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Abstract 

 
Trends in microprocessors of increasing die 

size and clock speed and decreasing feature sizes have 
fueled rapidly increasing performance. However, the 
limited improvements in DRAM latency and bandwidth 
and diminishing returns of increasing superscalar ILP 
and cache sizes have led to the proposal of new 
microprocessor architectures that implement processor-
in-memory, stream processing, and tiled processing.  
Each architecture is typically evaluated separately and 
compared to a baseline architecture. In this paper, we 
evaluate the performance of processors that implement 
these architectures on a common set of signal processing 
kernels. 

The implementation results are compared with 
the measured performance of a conventional system 
based on the PowerPC with Altivec. The results show 
that these new processors show significant improvements 
over conventional systems and that each architecture 
has its own strengths and weaknesses. 

1. Introduction 

Microprocessor performance has been doubling 
every 18-24 months for many years [7]. This increase 
has been possible because die size has increased and 
feature size has decreased. However, the increasing die 
size combined with fast clock speeds have made the 
maximum distance as measured in clock cycles between 
two points on a processor longer. 

To solve this problem, pipelining has been used 
widely. However, increasing pipeline depth increases 
various latencies, including cache access and branch 
prediction penalties, and increases the complexity of 
processor design. Techniques for exploiting ILP without 
exposing parallelism to the instruction set have also 
reached a point of diminishing returns. 

Another problem in the recent processors is the 
growing gap between the processor speed and memory 
speed. The performance improvement of 
microprocessors has not been matched by DRAM (main 
memory) latencies, which have only improved by 7% 
per year [7], or pin bandwidths. These growing gaps 
have created a problem for data-intensive applications. 

To bridge these growing gaps, many methods have 
been proposed such as caching, prefetching, and 
multithreading. However, these methods provide limited 
performance improvement and can even hinder 
performance for data-intensive applications. Caching has 
been the most popular memory latency tolerating 
technique [10][12]. Caching increases performance by 
utilizing temporal and spatial locality, but it is not useful 
for many data-intensive applications since many of them 
do not show such locality [11]. 

Recently, several architectural approaches have 
been explored that promise to hide memory latency for 
applications that include data-intensive applications 
while improving scalability.  This study is an attempt to 
demonstrate and compare some of the advantages and 
disadvantages of processor-in-memory (PIM), streaming, 
and tiled architectures approaches by implementing a 
common set of memory-intensive signal processing 
kernels. 

We implemented the corner turn, beam steering, and 
coherent side-lobe canceller (CSLC) kernels and 
measured the performance using cycle accurate 
simulators developed by each architecture group.  

The rest of the paper is organized as follows. In 
Chapter 2, a PIM, a stream processor, and a tile-based 
processor are briefly described. Chapter 3 describes the 
three kernels we implemented: the corner turn, coherent 
side-lobe canceller, and beam steering. Also, the 
techniques that we used to exploit each platform are 
described. In Chapter 4, the implementation results and 
analysis are shown. Chapter 5 concludes the paper. 



2. VIRAM, IMAGINE, and RAW 

In this section, the VIRAM, Imagine, and Raw chips 
are briefly described. We also describe the performance 
models that will be used to understand performance of 
the application kernels. 

2.1 VIRAM 

In conventional systems, the CPU and memory are 
implemented on different chips. Thus, the bandwidth 
between CPU and memory is limited since the data must 
be transferred through chip I/O pins and copper wires on 
a PCB. Furthermore, much of the internal structure of 
DRAM, which could be exploited if exposed, is hidden 
because of the bandwidth limitation imposed by the pins. 

Processor-In-Memory (PIM) technology is a method 
for closing the gap between memory speed and processor 
speed for data intensive applications. PIM technology 
integrates a processor and DRAM on the same chip. The 
integration of memory and processor on the same chip 
has the potential to decrease memory latency and 
increase the bandwidth between the processor and 
memory. PIM technology also has the potential to 
decrease other important system parameters such as 
power consumption, cost, and area.  

The VIRAM chip [5] is a PIM research prototype 
being developed at the University of California at 
Berkeley. A simplified architecture of the chip is shown 
in Figure 1. The VIRAM contains two vector-processing 
units in addition to a scalar-processing unit. These units 
are pipelined. The vector functional units can be 
partitioned into several smaller units, depending on the 
arithmetic precision required. For example, a vector 
functional unit can be partitioned into 4 units for 64-bit 
operations or 8 units for 32-bit operations. Some 
operations are allowed to execute on ALU0 only. It has 
8K vector register file (32 registers). 

It has 13 Mbytes of DRAM.  There is a 256-bit data 
path between the processing units and DRAM. The 
DRAM is partitioned into two wings, each of which has 
four banks. It can access eight sequential 32-bit data 
elements per clock cycle. However, since there are four 
address generators, it can access only four strided 32-bit 
or 64-bit data elements per cycle.  
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Figure 1. Block diagram of VIRAM  
There is a crossbar switch between the DRAM and 

the vector processor. The target processor speed is 200 
MHz, which would provide a peak performance of 3.2 
GOPS (= 200 MHz x 2 ALUs x 8 data per clock) for 32-
bit data. If 16-bit data is processed, the performance is 
6.4 GOPS. Its peak floating point performance is 1.6 
GFLOPS for 32-bit data. The power consumption is 
expected to be about 2 W. The EEMBC (Embedded 
Microprocessor Benchmark Consortium) benchmarks 
have been implemented on VIRAM [17]. VIRAM’s 
performance is 20 times better (as measured by 
geometric mean normalized by clock frequency) than the 
K6-III+ x86 processor. 

2.2 Imagine 

Another approach for handling the growing 
processor-memory gap is stream processing. In this 
approach, the data is routed through stream registers to 
hide memory latency, allow the re-ordering of DRAM 
accesses, and minimize the number of memory accesses. 
The Imagine chip [4][11] is a research prototype stream 
processor developed at Stanford University. It contains 
eight clusters of arithmetic units that process data from a 
stream register file. The processor speed is currently 300 
MHz, which provides a peak performance of over 14 
GOPS (32-bit integer or floating-point operations). 
Performance results for Imagine have been presented for 
application kernels such as MPEG, and QRD [9].  ALU 
utilization between 84% and 95% is reported for 
streaming media applications. 

Figure 2 shows the block diagram of Imagine. The 
stream processing is implemented with eight ALU 
clusters (with 6 ALUs each) with a large stream register 
file (SRF), and a high-bandwidth interconnect between 
them. The size of SRF is 128 Kbytes. A stream can start 
at the start of any SRF 128-byte blocks. Data is 
transferred to and from the SRF from off-chip memory 



or the network interface. The eight ALU clusters operate 
on data from the SRF. Up to eight input or output 
streams can be processed simultaneously. The data is 
sent to clusters in round-robin fashion, i.e., the i-th data 
is sent to cluster (i mod 8).  All clusters perform the 
same operations on their data in SIMD style. Each 
cluster has 6 arithmetic units (three adders, two 
multipliers, and one divider) and one communication 
interface that is used to send data between ALU clusters.  

The Imagine prototype implementation has two 
memory controllers, each of which can process a 
memory access stream. The memory controller reorders 
accesses to reduce bank conflicts and to increase data 
access locality. The processor speed in the lab is 
currently near 300 MHz, which would provide a peak 
performance of 14.4 GFLOPS (= 300 MHz x 8 ALU 
clusters x 6 arithmetic units per cluster) for 32-bit data. 
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Figure 2. Block diagram of Imagine 

2.3 Raw 

Another approach for a scalable microprocessor that 
addresses issues of continued technology scaling is tile 
processing. Instead of building one processor on a chip, 
several processors (tiles) are implemented and connected 
in a mesh topology using a scalar operand network [16]. 
Then, each tile occupies a fraction of the chip space, so it 
is easier to make a faster processor since the signals need 
to travel only a short distance. One example is the Raw 
chip implemented at MIT [15] and shown in Figure 3. 
The current Raw implementation contains 16 tiles on a 
chip connected by a very low latency 2-D mesh network. 

The Raw prototype has been tested up to 199MHz and is 
expected to operate at 300MHz. Peak performance is 4.8 
GOPS. 

Each tile has a MIPS-based RISC processor with 
floating-point units and a total of 128 KB of SRAM, 
which includes switch instruction memory, tile 
(processor) instruction memory, and data memory. Raw 
uses general parallelism, which includes streaming, ILP, 
and data parallelism. 

The Raw has four networks: two static networks and 
two dynamic networks. Communication on the static 
networks is performed by a switch processor in each tile 
[15]. The switch processor is located between the 
computation processor and the network and provides 
throughput to the tile processor of one word per cycle 
with a latency of three cycles between nearest neighbor 
tiles. One additional cycle of latency is added for each 
hop in the mesh through the static networks. When the 
dynamic network is used, data is sent to another tile in a 
packet. A packet contains header and data. If the data is 
smaller than a packet, dummy data is added to make a 
packet. If the data is larger than the packet, multiple 
packets are sent. The memory ports are located at the 16 
peripheral ports of the chip. All tiles can access memory 
either through the dynamic network or through the static 
network. 

Several kernels including matrix multiplication are 
implemented on Raw and the results are reported in [16]. 
The results show that Raw obtains speedup of up to 12 
relative to single-tile performance on ILP benchmarks. 
Speedups greater than 16 can be achieved on streaming 
benchmarks when compared to a single-issue load/store 
RISC architecture because of a tile’s ability to operate on 
data directly from the networks. 
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Figure 3. Block diagram of Raw 

 



2.4 Programming methodologies 

The programming methodologies and tools for each 
of these architectures are evolving. However, each 
architecture has inherent properties that affect the 
programming model and programmability of the 
architecture. 

The VIRAM’s programming model is that of a 
traditional vector architecture. An application is 
described as single instruction stream that contains scalar 
and vector instructions. There are two primary 
difficulties to programming the VIRAM architecture. 
First, the C programming language makes automatic 
parallelization of many loops difficult or impossible 
without making assumptions about the independence of 
pointer and array accesses. Simple loops or computations 
marked by user hints can be vectorized, but kernels with 
complex access patterns (e.g. FFT) are still difficult to 
automatically vectorize. Languages that are more 
restricted will facilitate automatic vectorization. The 
second factor that complicates the programmability of 
VIRAM is the impact of the DRAM organization on 
performance. Much of the performance of VIRAM is 
achieved by exploiting properties of DRAM organization 
(e.g. banks, rows, columns, and wings). Currently, the 
user must understand the DRAM organization to 
optimize performance. However, it is feasible that a 
compiler could organize memory references based on 
memory organization while it is vectorizing, especially 
given a language that makes this analysis feasible.  For 
this study, a C compiler was used to compile the kernels, 
and then inner loops were hand-vectorized using 
assembly code. 

The programming model of Imagine has two 
significant characteristics. First, the programming model 
is based on streams. Streams are similar to vectors, but 
streams can be explicitly routed between the stream 
register files and the ALU clusters without going through 
the memory system. This property is important for 
reducing the impact of the bandwidth bottleneck 
between DRAM and the processor chip. The second 
significant characteristic of the Imagine programming 
model is that a program is described in two languages, 
one for the host (or control) thread written in C and one 
for the stream processing unit written in kernel-C. Again, 
new programming languages may allow this distinction 
to be hidden from the programmer. However, the 
programming model used in this paper forces the 
programmer to think explicitly about streams and their 
control. This explicit streaming model has the 
disadvantage that a programmer must think about the 
application in a new way, but has the advantage that the 
programmer is forced to think about issues that are 
important to performance anyway. Applications must 

contain SIMD parallelism to see significant performance 
improvements on the Imagine architecture. For this study, 
inner loops were carefully scheduled to maximize 
performance. 

The Raw architecture is the most flexible of the 
three architectures addressed in this paper. The tile-based 
organization with the low-latency, high-bandwidth 
network and memory interface supports a variety of 
programming models. The primary programming models 
used in the kernels described in this paper are the MIMD 
and stream models. The CSLC and beam steering 
kernels have plenty of independent parallelism to allow 
each tile to execute independently. We report results on 
two modes of using Raw: an easy-to-program but less 
efficient MIMD mode, in which data is routed to local 
memories through cache misses (CSLC), and a stream 
mode, in which data is routed in a stream mode without 
going through local memories by thinking explicitly 
about data placement and streams (beam steering).  

However, the low-latency, high-bandwidth networks 
of Raw also allow ILP to be mapped efficiently to Raw. 
Raw’s peak performance can be achieved when data can 
be operated on without going through local memories in 
the tiles. For this study, we used standard C to program 
the kernels. Assembly code was inserted only where 
necessary to access streaming data through the network. 
In beam steering, the codes between two instructions 
accessing streaming data through network are also 
written in assembly language. Other programming 
models, such as decoupled processing, are being 
developed for Raw and have the potential to improve 
performance of applications such as those described in 
this paper. 

2.5 Performance models 

In this section, simple performance models used to 
estimate the upper bound of the performance of the 
kernels on each architecture are described. We model 
computation and memory bandwidth.  Memory latency 
is not modeled since these architectures can generally 
hide memory latency on the kernels used in this study. 

Table 1 shows the DRAM memory and ALU 
throughput for 32-bit data elements that each 
architecture can support. It should be noted that both 
memory and ALU throughput are functions of these 
particular implementations and are not functions of the 
architectures themselves. However, the architectures 
provide the means to exploit the throughput supported by 
the implementation. It should also be noted that memory 
bandwidth reported is for the nearest DRAM. For 
VIRAM, DRAM is on-chip, while the nearest DRAM is 
off-chip for Imagine and Raw. 



Table 1. Peak throughput (32-bit words per 
cycle) 

 VIRAM Imagine Raw 
On-chip DRAM 

Read/Write 
8 16 

(SRF) 
16 

(Cache) 
Off-chip 
DRAM 

Read/Write 

2 
(Using 
DMA) 

2 28 

Computation 8 48 16 
 

3. Kernel Implementations 

In this section, three data-intensive kernels are 
described. Also, the techniques used to improve the 
performance on VIRAM, Imagine, and Raw are 
presented. The descriptions of the techniques are brief 
due to the space limitation. 

3.1 Corner turn 

The corner turn is a matrix transpose operation that 
tests memory bandwidth. The data in the source matrix is 
transposed and stored in the destination matrix. The 
matrix size used for this paper, which was chosen to be 
larger than Imagine’s SRF (128 KB) and Raw’s internal 
memories (2 MB), but smaller than VIRAM’s on-chip 
memory (13 MB), is 1024 x 1024 with 4-byte elements. 

Naive implementations of the corner turn can have 
poor performance because cache performance can be bad 
and strided data accesses degrade DRAM bandwidth. In 
conventional cache-based processor systems, tiling is 
used to reduce cache misses.  

Our VRAM corner turn uses a blocking algorithm 
with a 16 x 16 element matrix. Blocking allows the 
vector registers to be used for temporary storage between 
the loads and stores. We used strided load operations 
with padding added to the matrix rows to avoid DRAM 
bank conflicts. Initial load latencies are not hidden. 
Stores are done sequentially from the vector registers to 
the memory. 

On the Imagine processor, we divide the matrix into 
multi-row strips that allows us to use the stream register 
files. We use four input streams and one output stream 
simultaneously. Since the rows within a stream are read 
sequentially, we maximize memory bandwidth during 
the reading. The Imagine clusters are used to route data 
in the correct output order. The output data is transferred 
to memory in one stream. The output data is partitioned 
into 128 eight-word blocks. The eight words in a block 

are written sequentially, but the blocks are written with a 
non-unit stride.  

Our corner turn on Raw uses one load and one store 
operation for each DRAM-to-DRAM transfer. The 
algorithm, designed at MIT and implemented at 
USC/ISI, was developed to ensure that all 16 Raw tiles 
are doing a load or store during as many cycles as 
possible and to avoid bottlenecks in the static networks 
and data ports. The algorithm operates on 64x64 word 
blocks that fit in a single local tile memory. Main 
memory operations are all done sequentially to 
maximize memory bandwidth since the transpose can be 
done in local memories, where all accesses are done in a 
single cycle. 

3.2 Coherent side-lobe canceller (CSLC) 

CSLC is a radar signal processing kernel used to 
cancel jammer signals caused by one or more jammers. 
Our CSLC implementation consists of FFTs, a weight 
application (multiplication) stage, and IFFTs. Most of 
the computation time is spent on the FFT and IFFT 
operations.  

There are four input channels: two main channels 
and two auxiliary channels. Each channel has 8K 
samples per processing interval. All computations are 
done using single-precision floating-point operations. 
The data is partitioned into 73 overlapping sub-bands, 
each of which contains 128 samples, so 128-sample 
FFTs are used.  

Since the majority of computation time on the 
CSLC is spent on the FFT operation, we improved the 
performance of the FFT by using the appropriate FFT 
algorithms for each architecture. In this study, a 
parallelized hand-optimized radix-4 FFT is used for 
VIRAM and Imagine. Note that since the size of the FFT 
for the CSLC is 128, which is not power of four, we used 
three radix-4 stages and one radix-2 stage. We did not 
hand-optimize our Raw FFT implementation. Rather, a 
C implementation of the radix-2 FFT is used for Raw 
because it provided better performance than the radix-4 
FFT because of register spilling in the radix-4 FFT. The 
Raw implementation does independent data-parallel 
FFTs. 

3.3 Beam steering 

Beam steering is a radar-processing kernel that 
directs a phased-array radar without physically rotating 
the antenna. The computation of the phase for each 
antenna element stresses memory bandwidth and latency 
because large tables are used for calibration tables. 
Arithmetic operations are additions and shift operations. 



In our implementation, the following parameters are 
used. The number of antenna elements is 1608. Each 
element can direct the signal up to 4 directions per dwell 
where a dwell is a period. The phase needs to be 
calculated for each direction using calibration data. 

As for other kernels, we used hand-vectorization of 
the main portion of the beam steering on VIRAM. Since 
the same processing is performed for each data, the data 
is fed to the vector unit, which computes output data. 

For the Imagine, a manually optimized kernel was 
written to maximize cluster ALU utilization. The input 
data streams are loaded into the stream register file and 
supplied to the clusters. The results are written back to 
memory through the register file.  

The beam steering processing on each data is 
independent. Thus, on Raw, we partition the data among 
16 tiles and each tile processes its own data. Input data is 
streamed through the static network and is operated on 
directly from the network.  

4. Experimental results and analysis 

4.1 Overview 

In this section, the implementation results are 
presented. Performance of these kernels is obtained by 
using cycle-accurate simulators provided by the 
VIRAM, Imagine, and Raw teams.  

For comparison purposes, actual measurements of 
performance were taken using a single node of a 1 GHz 
PowerPC G4-based system (Apple PowerMac G4) [1]. 
An implementation using AltiVec technology was used 
for speedup comparison. The Apple cc compiler was 
used with timing done using the MacOS X system call 
mach_absolute_time(). We manually inserted Altivec 
vector instructions. 

Table 2 summarizes key parameters of each 
processor. Note that the PowerPC is a highly optimized 
chip in performance implemented with custom logic. 
However, other processors are research chips 
implemented using standard cells and very small design 
teams. Thus, if the same level of design effort were 
applied to these research architectures, we would expect 
much higher clock rates and density to be achieved.  

In Table 3, a summary of the implementation results 
is shown. Figure 8 shows the speedup in terms of cycles 
and Figure 9 shows the speedup in terms of execution 
time. Note that Figure 8 and Figure 9 are both using a 
log scale on the vertical axis. 

Table 2. Processor Parameters  
 PPC G4 VIRAM Imagine Raw 

Clock (MHz) 1000 200 300 300 

# of ALUs 4 16 48 16 

Peak GFLOPS 5 3.2 14.4 4.64 

 
Table 3. Experimental results (cycles in 103 ) 

 Corner Turn CSLC Beam Steering

PPC 34,250  29,013 730 

Altivec 29,288 4,931 364 

VIRAM 554 424 35 

Imagine 1,439 196 87 

Raw 146 357 19 

 

Figure 8. Speedup compared with PPC with 
AltiVec (Cycles) 

Figure 9. Speedup compared with PPC with 
AltiVec (execution times when PPC=1 GHz, 

VIRAM=200 MHz, Imagine=300 MHz, and 
Raw=300 MHz) 
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4.2 Corner turn 

Table 4 summarizes the expected execution time 
using the performance model shown in Section 3. All 
three architectures provided speedups of more than 20 
compared with a PowerPC system in terms of number of 
cycles. Corner turn performance is mostly a measure of 
memory bandwidth, which is not a direct property of an 
architecture, but rather a function of the number of pins 
in the package. However, the corner turn does 
demonstrate an architecture’s ability to leverage memory 
bandwidth that does exist. Since VIRAM has on-chip 
DRAM, the kernel measures on-chip bandwidth. On the 
Imagine and Raw architectures, we’re stressing off-chip 
memory. 

The performance of corner turn on VIRAM is about 
half of what would have been expected from peak 
memory bandwidth. About 21% of the total cycles are 
overhead due to DRAM pre-charge cycles (which would 
be mostly hidden with sequential accesses) and TLB 
misses, and 24% are due to a limitation in strided load 
performance imposed by the number of address 
generators. 

On Imagine, we assume the memory clock is the 
same frequency as the processor clock. Imagine has two 
address generators that provide two words per clock 
cycle. Note that the number of address generators is a 
processor implementation choice and is not a limitation 
of the stream architecture. Since the goal of the Imagine 
project was to demonstrate how memory traffic could be 
reduced, the Imagine team chose not to implement a 
high-bandwidth memory interface. 

If network port were used to transfer data between 
SRF and an external memory connected to network port 
for corner turn, the performance would be the same since 
the network port has peak performance of two words per 
cycle. 

87% of the cycles in the Imagine corner turn are due 
to memory transfers. The remaining 13% of the 
execution cycles are due to unoverlapped cluster 
instructions. Conceptually, the kernel instructions should 
be fully overlapped with memory accesses, but a 
limitation induced by the stream descriptor registers 
prevented full software pipelining in our 
implementation. 

The Raw chip implementation actually provides 
enough main memory bandwidth that it is not the 
performance limiter for our corner turn implementation. 
Load/store issue rates and local memory bandwidth limit 
performance. 16 instructions per cycle are executed on 
the Raw tiles, and the static network and DRAM ports 
are not a bottleneck. The performance we achieved is 
nearly identical to the maximum performance predicted 

by the instruction issue rate. Memory latency is fully 
hidden (except for negligible start-up costs). 

4.3 CSLC 

CSLC mainly consists of FFTs and matrix-vector 
multiplication. Since the FFT length is 128, the working 
set fits into local memory, the performance of the CSLC 
depends primarily on ALU performance for Imagine and 
Raw. 

Our IRAM CLSC analysis takes about 3.6 times 
longer than what is predicted by peak performance. The 
first factor reducing performance is overhead 
instructions. Instructions are needed to perform the FFT 
shuffles and increase the number of cycles by a factor of 
1.67. The second factor that reduces FFT performance is 
ALU utilization. Since the second vector arithmetic unit 
in VIRAM cannot execute vector floating point 
instructions, performance on the FFT is reduced by a 
factor of 1.52. Finally, memory latency and vector 
startup costs increase performance by a factor of 1.41. 

Imagine has the best performance of the three 
architectures on CSLC. This is because it is a 
computation-intensive kernel for which the working sets 
fit in the stream register files. Although the data access 
patterns for FFT are challenging for any architecture, the 
streaming execution model of Imagine is able to reduce 
memory operations and Imagine functions as intended 
on this kernel. Overall, performance achieved on CSLC 
on Imagine is about 20% of what is predicted by peak 
performance. While this is much lower than has been 
achieved for many media benchmark kernels, it still 
allows Imagine to perform about 10 useful operations 
per cycle; much better than can be achieved on today’s 
superscalar architectures. Performance is reduced by 
30% because inter-cluster communication is used to 
perform parallel FFTs. An alternative implementation, 
which was not completed for this study, would execute 
independent FFTs in parallel to eliminate inter-cluster 
communication overhead.  

For the FFT kernel, ALU utilization (as measured 
by minimum FFT computations / total ALU cycles 
available) is 25.5%. If we exclude the divider, which is 
not useful for the FFT, then the utilization is 30.6%. 
Note that the utilization for the 128-point FFT is a little 
lower than the more than 40% obtained in other 
processing intensive applications [6]. The reason for the 
relatively low utilization is that the small size of the FFT 
reduces the amount of software pipelining and increases 
start-up overheads. 

On Raw, we implemented a data parallel version of 
CSLC. The local memory on Raw successfully caches 
the working sets, and less than 10% of the execution 
time is spent on memory stalls. Note that most of this 



stalling could have been eliminated by implementing a 
streaming DMA transfer to the local memory that is 
overlapped with the computation. 

The CSLC on Raw uses radix-2 FFT to avoid 
register spilling encountered in the radix-4 FFT. The 
number of operations (including loads and stores) in the 
radix-2 FFT is about 1.5 the number in the radix-4 FFT. 
So care should be given when the performance of the 
Raw on CSLC is compared with CSLC performance on 
other architectures. 

One problem with our data parallel implementation 
of CSLC on Raw was load balancing. The CSLC is 
easily parallelized for 16 tiles. However, since the 
number of data sets is 73, which is not a multiple of the 
number of tiles, some tiles processed five sets while 
others processed four sets. About 8% of CPU cycles are 
idle due to load balancing. However, the number of sets 
in a real environment is not fixed at 73. In a real 
implementation, the input data sets would arrive 
continuously. Therefore, it is reasonable to assume that 
Raw could have perfect load balancing in a real 
implementation. Thus, we report the performance 
numbers for CSLC on Raw based on an extrapolation 
that assumes perfect load balancing. 

Raw achieves about 31.4% of the peak performance 
on CSLC. In addition to the cache stall time previously 
discussed, about 26% of the cycles on Raw are 
consumed by load and store instructions. The remaining 
cycles are consumed by address and index calculations 
and loop overhead instructions. 

If FFT is implemented using the stream interface 
that uses static network, it hides the cache miss stalls, 
and load and store operations are not needed. A primitive 
implementation result suggests about 70% of FFT 
performance improvement. 

4.4 Beam steering 

Beam steering has small numbers of memory 
accesses (2 reads and 1 write) and computations (5 
additions and 1 shift) per output data.  

On VIRAM, the lower bound of the computation 
time is 56% of the simulation time. The difference 
between the expected time and simulation cycles 
(15,412) comes from waiting for the results from 
previous vector operations and the cycles needed to 
initialize the vector operations.  

On Imagine, the computations and memory accesses 
for beam steering are overlapped. The performance is 
limited by memory bandwidth due to the relatively low 
number of computation per memory access. The load 
and store operations take 89% of the simulation time. 

The remaining 11% of execution time is due to the 
software pipeline prologue. 

In an actual signal processing pipeline the beam 
steering kernel would stream its inputs from the 
proceeding kernel in the application (e.g., a poly-phase 
filter bank) and stream its outputs to the following kernel 
(e.g., per-beam equalization).  In such a pipeline the 
performance of beam steering will not be limited by 
memory bandwidth, as in the case of this isolated kernel, 
but rather will be limited by arithmetic performance. On 
such a streaming application Imagine is expected to 
achieve a high fraction of its peak performance. If table 
values were read from the stream register file rather than 
memory on our kernel, performance would be increased 
by a factor of about two. The performance of a beam 
steering algorithm with more computation per data 
(which is a realistic assumption) could be much higher. 

On Raw, we used the static network to stream data 
from memory while hiding memory latency. In this 
implementation, loads and stores are not necessary and 
ALU utilization is very high. The Raw beam steering 
implementation has the best performance of the three 
architectures because of the combination of memory 
bandwidth and high ALU utilization. 

4.5 Altivec mapping 

The PowerPC G4 provides a vector instruction set 
extension, which was used manually to achieve the G4 
results shown in Section 4.1. The Altivec instruction set 
allows four 32-bit floating-point operations to be 
specified and executed in a single instruction. Using the 
AltiVec architecture gains a performance factor of about 
six for the CSLC and about two for beam steering and 
does not significantly improve performance for the 
corner turn, which is limited by main memory bandwidth. 

4.6 Architecture comparison 

VIRAM’s primary advantage comes from the high 
bandwidth between the vector units and DRAM without 
paying the cost (in terms of pins and power) that are 
required to achieve high bandwidth between chips. 
VIRAM is especially suitable for vectorizable 
applications that can utilize the high bandwidth interface 
and that are small enough to fit in the on-chip memory. 
VIRAM outperformed the G4 Altivec by more than a 
factor of 10 on all three of our kernels and showed 
especially good performance on the kernels that 
emphasize memory bandwidth. For embedded 
applications with reasonably sized data sets, the VIRAM 
can be used as a one-chip system. If the application size 
is larger than the on-chip DRAM, the data needs to come 



from off-chip memory and VIRAM would lose much of 
its advantage. 

Imagine’s high peak performance can be utilized in 
streaming applications where main memory accesses can 
be avoided or minimized. The CSLC kernel 
demonstrates that even when the Imagine ALUs are not 
fully utilized, performance can be quite high, especially 
when compared to a commercial microprocessor like the 
G4 Altivec. Imagine’s stream-based architecture is 
designed for scalability and power efficiency and the 
Imagine architecture has the highest peak performance 
of the architectures in this study. 

Raw also performs best on streaming applications 
since load and store operations can be eliminated and the 
static networks provide tremendous on-chip bandwidth. 
The kernels used in this study do not fully exploit this 
mode of execution. But we have shown that the tile 
structure of Raw can be used to utilize the memory 
bandwidth available from the external ports of Raw. The 
tile structure also provides flexible support for MIMD 
and ILP applications. 

5. CONCLUSION 

The authors have presented simulated performance 
results for three data-intensive radar processing kernels: 
the corner turn, coherent side-lobe canceller, and beam 
steering on systems based on three recent research 
processors (VIRAM, Imagine, and Raw). The results 
show that all three of these architectures have strengths 
and provide significant performance potential compared 
to the current generation of superscalar processors with 
vector extensions. 

These emerging architectures demonstrate that they 
can be programmed quickly in high level languages and 
existing compilers to obtain adequate performance, 
while with hand optimization or future compilers, they 
can achieve performance that far outstrips existing 
architectures. Furthermore, all three of these 
architectures will scale as technology shrinks far better 
than today’s superscalar processors. 
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