Scheduling Synchronous
Dataflow Graphs

Saman Amarasinghe and William Thies
Massachusetts Institute of Technology

PACT 2003
September 27, 2003

Schedule

1:30-1:40 Overview (Saman)

1:40-2:20 Stream Architectures (Saman)

2:20-3:00 Stream Languages (Bill)

3:00-3:30 Break

3:30-3:55 Stream Compilers (Saman)

3:55-4:20 Domain-specific
Optimizations (Saman)

4:20-5:00 Scheduling Algorithms (Bill)

Outline

= Introduction to Scheduling
= Finding a Steady State
= Finding a Schedule
= Scheduling Tradeoffs

= Phased Scheduling Algorithm
» Code Size / Buffer Size

= Hierarchical scheduling
= Results

Synchronous Dataflow (SDF)

- Consists of Filters and Channels
- Filters perform computation
- Atomic execution step

- Number of items produced / consumed on

each firing is constant and known at compile
time

- Channels act as FIFO queues for data
between Filters

- For SDF, can statically determine:
. Schedule of node firings

. Buffer sizes
. Deadlock conditions

- As we saw before, there are many
generalizations

filter| |filter

The Scheduling Problem

. Find a legal order in which filters can be
executed

. Nodes only fire when their inputs are ready
- Manage mismatched rates between filters

- Minimize data buffered up in channels
between filters

- Minimize latency of data processing

Scheduling — Steady State

- Every valid stream graph has a Steady
State

. Steady State does not change amount of
data buffered between components

. Steady State can be executed repeatedly
forever without growing buffers

Steady State Example

. 3:2 Rate Converter

- First filter (A) upsamples by l
factor of 3 Y

- Second filter (B) [= }
downsamples by factor of 2 l

pop =2
B
push =1

Steady State Example

- A executes 2 times

. pushes 2 * 3 = 6 items
- B executes 3 times popl:l
. pops 3 * 2 = 6 items 2" [- }
. Number of data items l
stored between Filters pop =2
does not change 3 { o1 }

Computing the Steady State

= Balance equations

= For each edge (src, dst):
n(src) * push(src) = n(dst) * pop(dst) l

= Example: [=1

push =3

pop = 2
B
push =1

J

Computing the Steady State

= Balance equations [=0 }
= For each edge (src, dst): push=2_push=2

n(src) * push(src) = n(dst) * pop(dst)

m Example: / pop = 1
Lor

Computing the Steady State

= Balance equations pop =0
« For each edge (src, dst): push 2 push 2

n(src) * push(src) = n(dst) * pop(dst)
=« Example: pop 1
n(X) *2 =n(Y) *2

push 3

IOOID 2

\ push 1
op 2 pop 3

push 0

Computing the Steady State

= Balance equations pop =0
« For each edge (src, dst): push 2 push 2

n(src) * push(src) = n(dst) * pop(dst)
=« Example: pop 1
n(X) *2 =n(Y) *2

push 3
n(X) * 2 = n(A) * 1
pop 2
\ push 1
op 2 pop 3

push 0

Computing the Steady State

= Balance equations pop =0
« For each edge (src, dst): push 2 push 2

n(src) * push(src) = n(dst) * pop(dst)
=« Example: pop 1
n(X) *2 =n(Y) *2

push 3
n(X) * 2 = n(A) * 1
b S — b S
n(A) * 3 =n(B) * 2 - >
\ push 1
op 2 pop 3

push 0

Computing the Steady State

= Balance equations pop =0
« For each edge (src, dst): push 2 push 2

n(src) * push(src) = n(dst) * pop(dst)
=« Example: pop 1
n(X) *2 =n(Y) *2

push 3
n(X) * 2 = n(A) * 1

n(A) * 3 = n(B) * 2

pop 2
n(B) * 1 = n(Y) * 3 \
push 1

op 2 pop 3

push 0

Computing the Steady State

= Balance equations pop =0
« For each edge (src, dst): push 2 push 2

n(src) * push(src) = n(dst) * pop(dst)
=« Example: pop 1
n(X) *2 =n(Y) *2

push 3
n(X) * 2 = n(A) * 1

n(A) * 3 = n(B) * 2

n(B) *1=n(Y)*3 por; 21
= p
-2 || n(X)

2 0 0 -2

2 0 -1 0||n(A)| =0 0p2 p0p3

O 3 2 O n(B) push 0
0 0 1 -3](n(Y).

Computing the Steady State

2 0 0 -2
2 0 -1 0
0 3 2 O
0 0 1 -3_

—

n(X)
n(A)
n(B)

| n(Y)

Topology Matrix, I

= Theorem (Lee '86):

= A connected SDF graph with n actors has
a periodic schedule iff its topology matrix

[has rank n-1

= Rank > n-1 - no periodic schedule
= Rank < n-1 - graph is not connected

=« If I has rank n-1 then there exists a
unique smallest integer solutionto 'n = 0

=0

pop 0

push 2 push 2

/ pOp 1

push 3

pop 2

push 1

pop—2 pop—

push 0

Computing the Steady State

2 0 0 -2 n(X) Pop ="
2 O '1 O n(A) — 6 push 2 push 2
0 3 2 0| n@B)
0 0 1 -3]Ln(Y).
< P pop 1
Topology Matrix, I push 3
N R EAE =
= Minimal solution: N AE push)
nY)] L[1.
op2 pop3

= All multiples are valid steady-states | .-

Outline

= Introduction to Scheduling
= Finding a Steady State
m) = Finding a Schedule
= Scheduling Tradeoffs

= Phased Scheduling Algorithm
» Code Size / Buffer Size

= Hierarchical scheduling
= Results

Computing the Schedule

= Schedule indicates exact ordering of nodes

= Steady state indicates only the multiplicity

= A graph might have a valid steady-state without
having any admissable schedule

pop=1 pop=1
A B
push=1 push=1

= 1o build legal schedule, fire any node that:
1. Has enough input items to execute
2. Has not exceeded its multiplicity in the steady state

= If deadlock reached before steady state
complete, then no valid schedule exists (Lee ‘86)

Initialization Schedule

- Filter Peeking provides a new

challenge gl ;
. Just Steady State doesn’t work: [fop:l]

A
push =3

0

\ 4

peek = 3, pop = 2
B
push =1
l 0)

Initialization Schedule

- Filter Peeking provides a new

challenge S l ,

. Just Steady State doesn’t work: [—]
. A .

push =3

(o)
O
O| 3

\ 4

peek = 3, pop = 2
B
push =1
l 0)

Initialization Schedule

- Filter Peeking provides a new
challenge © l .

. Just Steady State doesn’t work: —=
M L]

push =3

6

000000

\ 4

peek = 3, pop = 2
B
push =1
lo

Initialization Schedule

- Filter Peeking provides a new
challenge © l .

. Just Steady State doesn’t work: —=
o L]

push =3

Initialization Schedule

- Filter Peeking provides a new
challenge © l .

. Just Steady State doesn’t work: —=
. AABB [A J

. Can’t execute B again! 9

push =3

2

\ 4

peek = 3, pop = 2
push =1
Ol 2
(o)

Initialization Schedule

- Filter Peeking provides a new
challenge ©

- Just Steady State doesn’t work:
. AABB [

. Can’t execute B again! o

. Can't execute A one extra time:
. AABB

Initialization Schedule

- Filter Peeking provides a new
challenge

- Just Steady State doesn’t work:
. AABB [

. Can’t execute B again! o

. Can't execute A one extra time:
. AABBA

Initialization Schedule

- Filter Peeking provides a new
challenge io

pop=1

- Just Steady State doesn’t work:
. AABB [

. Can’t execute B again!

. Can't execute A one extra time: 3
. AABBAB

. Left 3 items between A and B! f’eek:i;p"p:

Initialization Schedule

. Must have data between A and B

before starting execution of Steady
State Schedule | o
. Construct two schedules: { Pop =1 }
. One for Initialization pusti =3
- One for Steady State

- Initialization Schedule leaves data in
buffers so Steady State can execute

O
O
O

\ 4

peek = 3, pop = 2
B
push =1

(@)
Ols
O

Initialization Schedule

. Initialization Schedule:

Initialization Schedule

. Initialization Schedule:
. A

Initialization Schedule

- Initialization Schedule:

. A 81 2
- Leave 3 items between A and B —Y

. Steady State Schedule: [A]

Initialization Schedule

. Initialization Schedule:
A © i .
- Leave 3 items between A and B —Y

. Steady State Schedule: [A]
- A

Initialization Schedule

- Initialization Schedule:
.\ l 0
- Leave 3 items between A and B —Y

. Steady State Schedule: [A J
. AA o

Initialization Schedule

- Initialization Schedule:
. A l 0
- Leave 3 items between A and B —Y

. Steady State Schedule: [A J
- AAB

Initialization Schedule

- Initialization Schedule:
. A l 0
- Leave 3 items between A and B —Y

. Steady State Schedule: [A J
. AABB 9

Initialization Schedule

- Initialization Schedule:

- A

. Leave 3 items between A and B
. Steady State Schedule:

- AABBB

Initialization Schedule

- Initialization Schedule:
.\ l 0
- Leave 3 items between A and B —Y

. Steady State Schedule: [J

. AABBB
. Leave 3 items between A and B 3

Initialization Schedule

- Initialization Schedule:

- A

. Leave 3 items between A and B
. Steady State Schedule:

. AABBB
. Leave 3 items between A and B

- Number of items preserved

Outline

= Introduction to Scheduling
= Finding a Steady State
= Finding a Schedule
m) = Scheduling Tradeoffs

= Phased Scheduling Algorithm
» Code Size / Buffer Size
= Hierarchical scheduling
= Results

Scheduling Tradeoffs

- There are many possible schedules for a
given steady-state

- Order of execution profoundly affects:
. Latency

. Buffer size
. Code Size

- There is a wealth of literature that aims to
optimize the schedule by various metrics

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol »
factor of 3 Ol

. Second filter (B) downsamples { o }
by factor of two e

. Schedule:

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol »
factor of 3 {Oi

. Second filter (B) downsamples { o }
by factor of two e

. Schedule: .
A

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol 1
factor of 3 { l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. A

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol 1
factor of 3 { l
. Second filter (B) downsamples { o }
by factor of two e
. Schedule: ;
. A §

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0] 1
factor of 3 l
. Second filter (B) downsamples { o }
by factor of two e
. Schedule: ;
o

Scheduling Tradeoffs Example

- 3:2 Rate Converter

. First filter (A) upsamples by {]o
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AA

Scheduling Tradeoffs Example

- 3:2 Rate Converter

. First filter (A) upsamples by {]o
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

o)
. Schedule: g
o

. AA 9

o

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l
- Second filter (B) downsamples { o }
by factor of two gS“:"’
. Schedule: S|
. AAB S
13

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

o)
. Schedule: 8
. AAB o

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

o)
. Schedule: g
. AAB o

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

o)
. Schedule: {g
. AABB o)

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l
- Second filter (B) downsamples { o }
by factor of two gS“:"’
. Schedule: _[° ,
. AABB

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l
- Second filter (B) downsamples { o }
by factor of two gS“:"’
. Schedule: _[° ,
. AABB

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l
- Second filter (B) downsamples { o }
by factor of two gS“:"’
. Schedule: °l
. AABBB

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule: {
. AABBB

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule: {
. AABBB

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol »
factor of 3 {Oi

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB
- A \ 4

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol 1
factor of 3 { l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB
- A \ 4

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol 1
factor of 3 { l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB
- A \ 4

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol 1
factor of 3 l
. Second filter (B) downsamples { o }
by factor of two e
. Schedule:
3
. AABBB 9
. AB o

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol 1
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB o
. AB { v

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by ol 1
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB o
. AB { v

Scheduling Tradeoffs Example

- 3:2 Rate Converter

. First filter (A) upsamples by {0] 1
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB o
. ABA v

Scheduling Tradeoffs Example

- 3:2 Rate Converter

. First filter (A) upsamples by {]o
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB o
. ABA v

Scheduling Tradeoffs Example

- 3:2 Rate Converter

. First filter (A) upsamples by {]o
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

o)
. Schedule: g
. AABBB o
. ABA v

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

o)

. . o
Schedule: { S

. AABBB o

. ABAB Il

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two
- Schedule: o

2
. AABBB 1
. ABAB |

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two
- Schedule: o

2
. AABBB 1
. ABAB |

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule: O
. AABBB
. ABABB Il

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule: {
. AABBB
. ABABB Il

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule: {
. AABBB
. ABABB Il

Scheduling Tradeoffs Example

- 3:2 Rate Converter

- First filter (A) upsamples by 0
factor of 3 l

. Second filter (B) downsamples { o }

by factor of two

. Schedule:
. AABBB
. ABABB Il

Scheduling Tradeoffs — Latency

- AABBB — First data item

output after third l 0

execution of a filter _

. Also A already consumed 2 [o }
data items push = 3

- ABABB — First data item

output after second '
execution of a filter { o }
. A consumed only 1 data R

item

Scheduling Tradeoffs — Buffer Size

- AABBB requires 6 data items
of buffer space between l .
filters A and B

. ABABB requires 4 data items]
of buffer space between !
filters A and B [Pon=? }

Scheduling Tradeoffs — Code Size
- AABBB — Can be compressed

into a loop nest with two l 0
appearances of the filters: _
. {5A}3B} [}

- ABABB — Requires three
appearances of the filters: [—— }

. 2{AB}B

Scheduling Tradeoffs — Code Size

- AABBB — Can be compressed
into a loop nest with two l 0
appearances of the filters:

pop=1
- A
push =3

“Single Appearance Schedule”

- ABABB — Requires three
appearances of the filters: [—— }

. 2{AB}B

Single Appearance Scheduling (SAS)

- Every Filter is listed only once in the loop nest
denoting the schedule
- Example: 5{4{AB}} 6{C 3D}
. There are multiple SAS schedules for a given graph

- By metric of DSP community, SAS schedules
guarantee minimal code size
- Schedule size = # appearances of filters in schedule
. Filter invocations are often inlined, and consume more

space than the loop nests

- Due to their analyzability, SAS schedules have
been the target of almost all optimization research

- Heuristics for finding SAS with minimal buffer size
- "Buffer merging” for SAS schedules
- Etc., etc. (see Bhattacharyya 99 for review)

Shortcomings of SAS

1. Buffer size explosion for hierarchical components

- If a large hierarchical component must execute
all at once, then its I/O rates are huge

- Critical consideration for separate compilation

- 2. Restricted space of schedules considered
- Hampers effectiveness of buffer, latency optimization

m) Is there a place for
multiple-appearance schedules?

Outline

= Introduction to Scheduling

= FINC
= FINC

ing a Steady State

ing a Schedule

= Scheduling Tradeoffs

=) = Phased Scheduling Algorithm
» Code Size / Buffer Size
= Hierarchical scheduling
= Results

Our recent work: “Phased Scheduling”

- Implements a multiple-appearance schedule

- Approach:

. Allows code size to grow to a fixed number of
SAS “phases”

- Benefits:

. Small buffer sizes for hierarchical programs

. Fine grained control over code size vs buffer size
. Always avoids deadlock in separate compilation

SAS Example — Buffer Size

- Example: CD-DAT

- CD to Digital Audio Tape rate
converter 147 *

- Mismatched rates cause large
number of executions in Steady
State o

28 *

32*

U‘IU\I<—OOO\I<—I\)WOO<—I\JJ>H4}

[
|

<

SAS Example — Buffer Size

- Naive SAS schedule:
- 147A 98B 28C 32D
. Required Buffer Size: 714 147 *

. Unnecessarily large buffer
requirements!

294

98 *

196

28 *

224

32*

U‘IU\I<—OOO\I<—I\)WOO<—I\JJ>H4}

[
|

<

SAS Example — Buffer Size

- Naive SAS schedule:
- 147A 98B 28C 32D
. Required Buffer Size: 714

. Unnecessarily large buffer
requirements!

- Optimal SAS CD-DAT schedule:
. 49{3A 2B} 4{7C 8D}
. Required Buffer size: 258

U‘ID\I<—OOO\I<—I\JWOO<—I\J>I—‘4}

[
|

<

Phased Scheduling

. Idea:

. What if we take the naive SAS schedule, and
divide it into n roughly equal phases?

- Buffer requirements would reduce roughly
by factor of n

- Schedule size would increase by factor of n

- May be OK, because buffer requirements
dominate schedule size anyway!

Phased Scheduling

- Tryn = 2:
- Two phases are:

. /4A 49B 14C 16D
. /3A 49B 14C 16D

. Total Buffer Size: 358
. Small schedule increase
- Greater n for bigger savings

i

148

98

112

OO~ 4 ©o 0O~ & v T 0w ¢ v > -

[
|

<

Phased Scheduling

- Try n = 3:
- Three phases are:
- 48A 32B 9C 10D

. 53A 35B 10C 11D
- 46A 31B 9C 11D

. Total Buffer Size: 259

- Basically matched best SAS result
. Best SAS was 258

i

106

71

82

OO~ 4 ©o 0O~ & v T 0w ¢ v > -

Jd
|

Phased Scheduling

- Try n = 28:
- The phases are:

- 6A 4B 1C 1D
- 5A3B 1C 1D

: '4,}\ 3B 1C 2D
. Total Buffer Size: 35

- Drastically beat best SAS result
. Best SAS was 258

i

OO~ 4 ©o 0O~ & v T 0w ¢ v > -

4
|

13

14

A Lower Bound on Buffer Size:
Pull Scheduling

. Pull Scheduling: =
- Always execute the bottom-most A
element possible i
- CD-DAT schedule: 3
. 20ABAB2ABABCD..ABC2D .
. Required Buffer Size: 26 y
. 251 entries in the schedule :
. Hard to implement efficiently, as i
schedule is VERY large :

\ e

<

CD-DAT Comparison:
SAS vs Pull vs Phased

Buffer Size | Schedule Size

SAS 258 4

Pull Schedule 26 251

Phased Schedule |35 52

Outline

= Introduction to Scheduling
= Finding a Steady State
= Finding a Schedule
= Scheduling Tradeoffs

= Phased Scheduling Algorithm
» Code Size / Buffer Size

m) = Hierarchical scheduling
= Results

Hierarchical Phased Scheduling

- Apply technique hierarchically

- Children have several phases
which all have to be executed

- Automatically supports cyclo-
static filters

- Children pop/push less data,
SO can manage parent’s buffer
Ssizes more efficiently

Equalizer

v

CD-DAT

v

DAT
recorder

Hierarchical Phased Scheduling

- What if a Steady State of a component of a
FeedbackLoop required more data than
available?

- Single Appearance couldn’t do separate
compilation!

- Phased Scheduling can provide a fine-grained
schedule, which will always allow separate
compilation (if possible at all)

Minimal Latency Schedule

- Every Phase consumes as few items as possible
to produce at least one data item

- Every Phase produces as many data items as
possible

- Guarantees any schedulable program will be
scheduled without deadlock

- Allows for separate compilation
- For details, see LCTES ‘03 paper

Minimal Latency Scheduling

- Simple FeedbackLoop with
a tight ge/ay constraint

- Not possible to schedule
using SAS

- Can schedule using Phased
Scheduling

- Use Minimal Latency
Scheduling

B | *8

AN

*5

Minimal Latency Scheduling

- Minimal Latency Phased
Schedule:

delay = 10
/

/

10

- B

I
(
(D
0
3
B
5

AN

o

~

Minimal Latency Scheduling

- Minimal Latency Phased
Schedule:
. join 2B 5split L

| del/ay =10
4 =)
6 9
0
3 4
B L
) 4

< /f:m):.’

Minimal Latency Scheduling

- Minimal Latency Phased

Schedule: | delay =10
- join 2B 5split L f 4 \
- join 2B 5split L 6 o
0
3 4
B L
5 4
0
\1 1 2/
v

Minimal Latency Scheduling

- Minimal Latency Phased

Schedule:

. join 2B 5sp
. join 2B 5sp
- join 2B 5sp

it L
it L
it L

delay = 10
/

/

- A

I
(
(D
0
3
B
5

AN

~

</ﬁ

Minimal Latency Scheduling

- Minimal Latency Phased

Schedule: | delay =10
- join 2B 5split L f 4 \
- join 2B 5split L 6 10
- join 2B 5split L 0
- join 2B 5split 2L ;)
B L
5 4
0
\11 O/

v

Minimal Latency Schedule

- Minimal Latency Phased
Schedule: | del/ay: 10
- join 2B 5split L 7
- join 2B 5split L (\
. join 2B 5split L)
D
3
B
)

. join 2B 5split 2L
- Can also be expressed as:
- 3 {join 2B 5split L}

. join 2B 5split 2L

- Common to have repeated
Phases 11

\ _/

v

~ b~

Why not SAS?

- Naive SAS schedule
- 4join 8B 20split 5L.:
- Not valid because 4join
consumes 20 data items

- Would like to form a loop-nest
that includes join and L

- But multiplicity of executions
of L and join have no common
divisors

B | *8

~ b~

*5

Outline

= Introduction to Scheduling
= Finding a Steady State
= Finding a Schedule
= Scheduling Tradeoffs

= Phased Scheduling Algorithm
» Code Size / Buffer Size

= Hierarchical scheduling
m) = Results

Results

- SAS vs Minimal Latency

- Used 17 applications
. 9 from our ASPLOS ‘02 paper
. 2 artificial benchmarks
. 2 from Murthy99

. Remaining 4 from our internal applications

Results - Buffer Size

120%
‘E‘ 100%
g
E B0%
=8
ﬁ =1
pr 2
o
- 60%
7
-
m >
=
E 40%
L.
=
=
S 20%
0%

Results — Schedule Size

Code Size
(Min latency / Single Appearance)

517% 1067%

250%

150%

100%

Results - Combined

Code Size + Buffer Size
(Min latency / Single Appearance)

120%

3

[] Code Size
B Buffer Size

20%

Conclusion

Presented Phased Scheduling Algorithm
. Provides efficient interface for hierarchical scheduling

- Enables separate compilation with safety from
deadlock

- Provides flexible buffer / schedule size trade-off
- Reduces latency of data throughput

Step towards a large scale hierarchical
stream programming model

