

A Performance Analysis of PIM, Stream Processing, and Tiled Processing on

Memory-Intensive Signal Processing Kernels

Jinwoo Suh, Eun-Gyu Kim, Stephen P. Crago, Lakshmi Srinivasan, and Matthew C. French
University of Southern California/Information Sciences Institute

3811 N. Fairfax Drive, Suite 200, Arlington, VA 22203

{jsuh, eungyu, crago, lakshmi, mfrench}@isi.edu

Abstract

Trends in microprocessors of increasing die

size and clock speed and decreasing feature sizes have
fueled rapidly increasing performance. However, the
limited improvements in DRAM latency and bandwidth
and diminishing returns of increasing superscalar ILP
and cache sizes have led to the proposal of new
microprocessor architectures that implement processor-
in-memory, stream processing, and tiled processing.
Each architecture is typically evaluated separately and
compared to a baseline architecture. In this paper, we
evaluate the performance of processors that implement
these architectures on a common set of signal processing
kernels.

The implementation results are compared with
the measured performance of a conventional system
based on the PowerPC with Altivec. The results show
that these new processors show significant improvements
over conventional systems and that each architecture
has its own strengths and weaknesses.

1. Introduction

Microprocessor performance has been doubling
every 18-24 months for many years [7]. This increase
has been possible because die size has increased and
feature size has decreased. However, the increasing die
size combined with fast clock speeds have made the
maximum distance as measured in clock cycles between
two points on a processor longer.

To solve this problem, pipelining has been used
widely. However, increasing pipeline depth increases
various latencies, including cache access and branch
prediction penalties, and increases the complexity of
processor design. Techniques for exploiting ILP without
exposing parallelism to the instruction set have also
reached a point of diminishing returns.

Another problem in the recent processors is the
growing gap between the processor speed and memory
speed. The performance improvement of
microprocessors has not been matched by DRAM (main
memory) latencies, which have only improved by 7%
per year [7], or pin bandwidths. These growing gaps
have created a problem for data-intensive applications.

To bridge these growing gaps, many methods have
been proposed such as caching, prefetching, and
multithreading. However, these methods provide limited
performance improvement and can even hinder
performance for data-intensive applications. Caching has
been the most popular memory latency tolerating
technique [10][12]. Caching increases performance by
utilizing temporal and spatial locality, but it is not useful
for many data-intensive applications since many of them
do not show such locality [11].

Recently, several architectural approaches have
been explored that promise to hide memory latency for
applications that include data-intensive applications
while improving scalability. This study is an attempt to
demonstrate and compare some of the advantages and
disadvantages of processor-in-memory (PIM), streaming,
and tiled architectures approaches by implementing a
common set of memory-intensive signal processing
kernels.

We implemented the corner turn, beam steering, and
coherent side-lobe canceller (CSLC) kernels and
measured the performance using cycle accurate
simulators developed by each architecture group.

The rest of the paper is organized as follows. In
Chapter 2, a PIM, a stream processor, and a tile-based
processor are briefly described. Chapter 3 describes the
three kernels we implemented: the corner turn, coherent
side-lobe canceller, and beam steering. Also, the
techniques that we used to exploit each platform are
described. In Chapter 4, the implementation results and
analysis are shown. Chapter 5 concludes the paper.

2. VIRAM, IMAGINE, and RAW

In this section, the VIRAM, Imagine, and Raw chips
are briefly described. We also describe the performance
models that will be used to understand performance of
the application kernels.

2.1 VIRAM

In conventional systems, the CPU and memory are
implemented on different chips. Thus, the bandwidth
between CPU and memory is limited since the data must
be transferred through chip I/O pins and copper wires on
a PCB. Furthermore, much of the internal structure of
DRAM, which could be exploited if exposed, is hidden
because of the bandwidth limitation imposed by the pins.

Processor-In-Memory (PIM) technology is a method
for closing the gap between memory speed and processor
speed for data intensive applications. PIM technology
integrates a processor and DRAM on the same chip. The
integration of memory and processor on the same chip
has the potential to decrease memory latency and
increase the bandwidth between the processor and
memory. PIM technology also has the potential to
decrease other important system parameters such as
power consumption, cost, and area.

The VIRAM chip [5] is a PIM research prototype
being developed at the University of California at
Berkeley. A simplified architecture of the chip is shown
in Figure 1. The VIRAM contains two vector-processing
units in addition to a scalar-processing unit. These units
are pipelined. The vector functional units can be
partitioned into several smaller units, depending on the
arithmetic precision required. For example, a vector
functional unit can be partitioned into 4 units for 64-bit
operations or 8 units for 32-bit operations. Some
operations are allowed to execute on ALU0 only. It has
8K vector register file (32 registers).

It has 13 Mbytes of DRAM. There is a 256-bit data
path between the processing units and DRAM. The
DRAM is partitioned into two wings, each of which has
four banks. It can access eight sequential 32-bit data
elements per clock cycle. However, since there are four
address generators, it can access only four strided 32-bit
or 64-bit data elements per cycle.

Flag units

Vector
ALU0

Vector registers

Memory crossbar

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 7

Vector
ALU1

Vector
Load/Store Unit

Lane 0 Lane 1 Lane 2 Lane 3

MIPS
Core

Vector
Control

I/O

I D

64 bits

256 bits

Figure 1. Block diagram of VIRAM
There is a crossbar switch between the DRAM and

the vector processor. The target processor speed is 200
MHz, which would provide a peak performance of 3.2
GOPS (= 200 MHz x 2 ALUs x 8 data per clock) for 32-
bit data. If 16-bit data is processed, the performance is
6.4 GOPS. Its peak floating point performance is 1.6
GFLOPS for 32-bit data. The power consumption is
expected to be about 2 W. The EEMBC (Embedded
Microprocessor Benchmark Consortium) benchmarks
have been implemented on VIRAM [17]. VIRAM’s
performance is 20 times better (as measured by
geometric mean normalized by clock frequency) than the
K6-III+ x86 processor.

2.2 Imagine

Another approach for handling the growing
processor-memory gap is stream processing. In this
approach, the data is routed through stream registers to
hide memory latency, allow the re-ordering of DRAM
accesses, and minimize the number of memory accesses.
The Imagine chip [4][11] is a research prototype stream
processor developed at Stanford University. It contains
eight clusters of arithmetic units that process data from a
stream register file. The processor speed is currently 300
MHz, which provides a peak performance of over 14
GOPS (32-bit integer or floating-point operations).
Performance results for Imagine have been presented for
application kernels such as MPEG, and QRD [9]. ALU
utilization between 84% and 95% is reported for
streaming media applications.

Figure 2 shows the block diagram of Imagine. The
stream processing is implemented with eight ALU
clusters (with 6 ALUs each) with a large stream register
file (SRF), and a high-bandwidth interconnect between
them. The size of SRF is 128 Kbytes. A stream can start
at the start of any SRF 128-byte blocks. Data is
transferred to and from the SRF from off-chip memory

or the network interface. The eight ALU clusters operate
on data from the SRF. Up to eight input or output
streams can be processed simultaneously. The data is
sent to clusters in round-robin fashion, i.e., the i-th data
is sent to cluster (i mod 8). All clusters perform the
same operations on their data in SIMD style. Each
cluster has 6 arithmetic units (three adders, two
multipliers, and one divider) and one communication
interface that is used to send data between ALU clusters.

The Imagine prototype implementation has two
memory controllers, each of which can process a
memory access stream. The memory controller reorders
accesses to reduce bank conflicts and to increase data
access locality. The processor speed in the lab is
currently near 300 MHz, which would provide a peak
performance of 14.4 GFLOPS (= 300 MHz x 8 ALU
clusters x 6 arithmetic units per cluster) for 32-bit data.

ALU cluster 0

Mem
system

SDRAM

SDRAM

SDRAM

SDRAM

128
KB

SRF

ALU cluster 1

ALU cluster 2

ALU cluster 3

ALU cluster 4

ALU cluster 5

ALU cluster 6

ALU cluster 7

Micro-
controller

Stream
controller

Network
interface

Host
interface

Host
processor

I/O
Imagine chip

+ X /+ + X

Scratch
pad

memory

Inter-
cluster
comm.

Host procssor
SDRAM

Figure 2. Block diagram of Imagine

2.3 Raw

Another approach for a scalable microprocessor that
addresses issues of continued technology scaling is tile
processing. Instead of building one processor on a chip,
several processors (tiles) are implemented and connected
in a mesh topology using a scalar operand network [16].
Then, each tile occupies a fraction of the chip space, so it
is easier to make a faster processor since the signals need
to travel only a short distance. One example is the Raw
chip implemented at MIT [15] and shown in Figure 3.
The current Raw implementation contains 16 tiles on a
chip connected by a very low latency 2-D mesh network.

The Raw prototype has been tested up to 199MHz and is
expected to operate at 300MHz. Peak performance is 4.8
GOPS.

Each tile has a MIPS-based RISC processor with
floating-point units and a total of 128 KB of SRAM,
which includes switch instruction memory, tile
(processor) instruction memory, and data memory. Raw
uses general parallelism, which includes streaming, ILP,
and data parallelism.

The Raw has four networks: two static networks and
two dynamic networks. Communication on the static
networks is performed by a switch processor in each tile
[15]. The switch processor is located between the
computation processor and the network and provides
throughput to the tile processor of one word per cycle
with a latency of three cycles between nearest neighbor
tiles. One additional cycle of latency is added for each
hop in the mesh through the static networks. When the
dynamic network is used, data is sent to another tile in a
packet. A packet contains header and data. If the data is
smaller than a packet, dummy data is added to make a
packet. If the data is larger than the packet, multiple
packets are sent. The memory ports are located at the 16
peripheral ports of the chip. All tiles can access memory
either through the dynamic network or through the static
network.

Several kernels including matrix multiplication are
implemented on Raw and the results are reported in [16].
The results show that Raw obtains speedup of up to 12
relative to single-tile performance on ILP benchmarks.
Speedups greater than 16 can be achieved on streaming
benchmarks when compared to a single-issue load/store
RISC architecture because of a tile’s ability to operate on
data directly from the networks.

Computing
processor

(8 stage 32 bit,
single issue,

in order)

Com-
muication
processor

96 KB
I-Cache
32 KB

D-Cache

4-stage
pipelined

FPU

8 32-bit
channels

Figure 3. Block diagram of Raw

2.4 Programming methodologies

The programming methodologies and tools for each
of these architectures are evolving. However, each
architecture has inherent properties that affect the
programming model and programmability of the
architecture.

The VIRAM’s programming model is that of a
traditional vector architecture. An application is
described as single instruction stream that contains scalar
and vector instructions. There are two primary
difficulties to programming the VIRAM architecture.
First, the C programming language makes automatic
parallelization of many loops difficult or impossible
without making assumptions about the independence of
pointer and array accesses. Simple loops or computations
marked by user hints can be vectorized, but kernels with
complex access patterns (e.g. FFT) are still difficult to
automatically vectorize. Languages that are more
restricted will facilitate automatic vectorization. The
second factor that complicates the programmability of
VIRAM is the impact of the DRAM organization on
performance. Much of the performance of VIRAM is
achieved by exploiting properties of DRAM organization
(e.g. banks, rows, columns, and wings). Currently, the
user must understand the DRAM organization to
optimize performance. However, it is feasible that a
compiler could organize memory references based on
memory organization while it is vectorizing, especially
given a language that makes this analysis feasible. For
this study, a C compiler was used to compile the kernels,
and then inner loops were hand-vectorized using
assembly code.

The programming model of Imagine has two
significant characteristics. First, the programming model
is based on streams. Streams are similar to vectors, but
streams can be explicitly routed between the stream
register files and the ALU clusters without going through
the memory system. This property is important for
reducing the impact of the bandwidth bottleneck
between DRAM and the processor chip. The second
significant characteristic of the Imagine programming
model is that a program is described in two languages,
one for the host (or control) thread written in C and one
for the stream processing unit written in kernel-C. Again,
new programming languages may allow this distinction
to be hidden from the programmer. However, the
programming model used in this paper forces the
programmer to think explicitly about streams and their
control. This explicit streaming model has the
disadvantage that a programmer must think about the
application in a new way, but has the advantage that the
programmer is forced to think about issues that are
important to performance anyway. Applications must

contain SIMD parallelism to see significant performance
improvements on the Imagine architecture. For this study,
inner loops were carefully scheduled to maximize
performance.

The Raw architecture is the most flexible of the
three architectures addressed in this paper. The tile-based
organization with the low-latency, high-bandwidth
network and memory interface supports a variety of
programming models. The primary programming models
used in the kernels described in this paper are the MIMD
and stream models. The CSLC and beam steering
kernels have plenty of independent parallelism to allow
each tile to execute independently. We report results on
two modes of using Raw: an easy-to-program but less
efficient MIMD mode, in which data is routed to local
memories through cache misses (CSLC), and a stream
mode, in which data is routed in a stream mode without
going through local memories by thinking explicitly
about data placement and streams (beam steering).

However, the low-latency, high-bandwidth networks
of Raw also allow ILP to be mapped efficiently to Raw.
Raw’s peak performance can be achieved when data can
be operated on without going through local memories in
the tiles. For this study, we used standard C to program
the kernels. Assembly code was inserted only where
necessary to access streaming data through the network.
In beam steering, the codes between two instructions
accessing streaming data through network are also
written in assembly language. Other programming
models, such as decoupled processing, are being
developed for Raw and have the potential to improve
performance of applications such as those described in
this paper.

2.5 Performance models

In this section, simple performance models used to
estimate the upper bound of the performance of the
kernels on each architecture are described. We model
computation and memory bandwidth. Memory latency
is not modeled since these architectures can generally
hide memory latency on the kernels used in this study.

Table 1 shows the DRAM memory and ALU
throughput for 32-bit data elements that each
architecture can support. It should be noted that both
memory and ALU throughput are functions of these
particular implementations and are not functions of the
architectures themselves. However, the architectures
provide the means to exploit the throughput supported by
the implementation. It should also be noted that memory
bandwidth reported is for the nearest DRAM. For
VIRAM, DRAM is on-chip, while the nearest DRAM is
off-chip for Imagine and Raw.

Table 1. Peak throughput (32-bit words per
cycle)

 VIRAM Imagine Raw
On-chip DRAM

Read/Write
8 16

(SRF)
16

(Cache)
Off-chip
DRAM

Read/Write

2
(Using
DMA)

2 28

Computation 8 48 16

3. Kernel Implementations

In this section, three data-intensive kernels are
described. Also, the techniques used to improve the
performance on VIRAM, Imagine, and Raw are
presented. The descriptions of the techniques are brief
due to the space limitation.

3.1 Corner turn

The corner turn is a matrix transpose operation that
tests memory bandwidth. The data in the source matrix is
transposed and stored in the destination matrix. The
matrix size used for this paper, which was chosen to be
larger than Imagine’s SRF (128 KB) and Raw’s internal
memories (2 MB), but smaller than VIRAM’s on-chip
memory (13 MB), is 1024 x 1024 with 4-byte elements.

Naive implementations of the corner turn can have
poor performance because cache performance can be bad
and strided data accesses degrade DRAM bandwidth. In
conventional cache-based processor systems, tiling is
used to reduce cache misses.

Our VRAM corner turn uses a blocking algorithm
with a 16 x 16 element matrix. Blocking allows the
vector registers to be used for temporary storage between
the loads and stores. We used strided load operations
with padding added to the matrix rows to avoid DRAM
bank conflicts. Initial load latencies are not hidden.
Stores are done sequentially from the vector registers to
the memory.

On the Imagine processor, we divide the matrix into
multi-row strips that allows us to use the stream register
files. We use four input streams and one output stream
simultaneously. Since the rows within a stream are read
sequentially, we maximize memory bandwidth during
the reading. The Imagine clusters are used to route data
in the correct output order. The output data is transferred
to memory in one stream. The output data is partitioned
into 128 eight-word blocks. The eight words in a block

are written sequentially, but the blocks are written with a
non-unit stride.

Our corner turn on Raw uses one load and one store
operation for each DRAM-to-DRAM transfer. The
algorithm, designed at MIT and implemented at
USC/ISI, was developed to ensure that all 16 Raw tiles
are doing a load or store during as many cycles as
possible and to avoid bottlenecks in the static networks
and data ports. The algorithm operates on 64x64 word
blocks that fit in a single local tile memory. Main
memory operations are all done sequentially to
maximize memory bandwidth since the transpose can be
done in local memories, where all accesses are done in a
single cycle.

3.2 Coherent side-lobe canceller (CSLC)

CSLC is a radar signal processing kernel used to
cancel jammer signals caused by one or more jammers.
Our CSLC implementation consists of FFTs, a weight
application (multiplication) stage, and IFFTs. Most of
the computation time is spent on the FFT and IFFT
operations.

There are four input channels: two main channels
and two auxiliary channels. Each channel has 8K
samples per processing interval. All computations are
done using single-precision floating-point operations.
The data is partitioned into 73 overlapping sub-bands,
each of which contains 128 samples, so 128-sample
FFTs are used.

Since the majority of computation time on the
CSLC is spent on the FFT operation, we improved the
performance of the FFT by using the appropriate FFT
algorithms for each architecture. In this study, a
parallelized hand-optimized radix-4 FFT is used for
VIRAM and Imagine. Note that since the size of the FFT
for the CSLC is 128, which is not power of four, we used
three radix-4 stages and one radix-2 stage. We did not
hand-optimize our Raw FFT implementation. Rather, a
C implementation of the radix-2 FFT is used for Raw
because it provided better performance than the radix-4
FFT because of register spilling in the radix-4 FFT. The
Raw implementation does independent data-parallel
FFTs.

3.3 Beam steering

Beam steering is a radar-processing kernel that
directs a phased-array radar without physically rotating
the antenna. The computation of the phase for each
antenna element stresses memory bandwidth and latency
because large tables are used for calibration tables.
Arithmetic operations are additions and shift operations.

In our implementation, the following parameters are
used. The number of antenna elements is 1608. Each
element can direct the signal up to 4 directions per dwell
where a dwell is a period. The phase needs to be
calculated for each direction using calibration data.

As for other kernels, we used hand-vectorization of
the main portion of the beam steering on VIRAM. Since
the same processing is performed for each data, the data
is fed to the vector unit, which computes output data.

For the Imagine, a manually optimized kernel was
written to maximize cluster ALU utilization. The input
data streams are loaded into the stream register file and
supplied to the clusters. The results are written back to
memory through the register file.

The beam steering processing on each data is
independent. Thus, on Raw, we partition the data among
16 tiles and each tile processes its own data. Input data is
streamed through the static network and is operated on
directly from the network.

4. Experimental results and analysis

4.1 Overview

In this section, the implementation results are
presented. Performance of these kernels is obtained by
using cycle-accurate simulators provided by the
VIRAM, Imagine, and Raw teams.

For comparison purposes, actual measurements of
performance were taken using a single node of a 1 GHz
PowerPC G4-based system (Apple PowerMac G4) [1].
An implementation using AltiVec technology was used
for speedup comparison. The Apple cc compiler was
used with timing done using the MacOS X system call
mach_absolute_time(). We manually inserted Altivec
vector instructions.

Table 2 summarizes key parameters of each
processor. Note that the PowerPC is a highly optimized
chip in performance implemented with custom logic.
However, other processors are research chips
implemented using standard cells and very small design
teams. Thus, if the same level of design effort were
applied to these research architectures, we would expect
much higher clock rates and density to be achieved.

In Table 3, a summary of the implementation results
is shown. Figure 8 shows the speedup in terms of cycles
and Figure 9 shows the speedup in terms of execution
time. Note that Figure 8 and Figure 9 are both using a
log scale on the vertical axis.

Table 2. Processor Parameters
 PPC G4 VIRAM Imagine Raw

Clock (MHz) 1000 200 300 300

of ALUs 4 16 48 16

Peak GFLOPS 5 3.2 14.4 4.64

Table 3. Experimental results (cycles in 103)

 Corner Turn CSLC Beam Steering

PPC 34,250 29,013 730

Altivec 29,288 4,931 364

VIRAM 554 424 35

Imagine 1,439 196 87

Raw 146 357 19

Figure 8. Speedup compared with PPC with
AltiVec (Cycles)

Figure 9. Speedup compared with PPC with
AltiVec (execution times when PPC=1 GHz,

VIRAM=200 MHz, Imagine=300 MHz, and
Raw=300 MHz)

1

10

100

Corner Turn CSLC Beam Steering

VIRAM

Imagine

Raw

1

10

100

1000

Corner Turn CSLC Beam Steering

VIRAM

Imagine

Raw

4.2 Corner turn

Table 4 summarizes the expected execution time
using the performance model shown in Section 3. All
three architectures provided speedups of more than 20
compared with a PowerPC system in terms of number of
cycles. Corner turn performance is mostly a measure of
memory bandwidth, which is not a direct property of an
architecture, but rather a function of the number of pins
in the package. However, the corner turn does
demonstrate an architecture’s ability to leverage memory
bandwidth that does exist. Since VIRAM has on-chip
DRAM, the kernel measures on-chip bandwidth. On the
Imagine and Raw architectures, we’re stressing off-chip
memory.

The performance of corner turn on VIRAM is about
half of what would have been expected from peak
memory bandwidth. About 21% of the total cycles are
overhead due to DRAM pre-charge cycles (which would
be mostly hidden with sequential accesses) and TLB
misses, and 24% are due to a limitation in strided load
performance imposed by the number of address
generators.

On Imagine, we assume the memory clock is the
same frequency as the processor clock. Imagine has two
address generators that provide two words per clock
cycle. Note that the number of address generators is a
processor implementation choice and is not a limitation
of the stream architecture. Since the goal of the Imagine
project was to demonstrate how memory traffic could be
reduced, the Imagine team chose not to implement a
high-bandwidth memory interface.

If network port were used to transfer data between
SRF and an external memory connected to network port
for corner turn, the performance would be the same since
the network port has peak performance of two words per
cycle.

87% of the cycles in the Imagine corner turn are due
to memory transfers. The remaining 13% of the
execution cycles are due to unoverlapped cluster
instructions. Conceptually, the kernel instructions should
be fully overlapped with memory accesses, but a
limitation induced by the stream descriptor registers
prevented full software pipelining in our
implementation.

The Raw chip implementation actually provides
enough main memory bandwidth that it is not the
performance limiter for our corner turn implementation.
Load/store issue rates and local memory bandwidth limit
performance. 16 instructions per cycle are executed on
the Raw tiles, and the static network and DRAM ports
are not a bottleneck. The performance we achieved is
nearly identical to the maximum performance predicted

by the instruction issue rate. Memory latency is fully
hidden (except for negligible start-up costs).

4.3 CSLC

CSLC mainly consists of FFTs and matrix-vector
multiplication. Since the FFT length is 128, the working
set fits into local memory, the performance of the CSLC
depends primarily on ALU performance for Imagine and
Raw.

Our IRAM CLSC analysis takes about 3.6 times
longer than what is predicted by peak performance. The
first factor reducing performance is overhead
instructions. Instructions are needed to perform the FFT
shuffles and increase the number of cycles by a factor of
1.67. The second factor that reduces FFT performance is
ALU utilization. Since the second vector arithmetic unit
in VIRAM cannot execute vector floating point
instructions, performance on the FFT is reduced by a
factor of 1.52. Finally, memory latency and vector
startup costs increase performance by a factor of 1.41.

Imagine has the best performance of the three
architectures on CSLC. This is because it is a
computation-intensive kernel for which the working sets
fit in the stream register files. Although the data access
patterns for FFT are challenging for any architecture, the
streaming execution model of Imagine is able to reduce
memory operations and Imagine functions as intended
on this kernel. Overall, performance achieved on CSLC
on Imagine is about 20% of what is predicted by peak
performance. While this is much lower than has been
achieved for many media benchmark kernels, it still
allows Imagine to perform about 10 useful operations
per cycle; much better than can be achieved on today’s
superscalar architectures. Performance is reduced by
30% because inter-cluster communication is used to
perform parallel FFTs. An alternative implementation,
which was not completed for this study, would execute
independent FFTs in parallel to eliminate inter-cluster
communication overhead.

For the FFT kernel, ALU utilization (as measured
by minimum FFT computations / total ALU cycles
available) is 25.5%. If we exclude the divider, which is
not useful for the FFT, then the utilization is 30.6%.
Note that the utilization for the 128-point FFT is a little
lower than the more than 40% obtained in other
processing intensive applications [6]. The reason for the
relatively low utilization is that the small size of the FFT
reduces the amount of software pipelining and increases
start-up overheads.

On Raw, we implemented a data parallel version of
CSLC. The local memory on Raw successfully caches
the working sets, and less than 10% of the execution
time is spent on memory stalls. Note that most of this

stalling could have been eliminated by implementing a
streaming DMA transfer to the local memory that is
overlapped with the computation.

The CSLC on Raw uses radix-2 FFT to avoid
register spilling encountered in the radix-4 FFT. The
number of operations (including loads and stores) in the
radix-2 FFT is about 1.5 the number in the radix-4 FFT.
So care should be given when the performance of the
Raw on CSLC is compared with CSLC performance on
other architectures.

One problem with our data parallel implementation
of CSLC on Raw was load balancing. The CSLC is
easily parallelized for 16 tiles. However, since the
number of data sets is 73, which is not a multiple of the
number of tiles, some tiles processed five sets while
others processed four sets. About 8% of CPU cycles are
idle due to load balancing. However, the number of sets
in a real environment is not fixed at 73. In a real
implementation, the input data sets would arrive
continuously. Therefore, it is reasonable to assume that
Raw could have perfect load balancing in a real
implementation. Thus, we report the performance
numbers for CSLC on Raw based on an extrapolation
that assumes perfect load balancing.

Raw achieves about 31.4% of the peak performance
on CSLC. In addition to the cache stall time previously
discussed, about 26% of the cycles on Raw are
consumed by load and store instructions. The remaining
cycles are consumed by address and index calculations
and loop overhead instructions.

If FFT is implemented using the stream interface
that uses static network, it hides the cache miss stalls,
and load and store operations are not needed. A primitive
implementation result suggests about 70% of FFT
performance improvement.

4.4 Beam steering

Beam steering has small numbers of memory
accesses (2 reads and 1 write) and computations (5
additions and 1 shift) per output data.

On VIRAM, the lower bound of the computation
time is 56% of the simulation time. The difference
between the expected time and simulation cycles
(15,412) comes from waiting for the results from
previous vector operations and the cycles needed to
initialize the vector operations.

On Imagine, the computations and memory accesses
for beam steering are overlapped. The performance is
limited by memory bandwidth due to the relatively low
number of computation per memory access. The load
and store operations take 89% of the simulation time.

The remaining 11% of execution time is due to the
software pipeline prologue.

In an actual signal processing pipeline the beam
steering kernel would stream its inputs from the
proceeding kernel in the application (e.g., a poly-phase
filter bank) and stream its outputs to the following kernel
(e.g., per-beam equalization). In such a pipeline the
performance of beam steering will not be limited by
memory bandwidth, as in the case of this isolated kernel,
but rather will be limited by arithmetic performance. On
such a streaming application Imagine is expected to
achieve a high fraction of its peak performance. If table
values were read from the stream register file rather than
memory on our kernel, performance would be increased
by a factor of about two. The performance of a beam
steering algorithm with more computation per data
(which is a realistic assumption) could be much higher.

On Raw, we used the static network to stream data
from memory while hiding memory latency. In this
implementation, loads and stores are not necessary and
ALU utilization is very high. The Raw beam steering
implementation has the best performance of the three
architectures because of the combination of memory
bandwidth and high ALU utilization.

4.5 Altivec mapping

The PowerPC G4 provides a vector instruction set
extension, which was used manually to achieve the G4
results shown in Section 4.1. The Altivec instruction set
allows four 32-bit floating-point operations to be
specified and executed in a single instruction. Using the
AltiVec architecture gains a performance factor of about
six for the CSLC and about two for beam steering and
does not significantly improve performance for the
corner turn, which is limited by main memory bandwidth.

4.6 Architecture comparison

VIRAM’s primary advantage comes from the high
bandwidth between the vector units and DRAM without
paying the cost (in terms of pins and power) that are
required to achieve high bandwidth between chips.
VIRAM is especially suitable for vectorizable
applications that can utilize the high bandwidth interface
and that are small enough to fit in the on-chip memory.
VIRAM outperformed the G4 Altivec by more than a
factor of 10 on all three of our kernels and showed
especially good performance on the kernels that
emphasize memory bandwidth. For embedded
applications with reasonably sized data sets, the VIRAM
can be used as a one-chip system. If the application size
is larger than the on-chip DRAM, the data needs to come

from off-chip memory and VIRAM would lose much of
its advantage.

Imagine’s high peak performance can be utilized in
streaming applications where main memory accesses can
be avoided or minimized. The CSLC kernel
demonstrates that even when the Imagine ALUs are not
fully utilized, performance can be quite high, especially
when compared to a commercial microprocessor like the
G4 Altivec. Imagine’s stream-based architecture is
designed for scalability and power efficiency and the
Imagine architecture has the highest peak performance
of the architectures in this study.

Raw also performs best on streaming applications
since load and store operations can be eliminated and the
static networks provide tremendous on-chip bandwidth.
The kernels used in this study do not fully exploit this
mode of execution. But we have shown that the tile
structure of Raw can be used to utilize the memory
bandwidth available from the external ports of Raw. The
tile structure also provides flexible support for MIMD
and ILP applications.

5. CONCLUSION

The authors have presented simulated performance
results for three data-intensive radar processing kernels:
the corner turn, coherent side-lobe canceller, and beam
steering on systems based on three recent research
processors (VIRAM, Imagine, and Raw). The results
show that all three of these architectures have strengths
and provide significant performance potential compared
to the current generation of superscalar processors with
vector extensions.

These emerging architectures demonstrate that they
can be programmed quickly in high level languages and
existing compilers to obtain adequate performance,
while with hand optimization or future compilers, they
can achieve performance that far outstrips existing
architectures. Furthermore, all three of these
architectures will scale as technology shrinks far better
than today’s superscalar processors.

6. ACKNOWLEDGMENTS

The authors gratefully acknowledge the
extraordinary support of the UC Berkeley IRAM team,
the Stanford Imagine team, and the MIT Raw team for
the use of their compilers, simulators, and computational
kernels and their generous help. This study obviously
would not have been possible without their generous
support.

The authors also appreciate comments, suggestions,
and help from Krste Asanovic, Christos Kozyrakis, Bill
Dally, Anant Agarwal, Brian Patrick Towles, Jung Ho

Ahn, Abhishek Das, Brucek Khailany, Ujval J. Kapasi,
John Owens, Michael.B.Taylor, Hank Hoffmann, Dong-
In Kang, and Lavanya Swethranyan.

 Effort sponsored by Defense Advanced Research
Projects Agency (DARPA) through the Air Force
Research Laboratory, USAF, under agreement number
F30602-99-1-0521 and F30602-01-C-0171. The U.S.
Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not
interpreted as necessarily representing the official
policies or endorsement, either expressed or implied, of
the Defense Advanced Research Projects Agency
(DARPA), Air Force Research Laboratory, or the U.S.
Government.

7. References

[1] Apple, http://www.apple.com/powermac/, 2002.

[2] M. Gordon, W Thies, M. Karczmarek, J. Lin, A. S. Meli,
A. A. Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze,
and S. Amarasinghe, “A Stream Compiler for
Communication-Exposed Architectures, MIT Tech.
Memo TM-627, Cambridge, MA, March, 2002.

[3] A. Gupta, J. L. Hennessy, K. Gharachorloo, T. Mowry,
and W. D. Weber, “Computative Evaluation of Latency
Reducing and Tolerating Techniques,” Proc. 18th Annual
International Symposium on Computer Architecture,
Toronto, May 1991.

[4] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P.
Mattson, J. Namkoong, J. D. Owens, B. Towles, and A.
Chang., “Imagine: Media Processing with Streams,” IEEE
Micro, March/April 2001, pp. 35-46.

[5] C. Kozyrakis, “Scalable Vector Media-processors for
Embedded Systems,” Ph. D. dissertation, UC Berkeley,
May 2002.

[6] U. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B.
Khailany, “The Imagine Stream Processor,” International
Conference on Computer Design, Freiburg, Germany,
September 2002.

[7] J. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, 2nd Edition, Morgan Kaufmann
Publishers, Inc., 1996.

[8] Mitsubishi Microcomputers, M32000D4BFP-80 Data
Book, http://www.mitsubishichips.com/data/datasheets
/mcus/ mcupdf/ds/e32r80.pdf.

[9] J. D. Owens, S. Rixner, U. J. Kapasi, P. Mattson, B.
Towles, B. Serebrin, and W. J. Dally, “Media Processing
Applications on the Imagine,” Stream Processor
Proceedings of International Conference on Computer
Design, Freiburg, Germany, September 2002.

[10] S. A. Przybylski, Cache and Memory Hierarchy Design:
A Performance-Directed Approach, Morgan Kaufmann
Publishers, San Mateo, CA, 1990.

[11] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A.
Lopez-Lagunas, P. R. Mattson, and J. D. Owens, “A
Bandwidth-Efficient Architecture for Media Processing,”
31st Annual International Symposium on
Microarchitecture, Dallas, Texas, November 1998.

[12] A. J. Smith, “Cache Memories,” Computing Surveys, Vol.
14, No. 3, pp. 473-530, 1982.

[13] J. Suh and S.P. Crago, “PIM- and Stream Processor-based
Processing for Radar Signal Applications,” MSP 02,
Austine, TX, 2002.

[14] J. Suh, S. P. Crago, C. Li, and R. Parker, “A PIM-based
Multiprocessor System,” International Parallel and
Distributed Processing Symposium, San Francisco, CA,
2000.

[15] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffmann, P. Johnson, W. Lee, A.
Saraf, N. Shnidman, V. Strumpen, S. Amarasinghe, and
A. Agarwal, “A 16-issue multiple-program-counter
microprocessor with point-to-point scalar operand
network,” Proceedings of the IEEE International Solid-
State Circuits Conference, February 2003.

[16] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal,
“Scalar Operand Networks: On-chip Interconnect for ILP
in Partitioned Architectures,” International Symposium on
High Performance Computer Architecture, February 2003.

[17] C. Kozyrakis, D. Patterson, “Vector Vs. Superscalar and
VLIW Architectures for Embedded Multimedia
Benchmarks,” 35th International Symposium on
Microarchitecture, Instabul, Turkey, November 2002.

