
of resources (DGR) used to execute the instruction2. An
interesting side-effect of the DGR method is that any ISA
can be mapped to a timing model that is capable of supporting
that ISA. For example, a Pentium M timing model could run a
PowerPC ISA by changing only the opcode-to-DGR mapping.

Such a simulator is essentially the same as a classic
trace-driven simulator with the software-based timing model
replaced by an FPGA-based timing model. Such simulators
are capable of simulating non-speculative, non-parallel thread
target system micro-architectures. For example, a trace-driven
simulator could simulate a micro-architecture based on a clas-
sic Tomasulo algorithm with no branch prediction even though
it does exploit parallelism in a single instruction stream,but
fundamentally does not change the instruction stream. For such
systems, the communication latency between the functional
model and timing model are not important since there is
no feedback, making a hardware timing model an obvious
performance win.

B. A Simple Example

Figure 2 shows an example of a very simple non-
speculative, single-issue superscalar processor and the DGR
for two instructions,add and load. Each instruction must
first traverse the FETCH unit where the instruction TLB and
L1 cache are checked and will stall upon a miss. The instruc-
tion then traverses the DECODE unit where it is determined
if the read register values are available (the actual values

2The DGR can be complex. For example, each node in the DGR can have
multiple output arcs that can be conditionally traversed and multiple input
arcs of which a configurable subset may fire the next node. There may be
looping in a DGR as well to implement complex instructions.



are not stored, but a presence bit is) and appropriate register
renaming is performed. Then theadd instruction goes to
the ALU reservation station where it waits for any pending
arguments, if necessary, and then is passed to the ALU. Once
theadd instruction completes, it gets put on the bypass buses
to the ALU and the LOAD/STORE unit and arbitrates for
the WRITEBACK unit to be written back (set presence bit to
present in the register file.)

After the DECODE unit, theload instruction goes to the
LOAD/STORE unit where the effective address is computed,
the data TLB and cache are checked and stalls upon a miss.
Once theload completes in the memory hierarchy, the result
gets put on the bypass buses and the result arbitrates for the
WRITEBACK unit to be written back.

C. Simulating Speculative Processors

The FAST simulators described above are simple but inca-
pable of simulating realistic processors that predict branches.
The basic problem is that speculative processors will execute
down an incorrect instruction path, fetching and issuing mis-
speculated instructions, until the misspeculation is discovered
and corrected. The functional model, however, will naturally
execute the correct path and thus will not normally produce
misspeculated instructions.

FAST simulators resolve this issue by implementing the
simulated branch predictor and forcing the functional model to
mis-speculate when necessary. If the timing model implements
the branch predictor, it notifies the functional model of mis-
predicted branches so that the functional model can then issue
instructions from the wrong path to drive the timing model.
Mis-predicted branches are always resolved by the timing
model. When a branch is resolved, the timing model must
again notify the functional model of that fact so that the
functional model can continue executing down the correct
path. This notification requires a communication path from
the timing model to the functional model. That path now
introduces a loop where communication costs matter. The
shorter the time between the timing model indicating a branch
mis-prediction to the functional model issuing speculative
instructions is critical for performance. That time is dependent
on the size of the messages and the latency and bandwidth of
the communication channel.

To mis-speculate and resume, the functional model supports
rollback. The two rollbacks are signaled using aset pc
command from the timing model to the functional model that
rolls back to a particular past instruction and forces its program
counter to a specified value. FAST currently relies on software
checkpoints of the functional model to implement rollbacks.
Depending on the relative overhead of a checkpoint, the
timing model can cache the correct path trace to minimize the
functional model roll back on recovery. We are experimenting
old value logging to make rollback faster. The overwritten
values can either be saved by software or passed to the timing
model as part of the instruction stream. In the latter case, the
timing model can, upon rollback, return only the most recent
overwritten value per modified register or memory location.

Doing so dramatically reduces the cost of rollback at the cost
of bandwidth between the functional model and timing model.

There are ways to dramatically reduce the need for rollback
as well. For example, our initial implementation models simple
branch predictors in the functional model. It is not precisely
accurate due to timing variations in updating the branch
prediction structures and thus is a branch predictor predictor.
The functional model assumes that its branch predictor is
correct and either executes a conservative number of wrong-
path instructions or executes until it is told to stop by the
timing model. In addition, the timing model continues to
model the real branch predictor with timing and is capable
of notifying the functional model when its branch predictor
is incorrect. The accuracy of the branch predictor predictor,
however, is very high and thus almost eliminates rollbacks.

One may wonder why the timing model does not need to be
rolled back as well. Since branch prediction is performed atthe
head of the pipeline, the timing model can avoid being polluted
by wrong instructions being issued from the functional model
by stalling and waiting for the right (but incorrect) instructions
to be passed to it. Interestingly, microprocessor architecture
and optimizations are generally beneficial to FAST simulators
as well.

D. Functional/Timing Model Interaction

FAST performance hinges on the interface between the
functional model and the timing model. Care must be taken
to maximize the performance of the communication protocol,
its implementation and the physical link. Most of the commu-
nication flows from the functional model to the timing model
as instructions written to an instruction buffer. There is aset
of command queues from the timing model to the functional
model (i) to commit instructions and thus free up instruction
buffer slots and (ii) to force instruction execution down wrong
path or to return instruction execution back to the right path
necessary for simulation speculation or parallelism.

The size of each instruction in the trace is important and can
be aggressively compressed. For example, an uncompressed
representation of x86 instructions takes about 32B. Such
an instruction encodes virtually everything from a flattened
opcode to instruction and data virtual and physical addresses
to source and destination registers, regardless of whetherthey
are used. Compression techniques such as mirroring simulation
structures like TLBs and translated instruction buffers and
address compression[6] can dramatically reduce the average
number of bytes per instruction, perhaps by a factor of eight
or more, at the cost of increased complexity in the functional
model. In addition, techniques used in high-performance par-
allel systems to improve the communication can also be used
to improve communication between the functional model and
the timing model.

III. FAST I MPLEMENTATION STATUS

Our inital set of FAST simulators supports the IA32 instruc-
tion set. We are currently using a heavily modified Bochs[13]
that supports rollback via checkpoint as the functional model.



Thus, the simulators can boot unmodified operating systems
and run unmodified applications. It runs on both standard
Linux boxes as well as on the embedded processor within
a Xilinx Virtex II Pro part. Our modified Bochs is running at
about 3.86 MIPS on a 3.0GHz Pentium 4 and about 60K cycles
per second on the 300MHz, in-order embedded PowerPC on
the Xilinx part. The functional model is currently unoptimized
giving us much headroom to improve. Since we do no yet
have a PCI-Express FPGA board, we are running Bochs on
the embedded PowerPC in the FPGA.

Our modified Bochs is being created by a script that
automatically parses and modifies Bochs to include instruction
tracing, checkpointing and rollback. The script permits usto
quickly adapt to new Bochs releases.

We are on track to completing a timing model that simulates
a simple out-of-order, branch-predicted processor core that
supports reservation stations, multiple functional units, virtual
memory, a full memory hierarchy, DRAM and disks by March
of this year. It is designed to support CMP/SMP configurations
as well. The model is being written in Verilog and Bluespec[3].
We have already completed a simple 80486-like architecture
with separate L1 instruction and data caches and separate
instruction and data TLBs that runs at 100MHz when running
without a functional model.

Preliminary estimates indicate that a timing model for the
largest current Pentium M with a 2MB cache fits in a single,
medium/large FPGA (Virtex 4 FX60). It is very likely that
multiple timing models could fit in a single FPGA.

IV. CONCLUSIONS

The FAST approach has strong potential to produce very
fast, accurate, complete and transparent simulators that are
inexpensive and easy-to-use. FAST simulators are capable of
efficiently simulating almost all general-purpose speculative
processors as well as multiprocessors. FAST simulators do
so by carefully partitioning the simulation problem into a
functional model responsible for simulating at the ISA and
functional peripheral level and a timing model responsiblefor
modeling micro-architectural structures that impact timing. By
partitioning functionality and timing, each module withineach
model becomes significantly simpler than an integrated solu-
tion, making them easier to create, modify and maintain. The
resulting simulators are faster than pure software simulators
since they implement highly parallel micro-architecturalcon-
structs in hardware, but leave the nearly sequential functional
computation to microprocessors more suitable for those tasks.

REFERENCES

[1] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An Infras-
tructure for Computer System Modeling.IEEE Computer, 35(2):59–67,
February 2002.

[2] Nathan L. Binkert, Erik G. Hallnor, and Steven K. Reinhardt. Network-
Oriented Full-System Simulation using M5. InSixth Workshop on Com-
puter Architecture Evaluation using Commerical Workloads (CAECW),
February 2003.

[3] Bluespec webpage. http://www.bluespec.com.

[4] Patrick Bohrer, James Peterson, Mootaz Elnozahy, Ram Rajamony,
Ahmed Gheith, Ron Rockhold, Charles Lefurgy, Hazim Shafi, Tarun
Nakra, Rick Simpson, Evan Speight, Kartik Sudeep, Eric Van Hensber-
gen, and Lixin Zhang. Mambo: a full system simulator for the powerpc
architecture.SIGMETRICS Perform. Eval. Rev., 31(4):8–12, 2004.

[5] Jared Casper, Ronny Krashinsky, Christopher Batten, and Krste
Asanović. A Parameterizable FPGA Prototype of a Vector-Thread
Processor. InProceedings of the Workshop on Architecture Research
using FPGA Platforms, held at HPCA-11, February 2005.

[6] Daniel Citron and Larry Rudolph. Creating a wider bus using caching
techniques. InIn Proceedings of the First International Symposium on
High-Performance Computer Architecture, pages 90–99, 1995.

[7] Nirav Dave and Michael Pellauer. UNUM: A General Microprocessor
Framework Using Guarded Atomic Actions. InProceedings of the
Workshop on Architecture Research using FPGA Platforms, held at
HPCA-11, February 2005.

[8] John D. Davis, Lance Hammond, and Kunle Olukotun. A Flexible Ar-
chitecture for Simulation and Testing (FAST) Multiprocessor Systems.
In Proceedings of the Workshop on Architecture Research using FPGA
Platforms, held at HPCA-11, February 2005.

[9] Lieven Eeckhout, Robert H. Bell Jr., Bastiaan Stougie, Koen De
Bosschere, and Lizy K. John. Control Flow Modeling in Statistical
Simulation for Accurate and Efficient Processor Design Studies. In
Proceedings of the International Symposium on Computer Architecture
(ISCA), June 2004.

[10] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk,
Srilatha Manne, Shubhendu S. Mukherjee, Harish Patil, Steven Wallace,
Nathan Binkert, Roger Espasa, and Toni Juan. Asim: A performance
model framework.Computer, 35(2):68–76, 2002.

[11] Peter S. Magnusson et al. Simics: A Full System Simulation Platform.
In IEEE Computer, pages 50–58, February 2002.

[12] Christos Kozyrakis and Kunle Olukotun. ATLAS: A Scalable Emulator
for Transactional Parallel Systems. InProceedings of the Workshop
on Architecture Research using FPGA Platforms, held at HPCA-11,
February 2005.

[13] Kevin P. Lawton. Bochs: A portable pc emulator for unix/x. Linux J.,
1996(29es):7, 1996.

[14] Shih-Lien Lu, Eriko Nurvitadhi, Jumnit Hong, and SteenLarsen. Mem-
ory Subsystem Performance Evaluation with FPGA based Emulators.
In Proceedings of the Workshop on Architecture Research using FPGA
Platforms, held at HPCA-11, February 2005.

[15] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.
Marty, Min Xu, Alaa R. Alamelden, Kevin E. Moore, Mark D. Hill, and
David A. Wood. Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset. submitted to Computer Architecture News.

[16] Eriko Nurvitadhi and James Hoe. Full-System Architeectural Ex-
ploration Sandbox. InProceedings of the Workshop on Architecture
Research using FPGA Platforms, held at HPCA-11, February 2005.

[17] QEMU webpage. http://fabrice.bellard.free.fr/qemu.
[18] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A.

Herrod. Using the simos machine simulator to study complex computer
systems.ACM Trans. Model. Comput. Simul., 7(1):78–103, 1997.

[19] Lambert Schaelicke and Mike Parker. ML-RSIM ReferenceManual.
Technical report, Department of Computer Science and Engineering,
Notre Dame, 2002.

[20] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In ASPLOS-
X: Proceedings of the 10th international conference on Architectural
support for programming languages and operating systems, pages 45–
57. ACM Press, 2002.

[21] SimNow webpage. http://developer.amd.com/simnow.aspx.
[22] SPEC webpage. http://www.spec.org.
[23] Manish Vachharajani, Neil Vachharajani, and David I. August. The

liberty structural specification language: a high-level modeling language
for component reuse. InPLDI ’04: Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and implementation,
pages 195–206. ACM Press, 2004.


