

Motivation	
 Cache uses 30-60% processor energy in embedded systems. <i>Example: 43% for StrongArm-1</i> 	
 Many academic studies on cache [Albera, Bahar, '98] – Power and performance trade-offs [Amrutur, Horowitz, '98,'00] – Speed and power scaling [Bellas, Hajj, Polychronopoulos, '99] – Dynamic cache management [Ghose, Kamble,'99] – Power reduction through sub-banking, etc. [Inoue, Ishihara, Murakami, '99] – Way predicting set-associative cache [Kin, Gupta, Mangione-Smith, '97] – Filter cache [Ko, Balsara, Nanda, '98] – Multilevel caches for RISC and CISC [Wilton, Jouppi, '94] – CACTI cache model 	
 Many Industrial Low-Power Processors use CAM (content- addressable-memory) ARM3 – 64-way set-associative – [Furber et. al. '89] StrongArm – 32-way set-associative – [Santhanam et. al. '98] Intel XScale – 32-way set-associative – '01 	
CAM: Fast and Energy-Efficient	

Conclusion

- CAM tags high performance and low-power
 - □ Energy consumption of 32-way CAM < 2-way RAM
 - □ Easy to implement highly-associative tags
 - □ Low area overhead (10%)
 - Comparable access delay
 - □ Better CPI by reducing miss rate

Thank You! http://www.cag.lcs.mit.edu/scale/