
An FPGA-Based Experiment Platform for
Hardware Software Co-Design

Yajuvendra Nagaonkar and Mark Manwaring PhD
Electrical and Computer Engineering, Brigham Young University, Provo UT 84602, USA

Introduction

To create a rapid-prototyping environment for
computer architecture experiments and for simulation
of Hardware-Software Co-Design problems.

The system is targeted to contribute to research efforts
and to be used in computer architecture education.

2. Academic Environment
This system can prove very beneficial in an academic
setting such as a course on Computer Architecture.

It allows for experimentation with different computer
architecture concepts in different stages.

A student equipped with the knowledge of a HDL is
able to implement hardware relating to computer
architecture concepts.

The rapid prototyping feature allows for implementing
different concepts within the time frame of a semester.

Advanced architecture features can be experimented
with, and the abundant I/O on the modules enable
interfacing with various peripheral devices.

System Overview

1. Architecture Emulation
The FPGA and SRAM combination allow for emulation
of a processor soft-core with different architectural
features.

The microprocessor and ROM allow for the system to
function as a stand alone machine. The ROM stores
the FPGA configuration bit-stream, which is loaded on
start-up.

The system provides a real-time prototyping
environment for custom soft-cores with all the
available resources and standard communication
interfaces with other peripheral devices.

Hardware Software Co-Design

The problem of Co-Design consists of:

Processor Selection : In this system, the processor
can be selected and implemented as a soft-core on
the FPGA module.
The soft-core selected might be a standard available
soft-core processor such as Microblaze® or it could
be a custom or modified soft-core.

Programming the Processor: Software needs to be
developed, based on the processor selected.
Optimizations like target specific compilers and
microprocessor specific application software is
developed.

Peripheral Devices: The selection of peripheral
devices is based on factors of complexity,
availability, interface to the world and on-board
standard I/O.
Based on the above factors the peripheral device
can be implemented as a soft-core on the FPGA or
an actual device that is interfaced to the
microprocessor soft-core.

Conclusion
The system offers an efficient platform for computer
architecture emulation and hardware software co-
design.

We anticipate several improvements in the module
design such as combining the microcontroller and
FPGA modules into a single compact PCB.

Other possible improvements would include adapting
different vendor technology specific FPGAs from
Alterra®, Atmel®, Actel®, etc. The selection would
depend on any architectural features of the FPGA
which would support maximum implementation of
microprocessor soft-cores.

Components

Communication and Power Supply Module
•Commercial Voltage Supply Compliant (9V-15V).
•Standard Communication platforms- RS-232, USB.

Microcontroller module
•8-bit RISC Atmel Atmega128 Microcontroller.
•8-Mbit Atmel Dataflash ROM.
•Voltage Regulators (5V(source) � 3.3V, 2.5V, 1.2V).

FPGA Module
•400K Gate Xilinx® Spartan-3® XC3S400 FPGA.
•(256K X 16) 4Mb Cypress Semiconductor® SRAM.

Example of a Co-Design Problem

Contact
Yajuvendra Nagaonkar yaju@ee.byu.edu

801-422-1240

Mark Manwaring, PhD manwaring@ee.byu.edu

801-422-7582

The interface is kept simple and intuitive to the user
by providing a standard communication interface
between the PC and the module.

The configuration bit-stream is downloaded via RS-
232/USB to the Flash ROM via the microcontroller,
and the FPGA is configured with a slave serial
arrangement, avoiding the complex vendor specific
software and expensive configuration hardware.

Co-Design Flow

What is the most efficient soft-CPU
(Microprocessor soft-core) to support application
on an RF module?

The RF module has a weak communication link
and requires error detection and correction.

The co-design problem can be approached by
either moving the error detection and correction to
hardware or software.

An appropriate soft-CPU has to be selected or
designed, and various choices and tradeoffs can
be evaluated.

