
The Raw Prototype Design Document
V5.02

Michael Taylor (mbt@mit.edu)

Department of Electrical Engineering and Computer Science
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Dec 27, 2005

 MIM, MM, MMI, MMII, MMIII, MMIV Massachusetts Institute of Technology.
All rights reserved.
1

2

TABLE OF CONTENTS

1 INTRODUCTION 3

2 EARLY DESIGN DECISIONS 7

3 WHAT WE’RE BUILDING 9

4 STATIC NETWORK DESIGN 17

5 DYNAMIC NETWORK 24

6 TILE PROCESSOR DESIGN 25

7 I/O AND MEMORY SYSTEM 31

8 DEADLOCK 34

9 IMPL OF DYNAMIC NETWORKS 43

10 INTERRUPTS 49

11 MULTITASKING 53

12 THE MULTICHIP PROTOTYPE 55

13 CONCLUSIONS 57

14 APPENDAGES 60

1 INTRODUCTION

1.0 MANIFEST

In the introduction of this design document, I start
by motivating the Raw architecture discipline, from a
computer architect's viewpoint.

I then discuss the goals of the Raw prototype pro-
cessor, a research implementation of the Raw philoso-
phy. I elaborate on the research questions that the Raw
group is trying to answer.

In the body of the design document, I will discuss
some of the important design decisions in the develop-
ment of the Raw prototype, and their effects on the over-
all development.

Finally, at the end of the document comes the com-
plete user’s manual, as well as a number of individual
design chapters for various components of the Raw pro-
totype.

1.1 MOTIVATION FOR A NEW TYPE OF PROCESSOR

1.1.1 The sign of the times

The first microprocessor builders designed in a
period of famine. Silicon area on die was so small in the
early seventies that the great challenge was just in
achieving important features like reasonable data and
address widths, virtual memory, and support for external
I/O.

A decade later, advances in material science pro-
vided designers with enough resources that silicon was
neither precious nor disposable. It was a period of mod-
eration. Architects looked to advanced, more space con-
suming techniques like pipelining, out-of-order issue,
and caching to provide performance competitive with
minicomputers. Most of these techniques were bor-
rowed from supercomputers, and were carefully added
from generation to generation as more resources became
available.

The next decade brings with it a regime of excess.
We will have billions of transistors at our disposal. The
new challenge of modern microprocessor architects is
very simple: we need to provide the user with an effec-

tive interface to the underlying raw computational
resources.

1.1.2 An old problem: SpecInt

In this new era, we could continue on as if we still
lived in the moderation phase of microprocessor devel-
opment. We would incrementally add micro-architec-
tural mechanisms to our superscalar and VLIW
processors, one by one, carefully measuring the bene-
fits.

For today's programs, epitomized by the SpecInt95
benchmark suite, this is almost certain to provide us
with the best performance. Unfortunately, this approach
suffers from exponentially growing complexity (mea-
sured by development and testing costs and man-years)
that is not being sufficiently mitigated by our sophisti-
cated design tools, or by the incredible expertise that we
have developed in building these sorts of processors.
Unfortunately, this area of research is at a point where
increasing effort and increasing area is yielding dimin-
ishing returns [Hennessey99].

Instead, we can attack a more fuzzy, less defined
goal. We can use the extra resources to expand the scope
of problems that microprocessors are skilled at solving.
In effect, we redirect our attention from making proces-
sors better at solving problems they are already, frankly,
quite good at, towards making them better at application
domains which they currently are not so good at.

In the meantime, we can continue to rely on the as-
yet juggernaut march of the fabrication industry to give
us a steady clock speed improvement that will allow our
existing SpecInt applications to run faster than ever.

1.1.3 A new problem: Extroverted computing

Computers started out as very oblivious, introverted
devices. They sat in air-conditioned rooms, isolated
from their users and the environment. Although they
communicated with EACH OTHER at high speeds, the
bandwidth of their interactions with the real world was
amazingly low. The primary input devices, keyboards,
provided at most tens of characters per second. The out-
put bandwidth was similarly pathetic.

With the advent of video display and sound synthe-
sis, the output bandwidth to the real world has blos-
somed to 10s of megabytes per second. Soon, with the
3

advent of audio and video processing, the input band-
width will match similar levels.

As a result of this, computers are going to become
more and more aware of their environments. Given suf-
ficient processing and I/O resources, they will not only
become passive recorders and childlike observers of the
environment, they will be active participants. In short,
computers will turn from recluse introverts to extro-
verts.

The dawn of the extroverted computing age is upon
us. Microprocessors are just getting to the point where
they can handle real-time data streams coming in from
and out to the real world. Software radios and cell
phones can be programmed in a 1000 lines of C++
[Tennenhouse95]. Video games generate real-time
video, currently with the help of hardware graphics back
ends. Real-time video and speech understanding,
searching, generation, encryption, and compression are
on the horizon. What once was done with computers for
text and integers will soon be done for analog signals.
We will want to compose sound and video, search it,
interpret it, and translate it.

Imagine, while in Moscow, you could talk to your
wrist watch and tell it to listen to all radio stations for
the latest news. It would simultaneously tune into the
entire radio spectrum (whatever it happens to be in Rus-
sia), translate the speech into English, and index and
compress any news on the U.S. At the same time, your
contact lens display would overlay English translations
of any Russian word visible in your sight, compressing
and saving it so that you can later edit a video sequence
for your kids to see (maybe you'll encrypt the cab ride
through the red light district with DES-2048). All of
these operations will require massive bandwidth and
processing.

1.1.4 New problem, old processors?

We could run our new class of extroverted applica-
tions on our conventional processors. Unfortunately,
these processors are, well, introverted.

First off, conventional processors often treat I/O
processing as a second class citizen to memory process-
ing. The I/O requests travel through a hierarchy of
slower and slower memory paths, and end up being bot-
tlenecked at the least common denominator. Most of the
pins are dedicated to caches, which ironically, are
intended to minimize communication with the outside
world. These caches, which perform so well on conven-

tional computations, perform poorly on streaming,
extroverted, applications which have infinite data
streams that are briefly processed and discarded.

Secondly, these new extroverted applications often

have very plentiful fine grained parallelism. The con-
ventional ILP architectures have complicated, non-scal-
able structures (multi-ported or rotating register files,
speculation buffers, deferred exception mechanisms,
pools of ALUs) that are designed to wrest small degrees
of parallelism out of the most twisty code. The parallel-
ism in these new applications does not require such
sophistication. It can be exploited on architectures that
are easy to design and are scalable to thousands of
active functional units.

Finally, the energy efficiency of architectures needs
to be considered to evaluate their suitability for these
new application domains. The less power microproces-
sors need, the more and more environments they can
exist in. Power requirements create a qualitative differ-
ence along the spectrum of processors. Think of the
enormous difference among 1) machines that require
large air conditioners, 2) ones that need to be plugged in,
3) ones that run on batteries, and ultimately, 4) ones that
runs off their tiny green chlorophyllic plastic case.

1.1.5 New problems, new processors.

It is not unlikely that existing processors can be
modified to have improved performance on these new
applications. In fact, the industry has already made
some small baby steps with the advent of the Altivec
and MAX-2 technologies [Lee96].

The Raw project is creating an extroverted architec-
ture from scratch. We take as our target these data-inten-
sive extroverted applications. Our architecture is
extremely simple. Its goal is to expose as much of the
copious silicon and pin resources to these applications.
The Raw architecture provides a raw, scalable, parallel
interface which allows the application to make direct
use of every square millimeter of silicon and every I/O
pin. The I/O mechanism allows data to be streamed
directly in and out of the chip at extraordinary rates.

The Raw architecture discipline also has advan-
tages for energy efficiency. However, they will not be
discussed in this design document.
4

1.2 THIS DOCUMENT AND HOW IT RELATES
TO RAW

This design document details the decisions and
ideas that have shaped the development of a prototype
of the new type of processor that our group has devel-
oped. This process has been the result of the efforts of
many talented people. When I started at MIT three years
ago, the Raw project was just beginning. As a result, I
have the luxury of having a perspective on the progres-
sion of ideas through the group. Initially, I participated
in much of the data gathering that refined our initial
ideas. As time passed on, I became more and more
involved in the development of the architecture. I man-
aged the two simulators, hand-coded a number of appli-
cations, worked on some compiler parallelization
algorithms, and eventually joined the hardware project.
I cannot claim to have originated all of the ideas in this
design document; however I can reasonably say that my
interpretation of the sequence of events and decisions
which lead us to this design point probably is uniquely
mine. Also uniquely mine probably is my particular
view of what Raw should look like.

Anant Agarwal and Saman Amarasinghe are my
fearless leaders. Not enough credit goes out to Jonathan
Babb, and Matthew Frank, whose brainstorming planted
the first seeds of the Raw project, and who have contin-
ued to be a valuable resource. Jason Kim is my partner
in crime in heading up the Raw hardware effort. Jason
Miller researched I/O interfacing issues, and is design-
ing the Raw handheld board. Mark Stephenson, Andras
Moritz, and Ben Greenwald are developing the hard-
ware/software memory system. Ben, our operating sys-
tems and tools guru also ported the GNU binutils to
Raw. Albert Ma, Mark Stephenson, and Michael Zhang
crafted the floating point unit. Sam Larsen wrote the
static switch verilog. Rajeev Barua and Walter Lee cre-
ated our sophisticated compiler technology. Elliot Wain-
gold wrote the original simulator. John Redford and
Chris Kappler lent their extensive industry experience to
the hardware effort.

1.2.1 Design document thesis statement

The Raw Prototype Design is an effective design
for a research implementation of a Raw architecture
workstation.

1.2.2 The goals of the prototype

In the implementation of a research prototype, it is
important early on to be excruciatingly clear about one's
goals. Over the course of the design, many implementa-

tion decisions will be made which will call into question
these goals. Unfortunately, the “right” solution from a
purely technical standpoint may not be the correct one
for the research project. For example, the Raw prototype
has a 32-bit architecture. In the commercial world, such
a paltry address space is a guaranteed trainwreck in the
era of gigabit DRAMs. However, in a research proto-
type, having a smaller word size gives us nearly twice as
much area to further our research goals. The tough part
is making sure that the implementation decisions do not
invalidate the research's relevance to the real world.

Ultimately, the prototype must serve to facilitate
the exploration and validation of the underlying
research hypotheses.

The Raw project, underneath it all, is trying to
answer two key research questions:

1.2.3 The Billion Transistor Question

What should the billion transistor processor of the
year 2007 look like?

The Raw design philosophy argues for an array of
replicated tiles, connected by a low latency, high
throughput, pipelined network.

This design has three key implementation benefits,
relative to existing superscalar and VLIW processors:

First, the wires are short. Wire length has become a
growing concern in the VLSI community, now that it
takes several cycles for a signal to cross the chip. This is
not only because the transistors are shrinking, and die
sizes are getting bigger, but because the wires are not
scaling with the successive die shrinks, due to capacitive
and resistive effects. The luxurious abstraction that the
delay through a combinational circuit is merely the sum
of its functional components no longer holds. As a
result, the chip designer must now worry about both
congestion AND timing when placing and routing a cir-
cuit. Raw's short wires make for an easy design.

Second, Raw is physically scalable. This means that
all of the underlying hardware structures are scalable.
All components in the chip are of constant size, and do
not grow as the architecture is adapted to utilize larger
and larger transistor budgets. Future generations of a
Raw architecture merely use more tiles without nega-
tively impacting the cycle time. Although Raw offers
scalable computing resources, this does not mean that
we will necessarily have scalable performance. That is
dependent on the particular application.
5

Finally, Raw has low design and verification com-
plexity. Processor teams have become exponentially
larger over time. Raw offers constant complexity, which
does not grow with transistor budget. Unlike today's
superscalars and VLIWs, Raw does not require a rede-
sign in order to accommodate configurations with more
or fewer processing resources. A Raw designer need
only design the smaller region of a single tile, and repli-
cate it across the entire die. The benefit is that the
designer can concentrate all of one's resources on
tweaking and testing a single tile, resulting in clock
speeds higher than that of monolithic processors.

1.2.4 The “all-software hardware” question

What are the trade-offs of replacing conventional
hardware structures with compilation and software
technology?

Motivated by advances in circuit compilation tech-
nology, the Raw group has been actively exploring the
idea of replacing hardware sophistication with compiler
smarts. However, it is not enough merely to reproduce
the functionality of the hardware. If that were the case,
we would just prove that our computing fabric was Tur-
ing-general, and move on to the next research project.
Instead our goal is more complex. For each alternative
solution that we examine, we need to compare its area-
efficiency, performance, and complexity to that of the
equivalent hardware structure. Worse yet, these numbers
need to be tempered by the application set which we are
targeting.

In some cases, like in leveraging parallelism,
removing the hardware structures allows us to better
manage the underlying resources, and results in a per-
formance win. In other cases, as with a floating point
unit, the underlying hardware accelerates a basic func-
tion which would take many cycles in software. If the
target application domain makes heavy use of floating
point, it may not be possible to attain similar perfor-
mance per unit area regardless of the degree of compiler
smarts. On the other hand, if the application domain
does not use floating point frequently, then the software
approach allows the application to apply that silicon
area to some other purpose.

1.3 SUMMARY

In this section, I have motivated the design of a new
family of architectures, the Raw architectures. These
architectures will provide an effective interface for the
amazing transistor and pin budgets that will come in the

next decade. The Raw architectures anticipate the
arrival of a new era of extroverted computers. These
extroverted computers will spend most of their time
interacting with the local environment, and thus are
optimized for processing and generating infinite, real-
time data streams.

I continued by stating the thesis statement, that the
Raw prototype design is an effective design for a
research implementation of a Raw architecture worksta-
tion. I finished by explaining the central research ques-
tions of the Raw project.
6

2 EARLY DESIGN
DECISIONS
2.0 THE BIRTH OF THE FIRST RAW ARCHITECTURE

2.0.1 RawLogic, the first Raw prototype

Raw evolved from FPGA architectures. When I
arrived at MIT almost three years ago, Raw was very
much in its infancy. Our original idea of the architecture
was as a large box of reconfigurable gates, modeled
after our million-gate reconfigurable emulation system.
Our first major paper, the Raw benchmark suite, showed
very positive results on the promise of configurable
logic and hardware synthesis compilation. We achieved
speedups on a number of benchmarks; numbers that
were crazy and exciting [Babb97].

However, the results of the paper actually consider-
ably matured our viewpoint. The term “reconfigurable
logic” is really very misleading. It gives one the impres-
sion that silicon atoms are actually moving around
inside the chip to create your logic structures. But the
reality is, an FPGA is an interpreter in much the same
way that a processor is. It has underlying programmable
hardware, and it runs a software program that is inter-
preted by the hardware. However, it executes a very
small number of very wide instructions. It might even be
viewed as an architecture with a instruction set opti-
mized for a particular application; the emulation of digi-
tal circuits. Realizing this, it is not surprising that our
experiences with programming FPGA devices show that
they are neither superior nor inferior to a processor. It is
merely a question of which programs run better on
which interpreter.

In retrospect, this conclusion is not all that surpris-
ing; we already know that FPGAs are better at logic
emulation than processors; otherwise they would not
exist. Conversely, it is not likely that the extra bit-level
flexibility of the FPGA comes for free. And, in fact, it
does not. 32-bit datapath operations like additions and
multiplies perform much more quickly when optimized
by an Intel circuit hacker on a full-custom VLSI process
than when they are implemented on a FPGA substrate.
And again, it is not much wonder, for the processor's
multiplier has been realized directly in silicon, while the
multiplier implementation on the FPGA is running
under one level of interpretation.

2.0.2 Our Conclusions, based on Raw logic

In the end, we identified three major strengths of
FPGA logic, relative to a microprocessor:

FPGAs make a simple, physically scalable parallel fabric.

For applications which have a lot of parallelism, we

can easily exploit it by adding more and more fabric.

FPGAs allow for extremely fast communication and
synchronization between parallel entities.

 In the realm of shared memory multiprocessors, it
takes tens to hundreds of cycles for parallel entities to
communication and synchronize [Agarwal95]. When a
silicon compiler compiles parallel verilog source to an
FPGA substrate, the different modules can communi-
cate on a cycle-by-cycle basis. The catch is that this
communication often must be statically scheduled.

FPGAs are very effective at bit and byte-wide data
manipulation.

Since FPGA logic functions operate on small bit
quantities, and are designed for circuit emulation, they
are very powerful bit-level processors.

We also identified three major strengths of proces-
sors relative to FPGAs:

Processors are highly optimized for datapath ori-
ented computations.

Processors have been heavily pipelined and have
custom circuits for datapath operations. This customiza-
tion means that they process word-sized data much
faster than an FPGAs.

Compilation times are measure in seconds, not hours
[Babb97].

The current hardware compilation tools are very
computationally intensive. In part, this is because the
hardware compilation field has very different require-
ments from the software compilation field. A smaller,
faster circuit is usually much more important than fast
compilation. Additionally, the problem sizes of the
FPGA compilers are much bigger -- a net list of NAND
gates is much larger than a dataflow graph of a typical
program. This is exacerbated by the fact that the synthe-
sis tools decompose identical macro-operations like 32-
bits adds into separately optimized netlists of bit-wise
operations.
7

Processors are very effective for just getting through
the millions of lines of code that AREN'T the inner
loop.

The so-called 90-10 rule says that 90 percent of the
time is spent in 10 percent of the program code. Proces-
sor caches are very effective at shuffling infrequently
used data and code in and out of the processor when it is
not needed. As a result, the non-critical program por-
tions can be stored out to a cheaper portion of the mem-
ory hierarchy, and can be pulled in at a very rapid rate
when needed. FPGAs, on the other hand, have a very
small number (one to four) of extremely large, descrip-
tive instructions stored in their instruction memories.
These instructions describe operations on the bit level,
so a 32-bit add on an FPGA takes many more instruc-
tion bits than the equivalent 32-bit processor instruction.
It often takes an FPGA thousands or millions of cycles
to load a new instruction in. A processor, on the other
hand, can store a large number of narrow instruction in
its instruction memory, and can load in new instructions
in a small number of cycles. Ironically, the fastest way
for an FPGA to execute reams of non-loop-intensive
code is to build a processor in the FPGA substrate.
However, with the extra layer of interpretation, the
FPGA’s performance will not be comparable to a pro-
cessor built in the same VLSI process.

2.0.3 Our New Concept of a Raw Processor

Based on our conclusions, we arrived at a new
model of the architecture, which is described in the Sep-
tember 1997 IEEE Computer “Billion Transistor” issue
[Waingold97].

We started with the FPGA design, and added coarse
grained functional units, to support datapath operations.
We added word-wide data memories to keep frequently
used data nearby. We left in some FPGA-like logic to
support fine grained applications. We added pipelined
sequencers around the functional units to support the
reams of non-performance critical code, and to simplify
compilation. We linked the sequenced functional units
with a statically scheduled pipelined interconnect, to
mimic the fast, custom interconnect of ASICs and
FPGAs. Finally, we added a dynamic network to support
dynamic events.

The end result: a mesh of replicated tiles, each con-
taining a static switch, a dynamic switch, and a small
pipelined processor. The tiles are all connected together

through two types of high performance, pipelined net-
works: one static and one dynamic.

Now, two years later, we are on the cusp of building
the first prototype of this new architecture.
8

3 WHAT WE’RE
BUILDING

3.0 THE FIRST RAW ARCHITECTURE

In this section, I present a description of the archi-
tecture of the Raw prototype, as it currently stands, from
an assembly language viewpoint. This will give the
reader a more definite feel for exactly how all of the
pieces fit together. In the subsequent chapters, I will dis-
cuss the progress of design decisions which made the
architecture the way it is.

3.0.1 A mesh of identical tiles

A Raw processor is a chip containing a 2-D mesh of
identical tiles. The tiles are connected to its nearest
neighbors by the dynamic and static networks. To pro-
gram the Raw processor, one programs each of the indi-
vidual tiles. See the figure entitled “A Mesh of Identical
Tiles.”

3.0.2 The tile

Each tile has a tile processor, a static switch proces-
sor, and a dynamic router. In the rest of this document,
the tile processor is usually referred to as “the main pro-

cessor,” “the processor,” or “the tile processor.” “The
Raw processor” refers to the entire chip -- the networks
and the tiles.

The tile processor uses a 32-bit MIPS instruction
set, with some slight modifications. The instruction set
is described in more detail in the “Raw User’s Manual,”
which has been appended to the end of this design docu-
ment.

The switch processor (often referred to as “the
switch”) uses a MIPS-like instruction set that has been
stripped down to contain just moves, branches, jumps
and branches. Each instruction also has a ROUTE com-
ponent, which specifies the transfer of values on the
static network between that switch and its neighboring
switches.

The dynamic router runs independently, and is
under user control only indirectly.

3.0.3 The tile processor

The tile processor has a 32 Kilobyte SRAM data
memory, and a 32 Kilobyte SRAM instruction memory.
The instruction memory is uncached. The data memory
can be used in two modes: one cached, and the other
uncached. It is the compiler’s responsibility to virtualize
the memories in software, if caching is disable and 32k
is not enough to fit the entire dataset.

A Mesh of Identical Tiles

Tile Processor

Static Dynamic

Logical View of A Raw Tile

$csto $cgno
$cgni$csti

RouterSwitch

network wires

$csti2

$cmno
$cmni
9

 The tile processor communicates with the switch
through three ports which have special register names,
$csto, $csti2, and $csti. When a data value is written to
$csto, it is actually sent to a small FIFO located in the
switch. When a data value is read from $csti or $csti2, it
is actually read from one of two FIFOs inside the
switch. The value is removed from the FIFO when the
read occurs. There are two input ports and one output
port to match the bandwidth of the ALU.

 If a read on $csti or $csti2 is specified, and there is
no data available from that port, the processor will
block. If a write to $csto occurs, and the buffer space has
been filled, the processor will also block.

Here is some sample assembly language:

XOR register 2 with 15,
and put result in register 31

xori $31,$2,15

get two values from switch,
 # add to register 3, and put
 # result in register 9

addu $9,$csti2,$csti

an ! indicates that the result
of the operation should also
be written to $csto

and! $0,$3,$2

load from address at $csti+25
put value in register 9 AND
send it through $csto port
to static switch

ld! $9,25($csti)

jump through value specified
by $csti2

jr $csti2

The dynamic network ports operate very similarly.
$cgni and $cgno are the general dynamic network ports,
while $cmno and $cmni are the memory dynamic net-
work ports and have restricted usage. When writes to
$cgno occur, instead of showing up at the static switch,
the messages are routed through the chip to their desti-
nation tile. This tile is specified by the first word, the
header word, that is written into the output port. The

header word also contains mlen, the message length, in
words. This and successive words trickle out into the
dynamic network, streaming to the other tile. After mlen
words are written into the network, the message is com-
plete and the next word that is written into the output
port will be interpreted as the destination for a new
dynamic message. In all cases, it is preferable that the
user send the message words back-to-back, more or less,
to minimize the occupancy of the message in the net-
work.

specify a send to tile #15
lui $3,$0,15

the message length is 2
ihdr $cgno,$3,0x0200

put in a couple of datawords,
one from register 9 and the other
from the csti network port

or $cgno,$0,$9

not highly recommend
for dangling reasons

ld $cgno,$0,$csti

the message will be
automatically launched
into the network

if we were tile 15, we could
receive our message with:

read first word
or $2,$cgni,$0

read second word,
or $3,$cgni,$0

the header word is discarded
by the routing hardware, so
the recipient does not see it
there are only two words in
this message

3.0.4 The switch processor

The switch processor has a local 8096-instruction
instruction memory, but no data memory. This memory
is also not cached, and must be virtualized in software
by the switch’s nearby tile processor.
10

The switch processor executes a very basic instruc-
tion set, which consists of only moves, branches, jumps,
and nops. It has a small, four element register file. The
destinations of all of the instructions must be registers.
However, the sources can be network ports. The net-
work port names for the switch processor are $csto,
$csti, $csti2, $cNi, $cEi, $cSi, $cWi, $cNi2, $cEi2,
$cSi2, $cWi2, $cNo, $cEo, $cSo, $cWo, $cNo2, $cEo2,
$cSo2, and $cWo2. These correspond to the main pro-
cessor’s output queue, the main processor’s input
queues, the input queues coming from the switch’s four
neighbors, and the output queues going out to the
switch’s four neighbors.

Each switch processor instruction also has a
ROUTE component, which is executed in parallel with
the instruction component. If any of the ports specified
in the instruction are full (for outputs) or empty (for
inputs), the switch processor will stall.

branch instruction
beqz $9, target

branch if processor
sends us a zero

beqz $csto, target

branch if the value coming
from the west neighbor is a zero

beqz $cWi, target

store away value from
east neighbor switch

move $3, $cEi

same as above, but also route
the value coming from the north
port2 to the south port 2

move $3, $cEi route $cNi2->$cSo2

all at the same time:
send value from north neighbor
to both the south and processor
input ports.
send value from processor to west
neighbor.
send value from west neighbor to
east neighbor

nop route $cNi->$cSo, $cNi->$csti,
 $csto->$cWo,$cWi->$cEo

jump to location specified
 # by west neighbor and route that

location to our east neighbor

jr $cWi route $cWi->$cEo

3.0.5 Putting it all together

For each switch-processor, processor-switch, or
switch-switch link, the value arrives at the end of the
cycle. The code below shows the switch and tile code
required for a tile-to-tile send.

TILE 0:

or $csto,$0,$5

SWITCH 0:

nop route $csto->$cEo2

SWITCH 1:

nop route $cWi2->$csti2

TILE 1:

and $5, $5, $csti2

This code sequence takes five cycles to execute. In
the first cycle, tile 0 executes the OR instruction, and the
value arrives at switch 0. On the second cycle, switch 0
transmits the value to switch 1. On the third cycle,
switch 1 transfers the value to the processor. On the
fourth cycle, the value enters the decode stage of the
processor. On the fifth cycle, the AND instruction is
executed.

Since two of those cycles were spent performing
useful computation, the send-to-use latency is three
cycles.

More information on programming the Raw archi-
tecture can be found in the User’s Manual at the end of
this design document. More information on how our
compiler parallelizes sequential applications for the
Raw architecture can be found in [Lee98] and
[Barua99].

3.1 RAW MATERIALS
11

Before we decided what we were going to build for
the prototype, we needed to find out what resources we
had available to us. Our first implementation decision,
at the highest level, was to build the prototype as a stan-
dard-cell CMOS ASIC (application specific integrated
circuit) rather than as full-custom VLSI chip.

In part, I believe that this decision reflects the fact

that the group's strengths and interests center more on
systems architecture than on circuit and micro-architec-
tural design. If our research shows that our software sys-
tems can achieve speedups on our micro-architecturally
unsophisticated ASIC prototype, it is a sure thing that
the micro-architects and circuit designers will be able to
carry the design and speedups even further.

3.1.1 The ASIC choice

When I originally began the project, I was not
entirely clear on the difference between an ASIC and
full-custom VLSI process. And indeed, there is a good
reason for that; the term ASIC (application specific inte-
grated circuit) is vacuous.

As perhaps is typical for someone with a liberal arts
background, I think the best method of explaining the
difference is by describing the experience of developing
each type of chip.

In a full-custom design, the responsibility of every
aspect of the chip lies on designer's shoulders. The
designer starts with a blank slate of silicon, and specifies
as an end result, the composition of every unit volume
of the chip. The designer may make use of a pre-made
collection of cells, but they also are likely to design their
own. They must test these cells extensively to make sure
that they obey all of the design rules of the process they
are using.

These rules involve how close the oxide, poly, and
metal layers can be to each other. When the design is
finally completed, the designer holds their breath and
hopes that the chip that comes back works.

In a standard-cell ASIC process, the designer (usu-
ally called the customer) has a library of components
that have been designed by the ASIC factory. This
library often includes RAMs, ROMs, NAND type prim-
itives, PLLs, IO buffers, and sometimes datapath opera-
tors. The designer is not typically allowed to use any
other components without a special dispensation. The
designer is restricted from straying too far from edge
triggered design, and there are upper bounds on the

quantity of components that are used (like PLLs). The
end product is a netlist of those components, and a floor-
plan of the larger modules. These are run through a vari-
ety of scripts supplied by the manufacturer which insert
test structures, provide timing numbers and test for a
large number of rule violations. At this point, the design
is given to the ASIC manufacturer, who converts this
netlist (mostly automatically) into the same form that
the full-custom designer had to create.

If everything checks out, the ASIC people and the
customer shake hands, and the chip returns a couple of
months later. Because the designer has followed all of
the rules, and the design has been checked for the viola-
tion of those rules, the ASIC manufacturer GAURAN-
TEES that the chip will perform exactly as specified by
the netlist.

In order to give this guarantee however, their librar-
ies tend to be designed very conservatively, and cannot
achieve the same performance as the full custom ver-
sions.

The key difference between an ASIC and full cus-
tom VLSI project is that the designer gives up degrees
of flexibility and performance in order to attain the
guarantee that their design will come back “first time
right”. Additionally, since much of the design is created
automatically, it takes less time to create the chip.

3.1.2 IBM: Our ASIC foundry

Given the fact that we had decided to do an ASIC,
we looked for an industry foundry. This is actually a rel-
atively difficult feat. The majority of ASIC developers
are not MIT researchers building processor prototypes.
Many are integrating an embedded system onto one chip
in order to minimize cost. Closer to our group in terms
of performance requirements are the graphics chips
designers and the network switch chip designers. They
at least are quite concerned with pushing performance
envelope. However, their volumes are measured in the
hundreds of thousands, while the Raw group probably
will be able to get by on just the initial 30 prototype
chips that the ASIC manufacturer gives us. Since the
ASIC foundry makes its money off of the volume of the
chips produced, we do not make for great profits.
Instead, we have to rely on the generosity of the vendor
and on other, less tangible incentives to entice a partner-
ship.

We were fortunate enough to be able to use IBM's
extraordinary SA-27E ASIC process. It is IBM's latest
12

ASIC process. It is considered to be a “value” process,
which means that some of the parameters have been
tweaked for density rather than speed. The “premium,”
higher speed version of SA-27E is called SA-27.

Please note that all of the information that I present
about the process is available off of IBM's website
(www.chips.ibm.com) and from their databooks. No
proprietary information is revealed in this design docu-
ment.

The 24 million gates number assumes perfect wire-
ability, which although we do have many layers of metal
in the process, is unlikely. Classically, I have heard of
wireability being quoted at around %35 - %60 for older
non-IBM processes.

This means that between %65 and %40 of those
gates are not realizable when it comes to wiring up the

design. Fortunately, the wireability of RAM macros is at
%100, and the Raw processor is mostly SRAM!

We were very pleasantly surprised by the IBM pro-
cess, especially with the available gates, and the abun-
dance of I/O. Also, later, we found that we were very
impressed with the thoroughness of IBM’s LSSD test
methodology.

3.1.3 Back of the envelope: A 16 tile Raw chip

To start out conservatively, we started out with a die
size which was roughly 16 million gates, and assume 16
Raw tiles. The smaller die size gives us some slack at
the high end should we make any late discoveries or
have any unpleasant realizations. This gave us roughly 1
million gates to allocate to each tile. Of that, we allo-
cated half the area to memory. This amounts to roughly
32 kWords of SRAM, with 1/2 million gates left to ded-
icate to logic. Interestingly, the IBM process also allows
us to integrate DRAM on the actual die. Using the
embedded DRAM instead of the SRAM would have
allowed us to pack about four times as much memory in
the same space. However, we perceived two principal
issues with using DRAM:

First, the 50 MHz random access rate would require
that we add a significant amount of micro-architectural
complexity to attain good performance. Second, embed-
ded DRAM is a new feature in the IBM ASIC flow, and
we did not want to push too many frontiers at once.

We assume a pessimistic utilization of %45 for
safeness, which brings us to 225,000 “real” gates. My
preferred area metric of choice, the 32-bit Wallace tree
multiplier, is 8000 gates. My estimate of a processor
(with multiplier) is that it takes about 10 32 bit multipli-
ers worth of area. A pipelined FPU would add about 4
multipliers worth of area.

The rest remains for the switch processor and cross-
bars. I do not have a good idea of how much area they
will take (the actual logic is small, but the congestion
due to the wiring is of concern) We pessimistically
assign the remaining 14 multipliers worth of area to
these components.

Based on this back-of-the-envelope calculation, a
16 tile Raw system looks eminently reasonable.

This number is calculated using a very conservative
wireability ratio for a process with so many layers of
metal. Additionally, should we require it, we have the

Table 1: SA-27E Process

Param Value

Leff .11 micron

Ldrawn .15 micron

Core Voltage 1.8 Volts

Metallization 6 layers, copper

Gates Up to 24 Million 2-input
NANDs, based on die size

Embedded
Dram

SRAM MACRO

 1 MBit = 8mm2

DRAM MACRO

 first 1 MBit = 3.4 mm2

 addt’l MBits = 1.16 mm2

 50 MHz random access

I/O C4 Flip Chip Area I/O
up to 1657 pins on CCGA
(1124 signal I/Os)

Signal technologies:
SSTL, HSTL, GTL, LVTTL
AGP, PCI...
13

Switch MEMORY

Processor Data

Switch Bus

Switch

~4 mm

FPU

Processor

 (8k x 64)

Memory
(4kx64)

Instr Mem
(8kx32)

Processor

34*8 wires

A Preliminary Tile Floorplan

Tag Ram
(512x40)

Partial Crossbar

Status Ram (512x8)
14

possibility of moving up to a larger die. Note however,
that these numbers do not include the area required for
I/O buffers and pads, or the clock tree. The addition area
due to LSSD (level sensitive scan design) is included.

The figure “A Preliminary Tile Floorplan” is a pos-
sible floorplan for the Raw tile. It is optimistic because
it assumes some flexibility with memory footprints, and
the sizes of logic are approximate. It may well be neces-
sary that we reduce the size of the memories to make
things fit. Effort has been made to route the large buses
over the memories, which is possible in the SA-27E pro-
cess. This should improve the routability of the proces-
sor greatly, because there are few global wires. Because
I am not sure of the area required by the crossbar, I have
allocated a large area based on the assumption that
crossbar area will be proportional to the square of the
width of input wires.

In theory, we could push and make it up to 32 tiles.
However, I believe that we would be stretching our-
selves very thinly -- the RAMs need to be halved (a big
problem considering much of our software technology
has code expansion effects), and we would have to
assume a much better wireability factor, and possibly
dump the FPU.

For an estimate on clock speed, we need to be a bit
more creative because memory timing numbers are not
yet available in the SA-27E databooks. We approximate
by using the SA-27 “premium” process databook num-
bers, which should give us a reasonable upper bound. At
the very least, we need to have a path in our processor
which goes from i-memory to a 2-1 mux to a register.
From the databook, we can see the total in the “Ballpark
clock calculation” table.

The slack is extra margin required by the ASIC
manufacturer to account for routing anomalies, PLL jit-
ter, and process variation. The number given is only an
estimate, and has no correlation with the number actu-
ally required by IBM.

This calculation shows that, short of undergoing
micro-architectural heroics, 290 Mhz is a reasonable
strawman UPPER BOUND for our WORST-case clock
rate.

3.2 THE TWO RAW SYSTEMS

Given an estimate of what a Raw chip would look
like; we decided to target two systems, a Raw Handheld
device, and a Raw Fabric.

3.2.1 A Raw Handheld Device

The Raw handheld device would consist of one
Raw chip, a Xilinx Vertex, and 128 MB of SDRAM.
The FPGA would be used to interface to a variety of
peripherals. The Xilinx part acts both as glue logic and
as a signal transceiver. Since we are not focusing on the
issue of low-power at this time, this handheld device
would not actually run off of battery power (well, per-
haps a car battery.).

This Raw system serves a number of purposes.
First, it is a simple system, which means that it will

Table 2: Ballpark clock calculation

Structure Propagation Delay

8192x32 SRAM
read

2.50 ns

2-1 Mux 0.20 ns

Register 0.25 ns

Required slack 0.50 ns (estimated)

Total 3.45 ns

RAW CHIP

Xilinx Vertex

DRAM

A Raw Handheld Device
15

make a good test device for a Raw chip. Second, it gets
people thinking of the application mode that Raw chips
will be used in -- small, portable, extroverted devices
rather than large workstations. One of the nice aspects
of this device is that we can easily build several of them,
and distribute them among our group members. There is
something fundamentally more exciting about having a
device that we can toss around, rather than a single large
prototype sitting inaccessible in the lab. Additionally, it
means that people can work on the software required to
get the machine running without jockeying for time on a
single machine.

3.2.2 A Multi-chip Raw Fabric, or
Supercomputer

This device would incorporate 16 Raw Chips onto a
single board, resulting in 256 MIPS processor equiva-
lents on one board. The static and dynamic networks of
these chips will be connected together via high-speed I/
O running at the core ASIC speed. In effect, the pro-
grammer will see one 256-tile Raw chip.

This would give the logical semblance of the Raw
chip that we envisioned for the year 2007, where hun-
dreds of tiles fit on a single die. This system will give us
the best simulation of what it means to have such an
enormous amount of computing resources available. It
will help us answer a number of questions. What sort of
applications can we create to utilize these processing
resources? How does our mentality and programming
paradigm change when a tile is a small percentage of the
total processing power available to us? What sort of
issues exist in the scalability of such a system? We
believe that the per-tile cost of a Raw chip will be so low
in the future that every handheld device will actually
have hundreds of tiles at their disposal.

3.3 SUMMARY

In this chapter, I described the architecture of the
Raw prototype. I elaborated on the ASIC process that
we are building our prototype in. Finally, I described the
two systems that we are planning to build: a hand-held
device, and the multi-chip supercomputer.

A Raw Fabric
16

4 STATIC NETWORK
DESIGN

4.0 STATIC NETWORK

The best place to start in explaining the design deci-
sions of the Raw architecture is with the static network.

The static network is the seed around which the rest
of the Raw tile design crystallizes. In order to make effi-
cient fine-grained parallel computation feasible, the
entire system had to be designed to facilitate high-band-
width, low latency communication between the tiles.
The static network is optimized to route single-word
quantities of data, and has no header words. Each tile
knows in advance, for each data word it receives, where
it must be sent. This is because the compiler (whether
human or machine) generated the appropriate route
instructions at compile time.

The static network is a point-to-point 2-D mesh net-
work. Each Raw tile is connected to its nearest neigh-
bors through a series of separate, pipelined channels --
one or more channels in each direction for each neigh-
bor. Every cycle, the tile sequences a small, per-tile
crossbar which transfers data between the channels.
These channels are pipelined so that no wire requires
more than one cycle to traverse. This means that the
Raw network can be physically scaled to larger numbers
of tiles without reducing the clock rate, because the wire
lengths and capacitances do not change with the number
of tiles. The alternative, large common buses, will
encounter scalability problems as the number of tiles
connected to those buses increases. In practice, a hybrid
approach (with buses connecting neighbor tiles) could
be more effective; however, doing so would add com-
plexity and does not seem crucial to the research results.

The topology of the pipelined network which con-
nects the Raw tiles is a 2-D mesh. This makes for an
efficient compilation target because the two dimensional
logical topology matches that of the physical topology
of the tiles. The delay between tiles is then strictly a lin-
ear function of the Manhattan distances of the tiles. This
topology also allows us to build a Raw chip by merely
replicating a series of identical tiles.

4.0.1 Flow Control

 Originally, we envisioned that the network would
be precisely cycle-counted -- on each cycle, we would

know exactly what signal was on which wire. If the
compiler were to incorrectly count, then garbage would
be read instead, or the value would disappear off of the
wire. This mirrors the behaviour of the FPGA prototype
that we designed. For computations that have little or no
variability in them, this is not a problem. However,
cycle-counting general purpose programs that have
more variance in their timing behaviour is more diffi-
cult. Two classic examples are cache misses and unbal-
anced if-then-else statements. The compiler could
schedule the computation pessimistically, and assume
the worst case, padding the best case with special multi-
cycle noop instructions. However, this would have abys-
mal performance. Alternatively, the compiler could
insert explicit flow control instructions to handshake
between tiles into the program around these dynamic
points. This gets especially hairy if we want to support
an interrupt model in the Raw processor.

We eventually moved to a flow-control policy that
was somewhere between cycle-counting and a fully
dynamic network. We call this policy static ordering
[Waingold97, 2]. Static ordering is a handshake between
crossbars which provides flow control in the static net-
work. When the sequencer attempts to route a dataword
which has not arrived yet, it will stall until it does arrive.
Additionally, the sequencer will stall if a destination
port has no space. Delivery of data words in the face of
random delays can then be guaranteed. Each tile still
knows a priori the destination and order of each data
word coming in; however, it does not know exactly
which cycle that will be. This contrasts with a dynamic
network, where neither timing nor order are known a
priori. Interestingly, in order to obtain good perfor-
mance, the compiler must cycle count when it schedules
the instructions across the Raw fabric. However, with
static ordering, it can do so without worrying that imper-
fect knowledge of program behaviour will violate pro-
gram correctness.

The main benefits of adding flow control to the
architecture are the abstraction layer that it provides and
the added support for programs with unpredictable tim-
ing. Interestingly, the Warp project at CMU started with-
out flow control in their initial prototypes, and then
added it in subsequent revisions [Gross98]. In the next
section, we will examine the static input block, which is
the hardware used to implement the static ordering pro-
tocol.

4.0.2 The Static Input Block

The static input block (SIB) is a FIFO which has
both backwards and forwards flow control. There is a
17

local SIB at every input port on the switch’s crossbar.
The switch’s crossbar also connects to a remote input
buffer that belongs to another tile. The figure “Static
Input Block Design” shows the static input block and
switch crossbar design. Note that an arrow that begins
with a squiggle indicates a signal which will arrive at its
destination at the end of the cycle. The basic operation
of the SIB is as follows:

1. Just before the clock edge, the DataIn and
ValidIn signals arrive at the input flops, coming from
the remote switch that the SIB is connected to. The
Thanks signal arrives from the local switch, indicating
if the SIB should remove the item at the head of the fifo.
The Thanks signal is used to calculate the YummyOut
signal, which gives the remote switch an idea of how
much space is left in the fifo.

2. If ValidIn is set, then this is a data word which
must be stored in the register file. The protocol ensures
that data will not be sent if there is no space in the circu-
lar fifo.

3. DataAvail is generated based on whether the
fifo is empty. The head data word of the queue is propa-
gated out of DataVal. These signals travel to the
switch.

4. The switch uses DataAvail and DataVal to
perform its route instructions. It also uses the YummyIn
information to determine if there is space on the remote
side of the queue. The DataOut and ValidOut sig-
nals will arrive at a remote input buffer at the end of the
cycle.

5. If the switch used the data word from the SIB, it
asserts Thanks.

The subtlety of the SIB comes from that fact that it
is a distributed protocol. The receiving SIB is at least
one cycle away from the switch that is sending the
value. This means that the sender does not have perfect
information about how much space is available on the
receiver side. As a result, the sender must be conserva-
tive about when to send data, so as not to overflow the
fifo. This can result in suboptimal performance for
streams of data that are starting out, or are recovering
from a blockage in the network. The solution is to add a
sufficient number of storage elements to the FIFO.

The worksheets “One Element Fifo” and “Three
Element Fifo” help illustrate this principle. They show
the state of the system after each cycle. The left boxes
are a simplified version of the switch circuit. The right
boxes are a simplified version of a SIB connected to a
remote switch. The top arrow is the ValidIn bit, and
the bottom arrow is the “Yummy” line. The column of
numbers underneath “PB” (perceived buffers) are the
switch’s conservative estimate of the number of ele-
ments in the remote SIB at the beginning of the cycle.
The column of numbers underneath “AB” (actual buff-
ers) are the actual number of elements in the fifo at the
beginning of the cycle.

The two figures model the “Balanced Producer-
Consumer” problem, where the producer is capable of
producing data every cycle, and the consumer is capable
of consuming it every cycle. This would correspond to a
stream of data running across the Raw tiles. Both figures
show the cycle-by-cycle progress of the communication
between a switch and its SIB.

We will explain the “One Element Fifo” figure so
the reader can get an idea of how the worksheets work.
In the first cycle, we can see that the switch is asserting
its ValidOut line, sending a data value to the SIB. On
the second cycle, the switch stalls because it knows that
the Consumer has an element in its buffer, and may not
have space if it sends a value. The ValidOut line is
thus held low. Although it is not indicated in the dia-
gram, the Consumer consumes the data value from the
previous cycle. On the third cycle, the SIB asserts the
YummyOut line, indicating that the value had been con-

Write Through
we

d_in

d_outrs ws

Register File

DataVal

ValidIn

YummyOut

Data In[32]

Data
 [32]AvailThanks

Local Switch Processor

Static Input Block

DataOut[32]

ValidOut

YummyIn

Static Input Block Design
18

sumed. However, the Switch does not receive this value
until the next cycle. Because of this, the switch stalls for
another cycle. On the fourth cycle, the switch finally
knows that there is buffer space and sends the next value
along. The fifth and sixth cycles are exactly like the sec-
ond and third.

Thus, in the one element case, the static switch is
stalling because it cannot guarantee that the receiver
will have space. It unfortunately has to wait until it
receives notification that the last word was consumed.

In the three element case, the static network and
SIBs are able to achieve optimal throughput. The extra
storage allows the sender to send up to three times
before it hears back from the input buffer that the first
value was consumed. It is not a coincidence that this is
also the round trip latency from switch to SIB. In fact, if
Raw were moved to a technology where it took multiple
cycles to cross the pipelined interconnect between tiles
(like for instance, for the Raw multi-chip system), the
number of buffers would have to be increased to match

the new round trip latency. By looking at the diagram,
you may think that perhaps two buffers is enough, since
that is the maximum perceived element size. In actual-
ity, the switch would have to stall on the third cycle
because it perceives 2 elements, and is trying to send a
third out before it received the first positive “Yummy-
Out” signal back.

The other case where it is important that the SIBs
perform adequately is in the case where there is head-of-
line blocking. In this instance, data is being streamed
through a line of tiles, attaining the steady state, and
then one of the tiles at the head becomes blocked. We
want the SIB protocol to insure that the head tile, when
unblocked, is capable of reading data at the maximum
rate. In other words, the protocol should insure that no
bubbles are formed later down the pipeline of producers
and consumers. The “Three Element Fifo, continued”
figure forms the basis of an inductive proof of this prop-
erty.

0

1

0
0

Switch SIB

1

0

1
0

0

0

1
1

0

1

0
0

1

0

1
0

0

0

1
1

PB AB

One Element Fifo

0

1

0
0

Switch SIB

1

1

1
0

1

1

2
1

1

1

2
1

1

1

2
1

1

1

2
1

PB AB

Three Element Fifo

STALL

STALL

STALL

STALL

(Producer) (Consumer) (Producer) (Consumer)
19

I will elaborate on “Three Element Fifo, contin-
ued,“some more. In the first cycle, the “BLOCK” indi-
cates that no value is read from the input buffer at the
head of the line on that cycle. After one more BLOCKs,
in cycle three, the switch behind the head of the line
STALLs because it correctly believes that its consumer
has run out of space. This stall continues for three more
cycles, when the switch receives notice that a value has
been dequeued from the head of the queue. These stalls

ripple down the chain of producers and consumers, all
offsetted by two cycles.

It is likely that even more buffering will provide
greater resistance to the performance effects of block-
ages in the network. However, every element we add to
the FIFO is an element that will have to be exposed for
draining on a context switch. More simulation results
could tell us if increased buffering is worthwhile.

1

1

2
1

Switch

1

1

2
1

1

1

2
1

1

1

2
1

1

1

2
1

2

1

2
0

PB AB

Starts at Steady State, then Head blocks (stalls) for four cycles

1

1

2
1

Switch

1

1

2
1

1

1

2
1

2

1

2
0

3

0

3
0

3

0

3
0

PB AB

1

1

2
1

Switch

2

1

2
0

3

0

3
0

3

0

3
0

3

0

3
0

2

0

3
1

PB AB

BLOCK

BLOCK

BLOCKSTALL

STALL

STALL

STALL

BLOCK

STALL

STALL

3

0

3
0

3

0

3
0

Three Element Fifo, continued

3

0

3
0

2

0

3
1

1

1

2
1

1

1

2
1

STALL

STALL

STALL

STALL

3

0

3
0

1

1

2
1

1

1

2
1

STALL
20

4.0.3 Static Network Summary

The high order bit is that adding flow control to the
network has resulted in a fair amount of additional com-
plexity and architectural state. Additionally, it adds logic
to the path from tile to tile, which could have perfor-
mance implications. With that said, the buffering allows
our compiler writers some room to breath, and gives us
support for events with unpredictable timing.

4.1 THE SWITCH (SLAVE) PROCESSOR

The switch processor is responsible for controlling
the tile’s static crossbar. It has very little functionality --
in some senses one might call it a “slave parallel move
processor,” since all it can do is move values between a
small register file, its PC, and the static crossbar.

One of the main decisions that we made early on
was whether or not the switch processor would exist at
all. Currently, the switch processor is a separately
sequenced entity which connects the main processor to
the static network. The processor cannot access the
static network without the slave processor’s coopera-
tion.

A serious alternative to the slave-processor
approach would have been to have only the main pro-
cessor, with a VLIW style processor word which also
specified the routes for the crossbar. The diagram “The
Unified Approach” shows an example instruction
encoding. Evaluating the trade-offs of the unified and
slave designs is difficult.

A clear disadvantage of the slave design is that it is
more complicated. It is another processor design that we
have to do, with its own instruction encoding for
branches, jumps, procedure calls and moves for the reg-
ister file. It also requires more bits to encode a given
route.

The main annoyance is that the slave processor
requires constant baby-sitting by the main processor.
The main processor is responsible for loading and
unloading the instruction memory of the switch on
cache misses, and for storing away the PCs of the switch
on a procedure call (since the switch has no local stor-
age). Whenever the processor takes a conditional
branches, it needs to forward the branch condition on to
the slave processor. The compiler must make sure there
is a branch instruction on the slave processor which will
interpret that condition.

Since the communication between the main and
slave processors is statically scheduled, it is very diffi-
cult and slow to handle dynamic events. Context
switches require the processor to freeze the switch, set
the PC to an address which drains the register files into
the processor, as well as any data outstanding on the
switch ports.

The slave switch processor also makes it very diffi-
cult to use the static network to talk to the off-chip net-
work at dynamically chosen intervals, for instance, to
read a value from a DRAM that is connected to the
static network. This is because the main processor will
have to freeze the switch, change the switch’s PC, and

63 32 route instructionMIPS instruction 0

The Unified Approach

63 48 32 26

63 32

MIPS Instruction

Switch Instruction

The Slave Processor Approach

48

N E S W P

N E S W P

otherimm

imm

op

op

S

S rs rt

rs rt

op imm
21

then unfreeze it.

The advantages of the switch processor come in tol-
erating latency. It decouples the processing of network-
ing instructions and processor instructions. Thus, if a
processor takes longer to process an instruction than
normal (for instance on a cache miss), the switch
instructions can continue to execute, and visa versa.
However, they will block when an instruction is exe-
cuted that requires communication between the two.
This model is reminiscent of Decoupled-Execute Access
Architectures [Smith82].

The Unified approach does not give us any slack.
The instruction and the route must occur at precisely the
same time. If the processor code takes less time than
expected, it will end up blocked waiting for the switch
route to complete. If the processor code takes more time
than expected, a “through-route” would be blocked up
on unrelated computation. The Unified approach also
has the disadvantage that through route instructions
must be scheduled on both sides of an if-statement. If
the two sides of the if-statement were wildly unbalanced
this would create code bloat. The Slave approach would
only need to have one copy of the corresponding route
instructions.

In the face of a desire for this decoupling property,
we have further entertained the idea of another
approach, called the Decoupled-Unified approach. This
would be like the Unified approach, except it would
involve having a queue through which we would feed
the static crossbar its route instructions. This is attrac-
tive because it would decouple the two processes. The
processor would sequence, and queue up switch instruc-
tions, which would execute when ready.

With this architecture, the compiler would push the
switch instructions up to pair with the processor instruc-
tions at the top of a basic block. This way through-
routes could execute as soon as possible.

Switch instructions that originally ran concurrently
with non-global IF-ELSE statements need some extra
care. Ideally, the instructions would be propagated
above the IF-ELSE statement. Otherwise, the switch
instructions will have to be copied to both sides the IF-
ELSE clause. This may result in code explosion, if the
number of switch instructions propagated into the IF-
ELSE statement is greater than the length of one of the
sides of the statement.

When interrupts are taken into account, the Decou-
pled-Unified approach is a nightmare, because now we

have situations where half of the instruction (the proces-
sor part) has executed. We can not just wait for the
switch instructions to execute, because this may take an
indefinite amount of time.

To really investigate the relative advantages and
disadvantages of the three methods would require an
extensive study, involving modifications of our compil-
ers and simulators. To make a fair comparison, we
would need to spend as much time optimizing the com-
parison simulators as we did the originals. In an ideal
world, we might have pursued this issue more. How-
ever, given the extensive amount of infrastructure that
had already been built using the Slave model, we could
not justify the time investment for something which was
unlikely to buy us performance, and would require such
an extensive reengineering effort.

4.1.1 Partial Routes

One idea that our group members had was that we
do not need to make sure that all routes specified in an
instruction happen simultaneously. They could just fire
off when they are possible, with that part of the instruc-
tion field resetting itself to the “null route.” When all
fields are set to null, that means we can continue onto
the next instruction. This algorithm continues to pre-
serves the static ordering property.

From a performance and circuit perspective, this is
a win. It will decouple unrelated routes that are going
through the processor. Additionally, the stall logic in the
switch processor does not need to OR together the suc-
cess of all of the routes in order to generate the
“ValidOut” signal that goes to the neighboring tile.

The problem is, with partial routes, we again have
an instruction atomicity problem. If we need to interrupt
the switch processor, we have no clear sense of which
instruction we are currently at, since parts of the instruc-
tion have already executed. We cannot wait for the
instruction to fully complete, because this may take
indefinite amount of time. In order to make this feature,
we would have had to add special mechanisms to over-
come this problem. As a result, we decided to take the
simple path and stall until such a point as we can route
all of the values atomically.

4.1.2 Virtual Switch Instruction Memory

In order to be able to run large programs, we need a
mechanism to page code in and out of the various mem-
ories. The switch memory is a bit of an issue because it
22

is not coupled directly with the processor, and yet it
does not have the means to write to its own memory.
Thus, we need the processor to help out in filling in the
switch memory.

There are two approaches.

In the first approach, the switch executes until it
reaches a “trap” instruction. This trap instruction indi-
cates that it needs to page in a new section of memory.
The trap causes an interrupt in the processor. The pro-
cessor fetches the relevant instructions and writes it into
the switch processor instruction memory. It then signals
the switch processor, telling it to resume.

In the second approach, we maintain a mapping
between switch and processor instruction codes. When
the processor reaches a junction where it needs to pull in
some code, it pulls in the corresponding code for the
switch. The key issue is to make sure that the switch
does not execute off into the weeds while this occurs.
The switch can very simply do a read from the proces-
sor’s output port into its register set (or perhaps a branch
target.) This way, the processor can signal the switch
when it has finished writing the instructions. When the
switch’s read completes, it knows that the code has been
put in place. Since there essentially has to be a mapping
between the switch code and the processor code if they
communicate, this mapping is not hard to derive. The
only disadvantage is that due to the relative sizes of
basic blocks in the two memories, it may be the case that
one needs to page in and the other doesn’t. For the most
part I do not think that this will be much of a problem. If
we want to save the cost of this output port read after the
corresponding code has been pulled in, we can re-write
that instruction.

In the end, we decided on the second option,
because it was simpler. The only problem we foresee is
if the tile itself is doing a completely unrelated computa-
tion (and communicating via dynamic network.) Then,
the switch, presumably doing through routes, has no
mechanism of telling the local tile that it needs new
instructions. However, presumably the switch is syn-
chronized with at least one tile on the chip. That tile
could send a dynamic message to the switch’s master,
telling it to load in the appropriate instructions. We don’t
expect that anyone will really do this, though.

4.2 STATIC NETWORK BANDWIDTH

One of the questions that needs to be answered is
how much bandwidth is needed in the static switch.
Since a ALU operation typically has two inputs, having

only one $csti port means that one of the inputs to the
instruction must reside inside the tile to not be bottle-
necked. The amount of bandwidth into the tile deter-
mines very strongly the manner in which code is
compiled to it. As it turns out, the RAWCC compiler
optimizes the code to minimize communication, so it is
not usually severely affected by this bottleneck. How-
ever, when code is compiled in a pipeline fashion across
the Raw tiles, more bandwidth would be required to
obtain full performance.

The network ports csti2, cNi2, cSi2, cEi2, and cWi2
have been included in this spec since it is typically eas-
ier to remove a feature than to add one at a later date. It
remains to be evaluated what the speedup numbers and
area (both static instruction memory, crossbar and wire
area) and clock cycle costs are for this feature. As it
turns out, the encoding for this fits neatly in a 64-bit
switch instruction word. The inclusion of this extra rout-
ing facility emphasizes the availability of massive
amounts of bandwidth inside the chip.

4.3 SUMMARY

The static network design makes a number of
important trade-offs. The network flow control protocol
contains flow-controlled buffers that allow our compiler
writers some room to breath, and gives us support for
events with unpredictable timing. This protocol is a dis-
tributed protocol in which the producers have imperfect
information. As a result, the SIBs require a small
amount of buffering to prevent delay. In this chapter, I
presented a simple method for calculating how big these
buffer sizes need to be in order to allow continuous
streams to pass through the network bubble-free.

The static switch design also has some built-in
slack for dynamic timing behaviour between the tile
processor and the switch processor. This slack comes
with the cost of added complexity.

Finally, we raised the issue of the static switch
bandwidth.

All in all, the switch design is a success; it provides
an effective low-latency network for inter-tile communi-
cation. In the next section, we will see how the static
network is interfaced to the tile’s processor.
23

5 DYNAMIC NET-
WORK PRIMER
5.0 DYNAMIC NETWORK

Shortly after we developed the static network, we
realized the need for the dynamic network. In order for
the static network to be a high performance solution, the
following must hold:

1. The destinations must be known at compile time.

2. The message sizes must be known at compile
time.

3. For any two communication routes that cross, the
compiler must be able generate a switch schedule which
merges those two communication patterns on a cycle by
cycle basis.

The static network can actually support messages
which violate these conditions. However, doing this
requires an expensive layer of interpretation to simulate
a dynamic network.

The dynamic network was added to the architecture
to provide support for messages which do not fulfill
these criteria.

The primary intention of the dynamic network is to
support memory accesses that cannot be statically ana-
lyzed. The dynamic network was also intended to sup-
port other dynamic activities, like interrupts, dynamic I/
O accesses, speculation, synchronization, and context
switches. Finally, the dynamic network was the catch-all
safety net for any dynamic events that we may have
missed out on.

In my opinion, the dynamic network is probably the
single most complicated part of the Raw architecture.
Interestingly enough, the design of the actual hardware
is quite straight-forward. Its interactions with other parts
of the system, and in particular, the deadlock issues, can
be a nightmare if not handled correctly. For more dis-
cussions on the deadlock issues, please refer to the sec-
tion entitled “Deadlock.”

5.1 SUMMARY

The dynamic network design leveraged many of the
same underlying hardware components as the static
switch design. Its performance is not as good as the
static network’s because the route directions are not
known a priori. A great deal more will be said on the
dynamic network in the Deadlock section of this design
document.
24

6 TILE PROCESSOR
DESIGN

 When we first set out to define the architecture, we
chose the 5-stage MIPS R2000 as our baseline processor
for the Raw tile. We did this because it has a relatively
simple pipeline, and because many of us had spent hun-
dreds of hours staring at that particular pipeline. The
R2000 is the canonical pipeline studied in 6.823, the
graduate computer architecture class at MIT. The dis-
cussion that follows assumes familiarity with the R2000
pipeline. For an introduction, see [Hennessey96]. (Later,
because of the floating point unit, we expanded the pipe-
line to six stages.)

6.0 NETWORK INTERFACE

The most important part of the main processor deci-
sion is the way in which it interfaces with the networks.
Minimizing the latency from tile to tile (especially on
the static network) was our primary goal. The smaller
the latency, the greater the number of applications that
can be effectively parallelized on the Raw chip.

Because of our desire to minimize the latency from
tile to tile, we decided that the static network interface
should be directly attached to the processor pipeline. An
alternative would have been to have explicit MOVE
instructions which accessed the network ports. Instead,
we wanted a single instruction to be able to read a value
from the network, operate on it, and write it out in the
same cycle.

We modified the instruction encodings in two ways
to accomplish this magic.

For writes to the network output port SIB, $csto, we
modified the encoding the MIPS instruction set to
include what we call the “S” bit. The S bit is set to true if
the result of the instruction should be sent out to the out-
put port, in addition to the destination register. This
allows us to send a value out of the network and keep it
locally. Logically, this is useful when an operation in the
program dataflow graph has a fanout greater than one.
We used one of the bits from the opcode field of the
original MIPS ISA to encode this.

For the input ports, we mapped the network port
names into the register file name space:

This means, for instance, that when register $24 is
referenced, it actually takes the result from the static
network input SIB.

With the current 5-bit addressing of registers, addi-
tional register names would only be possible by adding

Fetch

Decode/RF

Execute

Memory

Floating

Writeback

$csto, Bypass, and Writeback Networks

$csti $cgni

$csto

RF

Thanks

Reg Alias Usage

$24 $csti Static network input port.

$25 $cgn[i/o] General (“User”) Dynamic
network input port.

$26 $csti2 Second static network port

$27 $cmn[i/o] Memory (“High Priority”)
Dynamic network port.
25

one more bit to the register address space. Aliasing it
with an existing register name allows us to leave most of
the ISA encodings unaffected. The choice of the register
numbers was suggested by Ben Greenwald. He believes
that we can maximize our compatibility with existing
MIPS tools by reserving that particular register because
it has been designated as “temporary.”

6.1 SWITCH BYPASSING

The diagram entitled “$csto, Bypass and Writeback
Networks” shows how the network SIBs are hooked up
to the processor pipeline. The three muxes are essen-
tially bypass muxes. The $csti and $cgni SIBs are logi-
cally in the decode/register fetch (RF) stage.

In order to reduce the latency of a network send, it
was important that an instruction deliver its result to the
$csto SIB as soon as the value was available, rather than
waiting until the writeback stage. This can change the
tile-to-tile communication latency from 6 cycles to 3
cycles.

The $cXXo ($cmno, $csto and $cgno) SIBs are
connected to the processor pipeline in much the same
way that register bypasses are connected. Values can be
sent to $csto after the ALU stage, after the MEMORY
stage, after the FPU stage, and at the WB stage. This
gives us the minimum possible latency for all operations
whose destination is the static network. The logic is very
similar to the bypassing logic; however the priority of
the elements is reversed: $csto wants the OLDEST
value from the pipeline, rather than the newest one.

 When a instruction that writes to $csto is executed,
the S bit travels with it down the pipeline. A similar
thing happens with a write to $cgno, except that the “D”
bit is generated by the decode logic. Each cycle, the
$csto bypassing logic finds the oldest instruction which
has the S bit set. If that instruction is not ready, then the
valid bit connecting to the output SIB is not asserted. If
the oldest instruction has reached its stage of maturation
(i.e., the stage at which the result of the computation is
ready), then the value is muxed into the $csto port regis-
ter, ready to enter into an input buffer on the next cycle.
The S bit of that instruction is cleared, because the
instruction has sent its value. When the instruction
reaches the Writeback stage, it will also write its result
into the register file.

 It is interesting to note that the logic for this proce-
dure is exactly the same as for the standard bypass logic,
except that the priorities are reversed. Bypass logic
favors the youngest instruction that is writing a particu-
lar value. $csto bypassing logic looks for the oldest

instruction with the S bit set because it wants to guaran-
tee that values are sent out of the network in order that
the instructions were issued.

The $cXXi ($cgni, $cmni, $csti2, and $csti) net-
work ports are muxed in through the bypass muxes. In
this case, when an instruction in the decode stage uses
registers $24, $25, $26, or $27 as a source, it checks if
the DataAvail signal of the SIB is set. If it is not, then
the instruction stalls. This mirrors a hardware register
interlock. If the decode stage decides it does not have to
stall, it will acknowledge the receipt of the data value by
asserting the appropriate Thanks line.

6.1.1 Instruction Restartability

The addition of the tightly coupled network inter-
faces does not come entirely for free. It imposes a num-
ber of restrictions on the operation of the pipeline.

The main issue is that of restartability. Many pro-
cessor pipelines take advantage of the fact that their
instruction sets are restartable. This means that the pro-
cessor can squash the instruction at any point in the
pipeline before the writeback stage. Unfortunately,
instructions which access $cXXi modify the state of the
networks. Similarly, when an instruction issues an
instruction which writes to $cXXo, once the result has
been sent out to the switch’s SIB, it is beyond the point
of no return and cannot be restarted.

Because of this, the commit point of the tile proces-
sor is right after it passes the decode stage. We have to
be very careful about instructions that write to $csto or
$cgno because the commit point is so early in the pipe-
line. If we allow the instructions to stall (because the
output queues are full) in a stage beyond the decode
stage, then the pipeline could be stalled indefinitely,
This is because it is programmatically correct for the
output queue to be full indefinitely. At that point, the
processor cannot take an interrupt, because it must fin-
ish all of the “committed” instructions that passed
decode.

Thus, we must also insure that if an instruction
passes decode, it must not be possible for it to stall
indefinitely.

To avoid these stalls, we do not let instruction pass
decode unless there is guaranteed to be enough room in
the appropriate SIB. As you might guess, we need to use
the same analysis as we used to calculate how much
buffer space we needed in the network SIBs. Having the
correct number of buffers will ensure that the processor
26

is not too conservative. Looking at the “$csto, Bypass,
and Writeback Networks”, diagram, we count the num-
ber of pipeline registers in the longest cycle from the
decode stage through the Thanks line, back to the
decode stage. Six buffers are required.

An alternative to this subtle approach is that we
could modify the behaviour of the SIBs. We can keep
the values in the input SIB FIFOs until we are sure we
do not need them any more. Each SIB FIFO will have
three pointers: one marks the place where data should be
inserted, the next marks where data should be read from,
and the final one marks the position of the next element
that would be committed. If instructions ever need to be
squash, the “read” pointer can be reset to equal the
“commit” pointer. I do not believe that this would affect
the critical paths significantly, but the $csti and $cgni
SIBs would require nine buffers each instead of three.

For the output SIB, creating restartability is a
harder problem. We would have to defer the actual
transmittal of the value through the network until the
instruction has hit WRITEBACK. However, that would
mean that we could not use our latency reducing bypass-
ing optimization. This approach mirrors what some con-
ventional microprocessors do to make store instructions
restartable -- the write is deferred until we are absolute
sure we need it. An alternative is to have some sort of
mechanism which overrides a message that was already
sent into the network. That sounded complicated.

6.1.2 Calculating the Tile-to-Tile
Communication Latency

A useful exercise is to examine the tile-to-tile
latency of the network send. The figure “Processor-
Switch-Switch-Processor” path helps illustrate it. It
shows the pipelines of two Raw tiles, and the path over
the static network between them. The relevant path is in
bold. As you can see, it takes three cycles for nearest
neighbor communication.

It is possible that we could reduce the cost down to
two cycles. This would involve removing the register in
front of the $csti SIB, and rearranging some of the logic.
We can do this because we know that the path between
the switch’s crossbar and the SIB is on the same tile, and
thus short. However, it is not at all clear that this will not
lengthen the critical path in the tile design. Whether we
will be able to do this or not will become more apparent
as we come closer to closing the timing issues of our
verilog.

6.2 MORE STATIC SWITCH INTERFACE GOOK

A number of other items are required to make the
static switch and main processor work together.

The first is a mechanism to write and read from the
static network instruction memory. The sload and
sstore operations stall the static switch for a cycle.

Another mechanism allows us to freeze the switch.
This lets the processor inspect the state at its leisure. It
also simplifies the process of loading in a new PC.

During context switches and booting, it is useful to
be able to see how many elements are in the switch’s
SIBs. There is a status register in the processor which
can be read to attain this information.

Finally, there is a mechanism to load in a new PC,
for context switches, or if we want the static switch to
do something dynamic on our behalf.

6.3 MECHANISM FOR READING AND WRITING
INTO INSTRUCTION MEMORY

In order for us to change the stored program, we
need some way of writing values into the instruction
memory. Additionally, however, we want to be able to
read all of the state out of the processor (which includes
the instruction memory state), and we would like to sup-
port research into a sophisticated software instruction
VM system. As such, we need to be able to treat the
instruction memory as a true read-write memory. The
basic thinking on this issue is that we will support two
new instructions -- “iload” and “istore” -- which mimic
the data versions but which access the instruction mem-
ory. The advantage of these instructions is that it makes
it very explicit when we are doing things which are not
standard, both in the hardware implementation and in
debugging software. These instructions will perform
their operations in the “memory” stage of the pipeline,
stealing a cycle away from the “fetch” stage. This means
that every read or write into instruction memory will
cause a one cycle stall. Since this is not likely to be a
common event, we will not concern ourselves with the
performance implications.

Associated with an instruction write will be some
window of time (i.e. two or three cycles unless we add
in some sort of instruction prefetch, then it would be
more) where an instruction write will not be reflected in
the processor execution. I.E., instructions already
fetched into the pipeline will not be refetched if they
happen to be the ones that were changed. This is a stan-
dard caveat made by most processor architectures.
27

We also considered the alternative of using standard
“load” and “store” instructions, and using a special
address range, like for instance (“0xFFFFxxxx”). This
approach is entirely valid and has the added benefit that
standard routines (“memcpy”) will be able to modify
instruction memory without having special version. (If
we wanted true transparency, we’d have to make sure
that instruction memory was accessible by byte
accesses.) We do not believe this to be a crucial require-
ment at this time. If needbe, the two methods could also
easily co-exist.

6.4 RANDOM TWEAKS

Our baseline processor was the MIPS R2000. We

added load interlocks into the architecture, because they
aren’t that costly. Instead of a single multi-cycle multi-
ply instruction, there are three low-latency pipelined
instructions, MULH, MULHU, and MULLO which
place their results in a GPR instead of HI/LO. We did
this because our 32-bit multiply takes only two cycles. It
didn’t make sense to treat it as a multi cycle instruction
when it has no more delay than a load. We also removed
the SWL and SWR instructions, because we didn’t feel
they were worth the implementation complexity.

We have a 64 bit cycle counter which lists the num-
ber of cycles since reset. There is also a watchdog timer,
which is discussed in the DEADLOCK section of the

Fetch

Decode/RF

Execute

Memory

Floating

Writeback

$csti $cgni

$csto

RF

Thanks

Fetch

Decode/RF

Execute

Memory

Floating

Writeback

$csti$cgni

$csto

RF

Thanks

The Processor-Switch-Switch-Processor path
28

design document.

Finally, we decided on a Harvard style architecture,
with separate instruction and data memories; because
the design of the pipeline was more simple. See the
Appendage entitled “Raw User’s Manual” for a descrip-
tion of the instruction set of the Raw prototype. The first
Appendage shows the pipeline of the main processor.

6.5 THE FLOATING POINT UNIT

In the beginning, we were not sure if we were going
to have a floating point unit. The complexity seemed
burdensome, and there were some ideas of doing it in
software. One of our group members, Michael Zhang,
implemented and parallelized a software floating point
library [Zhang99] to evaluate the performance of a soft-
ware solution. Our realization was that many of our
applications made heavy use of floating point, and for
that, there is no subsitute for hardware. We felt that the
large dynamic range offered by floating point would fur-
ther the ease of writing signal processing applications --
an important consideration for enticing other groups to
make user of our prototype. This was an important con-
sideration To simplify our task, we relaxed our compli-
ance of the IEEE 754 standard. In particular, we do not
implement gradual underflow. We decided to support
only single-precision floating point operations so we
would not need to worry about how to integrate a 64 bit
datapath into the RAW processor. All of the network
paths are 32bits, so we would have package up values
and route them, reassemble them and so on. However, if
we were building an industrial version, we would proba-
bly have a 64 bit datapath throughout the chip, and dou-
ble precision would be easier to realize.

It was important that the FPU be as tightly inte-
grated with the static network as the ALU. In terms of
floating point, Raw had the capability of being a super-
computer even as an academic project. With only a little
extra effort in getting the floating point right, we could
make Raw look very exciting.

We wanted to be able to send data into the FPU in a
pipelined fashion and have it stream out of the tile just
as we would do with a LOAD instruction. This would
yield excellent performance with signal processing
codes, especially with the appropriate amount of switch
bandwidth. The problem that this presented was with the
$csto port. We need to make sure that values exit the
$csto port in the correct order from the various floating
point functional units, and from the ALU.

The other added complexity with the floating point

unit is the fact that its pipeline is longer than the corre-
sponding ALU pipeline. This means that we needed to
do some extra work in order to make sure that items are
stored back correctly in the writeback phase, and that
they are transferred into the static network in the correct
order.

The solution that we used was simple and elegant.
After researching FPU designs [Oberman96], it became
increasingly apparent that we could do both floating
point pipelined add and multiply in three cycles. The
longest operation in the integer pipeline is a load or mul-
tiply, which is two cycles. Since they are so close, we
discovered that we could solve both the $csto and regis-
ter file writeback problems by extending the length of
the overall pipeline by one cycle. As a result, we have
six pipeline stages: instruction fetch(IF), instruction
decode(ID), execution(EXE), memory(MEM), floating
point (FPU) and write-back(WB). See Appendix B for a
diagram of the pipeline. The floating point operations
execute during the Execute, Memory, and FPU stages,
and write back at the same stage as the ALU instruc-
tions.

This solves the writeback and $csto issues -- once
the pipelines are merged, the standard bypass and stall
logic can be used to maintain sanity in the pipeline.

This solution becomes more and more expensive as
the difference in actual pipeline latencies of the instruc-
tions grows. Each additional stage requires at least one
more input to the bypass muxes.

As it turns out, this was also useful for implement-
ing byte and half-word loads, which use an extra stage
after the memory stage.

Finally, for floating point division, our non-pipe-
lined 11-cycle divider uses the same decoupled HI/LO
interface as the integer divide instruction.

A secondary goal we had in designing an FPU is
that we make the source available for other research
projects to use. Our design is constructed to be
extremely portable, and will probably make its way onto
the web in the near future.

6.6 RECONFIGURABLE LOGIC

Originally, each Raw tile was to have reconfig-
urable logic inside, to support bit-level and byte-level
computations. Although no research can definitely say
that this is a bad idea, we can say that we had a number
of problems realizing this goal. The first problem is that
29

we had trouble finding a large number of applications
that benefited enormously from this functionality.
Median filter and Conway’s “game of life”
[Berklekamp82] were the top two contenders. Although
this may seem surprising given RawLogic’s impressive
results on many programs, much of RawLogic’s perfor-
mance came from massive parallelism, which the Raw
architecture leverages very capably with tile-level paral-
lelism. Secondly, it was not clear if a reconfigurable fab-
ric could be efficiently implemented on an ASIC. Third,
interfacing the processor pipeline to the reconfigurable
logic in a way that effectively used the reconfigurable
logic proved difficult. Fourth, it looked as if a large area
would need to be allocated to each reconfigurable logic
block to attain appreciable performance gains. Finally,
and probably most fundamentally for us, the complexity
of the reconfigurable logic, its interface, and the soft-
ware system was an added burden to the implementation
of an already quite complicated chip.

For reference, here is the description of the recon-
figurable logic interface that we used in the first simula-
tor:

The pipeline interface to the reconfigurable logic
mimiced the connection to the dynamic network ports.
There were two register mapped ports, RLO (output to
RL) and RLI (input from RL to processor). These were
aliased with register 30. There was a two element buffer
on the RLI connection on the processor pipeline side,
and a two element buffer on the reconfigurable logic
input side.

6.7 CGNO Commit Buffer

This feature has been deprecated from the architec-
ture. We retain the text for reference.

The processor initiates a dynamic network send by
writing the destination tile number, writing the message
into the $cgno commit buffer and then executing the
dlaunch instruction [Kubiatowicz98]. $cgno is differ-
ent than other SIBs because it buffers up an entire mes-
sage until the message is complete. If we were to allow
the messages to be injected directly into the network
without queueing them up into atomic units, we could
have a phenomenon we call dangling. This means that a
half-constructed message is hanging out into the
dynamic network. Dangling becomes a problem when
interrupts occur. The interrupt handler may want to use
the dynamic network output queue; however, there is a
half-completed message that is blocking up the network
port. The message cannot be squashed because some of
the words have already been transmitted. A similar
problem occurs with context switches -- to allow dan-

gling, the context switch routine would need to save and
restore the internal state of the hardware Dynamic
scheduler -- a prospect we do not relish. The commit
buffer has to be of a fixed size. This size imposes a max-
imum message size constraint on the dynamic network.
To reduce the complexity of the commit buffer, a write
to $cgno blocks until all of the elements of the previous
message have drained out.

One alternative to the commit buffer would be to
require the user to enclose their dynamic network activ-
ity to constrained regions surround by interrupt enables
and disables. The problem with this approach is that the
tile may block indefinitely because the network queue is
backed up (and potentially for a legitimate reason.) That
would make the tile completely unresponsive to inter-
rupts.

$cgni, on the other hand, operates exactly like the
$csti port. However, there is a mask which, when
enabled, causes a user interrupt routine to be called
when the header of a message arrives at the tile.

6.8 SUMMARY

The Raw tile processor design descended from the
MIPS R2000 pipeline design. The most interesting
design decisions involved the integration of the network
interfaces. It was important that these interfaces (in par-
ticular the static network interface) provide the minimal
possible latency to the network so as to support as fine-
grained parallelism as possible.
30

7 I/O AND MEMORY
SYSTEM
7.0 THE I/O SYSTEM

The I/O system of a Raw processor is a crucial but
up until now mostly unmentioned aspect of Raw. The
Raw I/O philosophy mirrors that of the Raw parallelism
philosophy. Just as we provide a simple interface for the
compiler to exploit the gobs of silicon resources, we
also have a simple interface for the compiler to exploit
and program the gobs of pins available. Once again, the
Raw architecture proves effective not because it allo-
cates the raw pin resources to special purpose tasks, but
because it exposes them to the compiler and user to
meet the needs of application. The interface that we
show scales with the number of pins, and works even
though pin counts are not growing as fast as logic den-
sity.

An effective parallel I/O interface is especially
important for a processor with so many processing
resources. To support extroverted computing, a Raw
architecture’s I/O system must be able to interface to, at
high-speed, a rich variety of input and output devices,
like PCI, DRAM, SRAM, video, RF digitizers and
transmitters and so on. It is likely, that in the future, a
Raw device would also have direct analog connections -
RF receivers and transmitters, and A/D and D/A con-
verters, all exposed to the compiler. However, the inte-
gration of analog devices onto a silicon die is the subject
of another design document.

For the Raw prototype, we will settle for being able
to interface to some helper chips which can speak these
dialects on our behalf.

 Recently, there has been a proliferation of high
speed signalling technologies like that chips SSTL,
HSTL, GTL, LVTTL, and PCI. For our chip, we have
been looking at SSTL and HSTL as potential candi-
dates. We are currently leaning towards HSTL because
it requires fewer external terminating resistors.

We expect to use the Xilinx Vertex parts to convert
from our high-speed protocol of choice to other signal-
ing technologies. These parts have the exciting ability to
configurably communicate with almost all of the major
signaling technologies. Although, in our prototype,
these chips are external, I think that it is likely config-
urable I/O cells will find their way into the new extro-

verted processors. This is because it will be so crucial
for these processors to be able to communicate with all
shapes and forms of devices. It may also be the case that
extroverted processors will have bit-wise configurable
FPGA logic near the I/O pins, for gluing together hard-
ware protocols. After all, isn’t glue logic what FPGAs
were invented for? Perhaps our original conception of
having fine-grained configurable logic on the chip
wasn’t so wrong; we just had it in the wrong place.

7.0.1 Raw I/O Model

I/O is a first-class software-exposed architectural
entity on Raw. The pins of the Raw processor are an
extension of both the mesh static and dynamic networks.
For instance, when the west-most tiles on a Raw chip
route a dynamic or static message to the west, the data
values appear on the corresponding pins. Likewise,
when an external device asserts the pins, they appear on-
chip as messages on the static or dynamic network.

For the Raw prototype, the protocol spoken over
the pins is the same static and dynamic handshaking net-
work protocols spoken between tiles. If we actually had
the FPGA glue logic on chip, the pins would support
arbitrary handshaking protocols, including ones which
require the pins to be bidirectional. Of course, for super-
high speed I/O connections, there could be a fast-path
straight to the pins.

The diagram “Logical View of a Raw Chip” illus-
trates the pin methodology. The striped lines represent
the static and dynamic network pipelined buses. Some
of them extend off the edge of the package, onto the
pins. The number of static and dynamic network buses
that are exposed off-chip is a function of the number of
I/O pins that makes sense for the chip. There may only
be one link, for ultra-cheap packages, or there may be
total connectivity in a multi-chip module. In some cases,
the number of static or dynamic buses that are exposed
could be different. Or there may be a multiplex bit,
which specifies whether the particular word transferred
that cycle is a dynamic or static word. The compiler,
given the pin image of the chip, schedules the dynamic
and static communication on the chip such that it maxi-
mizes the utilization of the ports that exist on the partic-
ular Raw chip. I/O sends to non-existent ports will
disappear.

The central idea is that the architecture facilitates I/
O flexibility and scalability. The I/O capabilities can be
scaled up or down according to the application. The I/O
interface is a first-class citizen. It is not shoehorned
through the memory hierarchy, and it provides an inter-
31

face which gives the compiler the access to the full
bandwidth of the pins.

Originally, only the static network was exposed to
the pins. The reasoning was that the static network
would provide the highest bandwidth interface into the
Raw tiles. Later, however, we realized that, just as the
internal networks require support for both static and
dynamic events, so too do the external networks. Cache
line fills, external interrupts, and asynchronous devices
are dynamic, and cannot be efficiently scheduled over
the static network. On the other hand, the static network
is the most effective method for processing a high band-
width stream coming in at a steady rate from an outside
source.

7.0.2 The location of the I/O ports (Perimeter
versus Area I/O)

Area I/O is becoming increasingly common in
today’s fabrication facilities. In fact, in order to attain
the pincounts that we desire on the SA-27E process, we
have to use area I/O. This creates a bit of a problem,
because all of our I/O connections are focused around
the outside of the chip. IBM’s technology allows us to
simulate a peripheral I/O chip with area I/O. However,
this may not be an option in the future. In that event, it is

possible to change the I/O model to match. In the Area I/
O model, each switch and dynamic switch would have
an extra port, which could potentially go in/out to the
area I/O pads. This arrangement would create better
locality between the source of the outgoing signal and
the position of the actual pad on the die. Like in the
peripheral case, these I/Os could be sparsely allocated.

7.0.3 Supporting Slow I/O Devices

In communicating with the outside world, we need
to insure that we support low-speed devices in addition
to the high-speed devices. For instance, it is unlikely
that the off-the-shelf Virtex or DRAM parts will be able
to clock as fast as the core logic of our chip. As a result,
the SIB protocol needs to be re-examined to see if it still
operates when connected to a client with a lesser clock
speed. Ideally, the SIB protocol will support a software-
settable clock speed divider feature, not unlike found on
DRAM controllers for PCs. It is not enough merely to
program the tiles so they do not send data words off the
side of the chip too frequently; the control signals will
still be switching too quickly.

The recent crop of .18 micron Xilinx parts may be
sufficiently fast that we can hand-tune them to commu-
nicate with the Raw chip at a fast rate and then buffer up
the words so that they can processed at a reasonable
rate. An effort is currently under way to investigate this
issue.

[MBT fixme: distinguish between I/O devices with
low data-rates and parts which simply cannot run at the
same speed as the raw chip.]

7.1 THE MEMORY SYSTEM

The Raw memory system has recently undergone a
greater number of changes. An appendix to this docu-
ment will specify the memory system in greater detail.
This section will present an overview of the memory
system.

 A number of group members are actively research-
ing this topic. One of the Raw group’s goals is see what
architectural features can actually be implemented effi-
ciently using software and compiler technology. An
effective all-software memory system would represent a
significant accomplishment in the computer architecture
field.

Unfortunately, the research on the memory system
is not mature enough that we can omit hardware support
for memory accesses and have confidence that our chip
will remain useful for other research purposes.

Static and/or Dynamic Network

Package

Logical View of a Raw Chip

Pins
32

As a result, the chip will support both hardware and
software caching modes for the data memory. The
instruction memory will be purely software cached.

 In the software-caching mode, the SRAM will be
accessed via load and store instructions. Accesses to
addresses beyond the 32k size of the memory will return
invalid results. It will be up to the software system to
instrument the binaries for virtualization. The software
caching system will use the memory network to access
external DRAM.

In the hardware-caching mode, the SRAM will be
used as a two way set-associative cache. We chose two
way because it has low implementation cost (the tags
have approximately the same area impact as a 32-bit
multiplier when placed and routed), yet gives the effec-
tiveness of a cache which is almost twice the size. These
accesses will have three cycles latency; one for tag
check, for memory access, and one for address genera-
tion. Misses will be handled by freezing the processor
and handling the access out-of-band on the memory
dynamic network. This method was chosen because it
offers excellent performance and does not require exten-
sive modification to the existing pipeline.

7.1.1 The Path to Copious Memory

We also need to consider the miss case. We need to
have a way to reach the DRAMs residing outside of the
Raw chip.This path is not as crucial as the Tag Check;
however it still needs to be fairly efficient.

For this purpose, we will use a memory dynamic
network to access the off-chip DRAMs. More details are
given in the appendix sections.

7.2 SUMMARY

The strength of Raw’s I/O architecture comes from
the degree and simplicity with which the pins are
exposed to the user as a first class resource. Just as the
Raw tile expose the parallelism of the underlying silicon
to the user, the Raw I/O architecture exposes the paral-
lelism and bandwidth of the pins. It complements the
key Raw goal -- to provide a simple interface to as much
of the raw hardware resources to the user as possible.
33

8 DEADLOCK

In my opinion, the deadlock issues of the dynamic
network is probably the single most complicated part of
the Raw architecture. Finding a deadlock solution is
actually not all that difficult. However, the lack of
knowledge of the possible protocols we might use, and
the constant pressure to use as little hardware support as
possible makes this quite a challenge.

In this section, I describe some conditions which
cause deadlock on Raw. I then describe some
approaches that can be used to attack the deadlock prob-
lem. Finally, I present Raw’s deadlock strategy.

8.0 DEADLOCK CONDITIONS

For the static network, it is the compiler’s responsi-
bility to ensure that the network is scheduled in a way
that doesn’t jam. It can do this because all of the interac-
tions between messages on the network have been spec-
ified in the static switch instruction stream. These
interactions are timing independent.

The dynamic network, however, is ripe with poten-
tial deadlock. Because we use dimension-ordered
wormhole routing, deadlocks do not actually occur
inside the network. Instead, they occur at the network
interface to the tile. These deadlocks would not occur if
the network had unlimited capacity. In every case, one
of the tiles, call it tile A, has a dynamic message waiting
at its input queue that is not being serviced. This mes-
sage is flow controlling the network, and messages are
getting backed up to a point where a second tile, B, is
blocked trying to write into the dynamic network. The
deadlock occurs when tile A is dependent on B’s for-
ward progress in order to get to the stage where it reads
the incoming message and unblocks the network.

Below is an enumeration of the various deadlock
conditions that can happen. Most of them can be
extended to multiple party deadlocks. See the figure
entitled “Deadlock Scenarios.”

8.0.1 Dynamic - Dynamic

Tile A is blocked trying to send a dynamic message
to Tile B. It was going to then read the message arriving
from B. Tile B is blocked trying to send to Tile A. It was
going to then receive from A. This forms a dependency
cycle. A is waiting for B and B is waiting for A.

A B

static network

dynamic network

A B

Message One
Message Two
Message Three

1

2

blockage

A B

3

5A

B

C

D

Message Four

Deadlock
Scenarios
34

8.0.2 Dynamic - Static

Tile A is blocked on $csto because it wants to stati-
cally communicate with processor B. It has a dynamic
message waiting from B. B is blocked because it is try-
ing to finish the message going out to A.

8.0.3 Static - Dynamic
Tile A is waiting on $csti because it is waiting for a

static message from B. It has a dynamic message wait-
ing from B.

Tile B is waiting because it is trying to send to tile
C which is blocked by the message it sent to A. It was
then going to write to processor A over the static net-
work.

8.0.4 Static - Static

Processor A is waiting for a message from Proces-
sor B on $csti. It was then going to send a message.

Processor B is waiting for a message from Proces-
sor B on $csti. It was then going to send a message.

This is a compiler error on Raw.

8.0.5 Unrelated Dynamic-Dynamic

In this case, tile B is performing a request, and get-
ting a long reply from D. C is performing a request, and
getting a long message from A. What is interesting is
that if only one or the other request was happening,
there may not have been deadlock.

8.0.6 Deadlock Conditions - Conclusions

An accidental deadlock can exist only if at least one
tile has a waiting dynamic network in-message and is
blocked on either the $cgno, $csti, or $csto. Actually,
technically, the tile could be polling either of those three
ports. So we should rephrase that: the tile can only be
deadlocked if there is a waiting dynamic message com-
ing in and one of {$cgno is not empty, $csti does not
have data available, or $csto is full}.

In all of these cases, the deadlock could be allevi-
ated if the tile would read the dynamic message off of its
input port. However, there may be some very good rea-
sons for why the tile does not want to do this.

8.1 POSSIBLE DEADLOCK SOLUTIONS

The key two deadlock solutions are deadlock avoid-
ance and deadlock recovery. These will be discussed in
the next two sections.

8.2 DEADLOCK AVOIDANCE

Deadlock avoidance requires that the user restrict
their use of the dynamic network to a certain pattern
which has been proven to never deadlock.

The Deadlock avoidance disciplines that we gener-
ally arrive at are centered around two principles:

8.2.1 Ensuring that messages at the tail of all
dependence chain are always sinkable.

In this discipline, we guarantee that the tile with the
waiting dynamic message is always able to “sink” the
waiting message. This means that the tile is always able
to pull the waiting words off the network and break any
cycles that have formed. The processor is not allowed to
block while there are data words waiting.

These disciplines typically rely on an interrupt han-
dler being fired to receive messages, which provides a
high-priority receive mechanism that will interrupt the
processor if it is blocked.

Alternatively, we could require that polling code be
placed around every send.

Two examples disciplines which use that “always
sinkable” principal are “Send Only” and “Remote
Queues.”

Send Only

For send-only protocols; like protocols which only
store values, the interrupt handler can just run and pro-
cess the request. This is an extremely limited model.

Remote Queues

For request-reply protocols, Remote Queues
[Chong95], relies on an interrupt handler to dequeue
arriving messages as they arrive. This handler will never
send messages.

If this request was for the user process, the interrupt
handler will place the message in memory, and set a flag
which tells the user process that data is available. The
user process then accesses the queue.
35

Alternatively, if the request is to be processed inde-
pendently of the user process, the interrupt handler can
drop down to a lower priority level, and issue a reply.
While it does this will remain ready to pop up the higher
priority level and receive any incoming messages.

Both of these methods have some serious disadvan-
tages. First of all, the model is more complicated and
adds software overhead. The user process must synchro-
nize with the interrupt handler, but at the same time,
make sure that it does not disable interrupts at an inop-
portune time. Additionally, we have lost that simple and
fast pipeline-coupled interface that the network ports
originally provided us with.

The Remote Queue method assumes infinite local
memories, unless an additional discipline restricting the
number of outstanding messages is imposed. Unfortu-
nately, for all-to-all communication, each tile will have
to reserve enough memory to handle the worst case -- all
tiles sending to the same tile. This memory overhead
can take up a significant portion of the on-tile SRAM.

8.2.2 Limit the amount and directions of data
injected into the network.

The idea here is that we make sure that we never
block trying to write to our output queue, making us
available to read our input queue. Unless there is a huge
amount of buffering in the network, this usually requires
that we know a priori that there is some limit on the
number of tiles that can send to us (and require replies)
at any point, and that there is a limited on the amount of
data in those messages. Despite this heavy restriction,
this is nonetheless a useful discipline.

The Matt Frank method

One discipline which we developed uses the effects
of both principles. I called it the Matt Frank method. (It
might also be called the client-server method, or the two
party protocol.) In this example, there are two disjoint
classes of nodes, the clients and the servers, which are
connected by separate “request” and “reply” networks.
The clients send a message to the servers on the request
network, and then the servers send a message back on
the reply network. Furthermore, each client is only
allowed to have one outstanding message, which will fit
entirely in its commit buffer. This guarantees that it will
never be blocked sending.

Since clients and servers are disjoint, we know that
when a client issues a message, it will not receive any
other messages except for its response, which it will be

waiting to dequeue. Thus, the client nodes could never
be responsible for jamming up the network.

The server nodes are receiving requests and sending
replies. Because of this, they are not exempt from dead-
lock in quite the same way as the client nodes. However,
we know that the outgoing messages are going to clients
which will always consume their messages. The only
possibility is that the responses get jammed up on their
way back through the network by the requests. This is
exactly what happened in the fifth dead-lock example
given in the diagram “Deadlock Scenarios.” However,
in this case, the request and reply networks are separate,
so we know that they cannot interact in this way. Thus,
the Matt Frank method is deadlock free.

One simple way to build separate request-reply net-
works on a single dimension-ordered wormhole routed
dynamic network is to have all of the server nodes on a
separate side of the chip; say, the south half of the chip.
With X-first dimension-ordered routing, all of the
requests will use the W-E links on the top half of the
chip, and then the S links on the way down to the server
nodes. The replies will use the W-E links on the bottom
half of the chip, and the N links back up to the clients.
We have effectively created a disjoint partition of the
network links between the requests and the replies.

For the Matt Frank protocol, we could lift the
restriction of only one outstanding message per client if
we guaranteed that we would always service all replies
immediately. In particular, the client cannot block while
writing a request into the network. This could be achiev-
able via an interrupt, polling, or a dedicated piece of
hardware.

8.2.3 Deadlock Avoidance - Summary

Deadlock avoidance is an appealing solution to
handling the dynamic network deadlock issue. How-
ever, each avoidance strategy comes with a cost. Some
strategies reduce the functionality of the dynamic net-
work, by restricting the types of protocols that can be
used. Others require the reservation of large amounts of
storage, or cause a low utilization of the underlying net-
work resources. Finally, deadlock avoidance can com-
plicate and slow down the user’s interface to the
network. Care must be made to weigh these costs
against the area and implementation cost of more brute-
force hardware solutions.
36

8.3 DEADLOCK RECOVERY

An alternative approach to deadlock avoidance is
deadlock recovery. In deadlock recovery, we do not
restrict the way that the user employs the network ports.
Instead, we have a recovery mode that rescues the pro-
gram from deadlock, should one arise. This recovery
mode does not have to be particularly fast, since dead-
locks are not expected to be the common case. As with a
program with pathological cache behaviour, a program
that deadlocks frequently may need to be rewritten for
performance reasons.

Before I continue, I will introduce some terminolo-
gies. These are useful in evaluating the ramifications of
the various algorithms on the Raw architecture.

Spontaneous Synchronization is the ability of a
group of Raw chips to suddenly (not scheduled by com-
piler) stop their current individual computations and
work together. Normally, a Raw tile could broadcast a
message on the dynamic network in order to synchro-
nize everybody. However, we obviously cannot use the
dynamic network if it is deadlocked. We cannot use the
static network to perform this synchronization, because
the tiles would have to spontaneously synchronize
themselves (and clear out any existing data) in order to
communicate over that network!

We could have a interrupting timer which is syn-
chronized across all of the Raw tiles to interrupt all of
the tiles simultaneously, and have them clear out the
static network for communication. If we could guaran-
tee that they would all interrupt simultaneously, then we
could clear out the static network for more general com-
munication. Unfortunately, this would mean that the
interrupt timer would have to be a non maskable inter-
rupt, which seems dangerous.

In the end, it may be that the least expensive way to
achieve spontaneous synchronization is to have some
sort of non-deadlocking synchronization network which
does it for us. It could be a small as one bit. For instance,
the MIT-Fugu machine had such a one bit rudimentary
network [Mackenzie98].

Non-destructive observability requires that a tile
be able to inspect the contents of the dynamic network
without obstructing the computation. This mechanism
could be implemented by adding some extra hardware
to inspect the SIBs. Or, we could drain the dynamic net-
work, store the data locally on the destination nodes,
and have a way of virtualizing the $cgni port.

8.3.1 Deadlock Detection

In order to recover from deadlock, we first need to
detect deadlock. In order to determine if a deadlock
truly exists, we would need to analyze the status of each
tile, and the network connecting them, looking for a
cyclic dependency.

One deadlock detection algorithm follows:

The user would not be allowed to poll the network
ports, otherwise, the detection algorithm would have no
way of knowing of the program’s intent to access the
ports. The detection algorithm runs as follows: The tiles
would synchronize up, and run a statically scheduled
program (that uses the static network) which analyzes
the traffic inside the dynamic network, and determines
whether the each tile was stalled on a instruction access-
ing $csto, $csti, or $cgno. It can construct a dependency
graph and determine if there is a cycle.

However, the above algorithm requires both spon-
taneous synchronization and non-destructive observ-
ability. Furthermore, it is extremely heavy-weight, and
could not be run very often.

8.3.2 Deadlock Detection Approximation

In practice, a deadlock detection approximation is
often sufficient. Such an approximation will never
return a false negative, and ideally will not return too
many false positives. The watchdog timer, used by the
MIT-Alewife machine [Kubiatowicz98] for deadlock
detection is one such approximation.

The operation is simple: each tile has a timer that
counts up every cycle. Each cycle, if $cgni is empty, or
if a successful read from $cgni is performed, then the
counter is reset. If the counter hits a predefined user-
specified value, then a interrupt is fired, indicating a
potential deadlock.

This method requires neither spontaneous synchro-
nization nor non-destructive observability. It also is very
lightweight.

It remains to be seen what the cost of false positives
is. In particular, I am concerned about the case where
one tile, the aggressive producer, is sending a continu-
ous stream of data to a tile which is consuming at a very
slow rate. This is not truly a deadlock. The consumer
will be falsely interrupted, and will run even slower
because it will be the tile who will be running the dead-
lock recovery code. (Ideally, the producer would have
been the one running the deadlock code.) Fugu
37

[MacKenzie98] dealt with these sorts of problems in
more detail. At this point in time, we stop by saying that
the user or compiler may have to tweak the deadlock
watchdog timer value if they run into problems like this.
Alternatively, if we had the spontaneous synchroniza-
tion and non-destructive observability properties, we
could use the expensive deadlock detection algorithm to
verify if there was a true deadlock. If it was a false posi-
tive, we could bump up the counter.

8.3.3 Deadlock recovery

Once we have identified a deadlock, we need to
recover from the deadlock. This usually involves drain-
ing the blockage from the network and storing it in
memory. When the program is resumed, a mechanism is
put in place so that when the user reads from the net-
work port, he actually gets the values stored in memory.

To do this, we have a bit that is set which indicates
that we are in this “dynamic refill” mode. A read from
$cgni will return the value stored in the special purpose
register, “DYNAMIC_REFILL.” It will also cause an
interrupt on the next instruction, so that a handler can
transparently put a new value into the SPR. When all of
the values have been read out of the memory, the mode
is disabled and operation returns to normal.

An important issue is where the dynamic refill val-
ues are stored in memory. When a tile’s watchdog
counter goes off, it can store some of the words locally.
However, it may not be expedient to allocate significant
amounts of buffer space for what is a reasonably rare
occurrence. Additionally, since the on-chip storage is
extremely finite, in severe situations, we eventually will
need to get out to a more formidable backing store. We
would need spontaneous synchronization to take over
the static network and attain the cooperation of other
tiles, or a non-deadlocking backup network to perform
this. [Mackenzie98]

8.3.4 More deadlock recovery problems

Most of the deadlock problems describe here have
been encountered by the Alewife machine, which used a
dynamic network for its memory system. However,
those machines have the fortunate property that they can
put large quantities of RAM next to each node. This
RAM can be accessed without using the dynamic net-
work. On Raw, we have a very tiny amount of RAM that
can be accessed without travelling through the network.
Unless we can access a large bank of memory deadlock-
free, the deadlock avoidance and detection code must
take up precious instruction SRAM space on the tile.

Ironically, a hardware deadlock avoidance mechanism
may have a lesser area cost than the equivalent software
ones.

8.3.5 Deadlock Recovery - Summary

Deadlock recovery is also an appealing solution to
handling the deadlock problem. It allows the user unre-
stricted use of the network. However, it requires the
existence of a non-deadlockable path to memory. This
can be attained by using the static network and adding
the ability to spontaneously synchronize. It can also be
realized by adding another non-deadlocked network.

8.4 DEADLOCK ANALYSIS

The issue of deadlock in the dynamic network is of
serious concern. Our previous solutions (like the NEWS
single bit interrupt network) have had serious disadvan-
tages in terms of complexity, and the size of the resident
code on every SRAM. For brevity, I have opted not to
list them here.

In this section, I propose a new solution, which I
believe offers extremely simple hardware, leverages our
existing dynamic network code base, and solves the
deadlock problem very solidly. It creates an abstraction
which can be used to solve a variety of other outstand-
ing issues with the Raw design. Since this is prelimi-
nary, the features described here are not described in the
“User’s View of Raw” section of the document.

First, let us re-examine the dynamic network mani-
festo:

The primary intention of the
dynamic network is to support memory
accesses that cannot be statically
analyzed. The dynamic network was also
intended to support other dynamic
activities, like interrupts, dynamic
I/O accesses, speculation, synchroni-
zation, and context switches.
Finally, the dynamic network was the
catch-all safety net for any dynamic
events that we may have missed out on.

Even now, the Raw group is very excited about uti-
lizing deadlock avoidance for the dynamic network. We
argue that we were not going to be supporting general-
purpose user messaging on the Raw chip, so we could
require the compiler writers and runtime system pro-
grammers to use a discipline when they use the network.
38

The problem is, the dynamic network is really the
extension mechanism of the processor. Its strength is in
its ability to support protocols that we have left out of
the hardware. We are using the dynamic network for
many protocols, all of which have very different proper-
ties. Modifying each protocol to be deadlock-free is
hard enough. The problem comes when we attempt to
run people’s systems together. We then have to prove
that the power set of the protocols is deadlock free!

Some of the more flexible deadlock avoidance
schemes allow near-arbitrary messaging to occur.
Unfortunately, these schemes often result in decreased
performance, or require large buffer space.

The deadlock recovery schemes provide us with the
most protocol flexibility. However, they require a dead-
lock-free path to outside DRAM. If this is implemented
on top of the static network, then we have to leave a
large program in SRAM just in case of deadlock.

8.5 THE RAW DEADLOCK SOLUTION

Thinking about this, I realized that the dynamic net-
work usage falls into two major groups: memory
accesses and essentially random unknown protocols.
These two groups of protocols have vastly different
properties.

My solution is to have two logically disjoint
dynamic networks. These networks could be imple-
mented as two separate networks, or they could be
implemented as two logical networks sharing the same
physical wires. In the latter case, one of the networks
would be deemed the memory network and would
always have priority.

The memory network would implement the Matt
Frank deadlock avoidance protocol. The off-chip mem-
ory accesses will easily fit inside this framework. In this
case, the processors are the “clients” and the DRAMS,
hanging off the south side of the chip, are the “servers.”
Interrupts will be disabled during outstanding accesses.
Since the network is deadlock free, and guaranteed to
make forward progress, this is not a problem. This also
means that we can dangle messages into the network
without worry, improving memory system performance.
This network will enforce a round-robin priority scheme
to make sure that no tile gets starved. This network can
also be used for other purposes that involve communica-
tion with remote devices and meet the requirements. For
instance, this mechanism can be used to notify the tiles
of external interrupts. Since the network cannot dead-
lock, we know that we will have a relatively fast inter-
rupt response time. (Interrupts would be implemented as

an extra bit in the message header, and would be
dequeued immediately upon arrival. This guarantees
that they will not violate the deadlock avoidance proto-
col.)

Note: We are no longer using the Matt Frank
deadlock avoidance protocol for Raw. Instead we use
the “Buffer Metering” protocol, which is described
in the “Memory Network Redux” Section. This pro-
tocol relaxes the directionality constraints on mem-
ory network usage.

The more general user protocols will use the low-
priority dynamic network, which would have a commit
buffer [mbt: general network no longer has a commit
buffer], and will have the $cgno/$cgni that we described
previously. They will use a deadlock recovery algo-
rithm, with a watchdog deadlock detection timer.
Should they deadlock, they can use the memory network
to access off-chip DRAM. In fact, they can store all of
the deadlock code in the DRAM, rather than in expen-
sive SRAM. Incidentally, the DRAMs can be used to
implement spontaneous synchronization.

One of the nice properties that comes with having
the separate deadlock-avoidance network is that user
codes do not have to worry about having a cache miss in
the middle of sending a message. This would otherwise
require loading and unloading the message queue. Addi-
tionally, since interrupt notifications come on the mem-
ory network, the user will not have to process them
when they appear on the input queue.

8.6 THE HIGH-PRIORITY DYNAMIC NETWORK

Since the low-priority dynamic network corre-
sponds exactly to the dynamic network described in the
previous dynamic network section, it does not merit fur-
ther discussion.

The use of the high-priority network needs some
elaboration, especially with respect to the deadlock
avoidance protocol.

The diagram “High-Priority Memory Network Pro-
tocol” helps illustrate. This picture shows a Raw chip
with many tiles, connected to a number of devices
(DRAM, Firewire, etc.) The protocol here uses only one
logical dynamic network, but partitions it into two dis-
joint networks. To avoid deadlock, we restrict the selec-
tion of external devices that a given tile can
communicate with. For complete connectivity, we could
implement another logical network. The rule for con-
nectivity is:
39

Each tile is not allowed to communicate with a
device which is NORTH or WEST of it. This guarantees
that all requests travel on the SOUTH and EAST links,
and all replies travel on the NORTH and WEST links.

Although this is restrictive, it retains four nice prop-
erties. First, it provides high bandwidth in the common
case, where the tile is merely communicating with its
partner DRAM. The tile’s partner DRAM is a DRAM
that has been paired with the tile to allocate the network
and DRAM bandwidth as effectively as possible. Most
of the tile’s data and instructions are placed on the tile’s
partner DRAM.

The second property, the memory maintainer prop-
erty, is that the northwest tile can access all of the
DRAMs. This will be extremely useful because the non-
parallelizeable operating system code can run on that
tile and operate on all of the other tile’s memory spaces.
Note that with strictly dimensioned-ordered routing, the
memory maintainer cannot actually access all of the
devices on the right side of the chip. This problem will
be discussed in the “I/O Addressing” section.

The third property, the memory dropbox property, is
that the southeast DRAM is accessible by all of the tiles.
This means that non performance-critical synchroniza-

tion and communication can be done through a common
memory space. (We would not want to do this in perfor-
mance critical regions of the program, because of the
limited bandwidth to a single network port.)

These last two properties are not fundamental to the
operation of a Raw processor; however they make writ-
ing setup and synchronization code a lot easier.

Finally, the fourth nice property is that the system
scales down. Since all of the tiles can access the south-
east-most DRAMs, we can build a single DRAM system
by placing the DRAM on the southeast tile.

We also can conveniently place the interrupt notifi-
cation on one of the southeast links. This black box will
send a message to a tile informing it that an interrupt has
occurred. The tile can then communicate with the
device, possibly but not necessarily in a memory-
mapped fashion. Additionally, DMA ports can be cre-
ated. A device would be hooked up to these ports, and
would stream data through the dynamic network into the
DRAMs, and vice versa. Logically, the DMA port is just
like a client tile. I do not expect that we will be imple-
menting this feature in the prototype.

Finally, this configuration does not require that the
devices have their own dynamic switches. They will

 Memory Network Protocol

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Requests

Replies

DRAM

DRAM

DRAM

DRAM

Device

Interrupts

Dynamic

DMA port

DMA port
40

merely inject their messages onto the pins, with the cor-
rect headers, and the routes will happen appropriately.
This means that the edges of the network are not strictly
wormhole routed. However, in terms of the wormhole
routing, these I/O pins look more like another connec-
tion to the processor than an actually link to the net-
work. Furthermore, the logical network remains
partitioned because requests are on the outbound links
and the replies are inbound.

8.7 PROBLEMS WITH I/O ADDRESSING

One of the issues with adding I/O devices to the
periphery of the dynamic network is the issue of
addressing. When the user sends a message, they first
inject the destination tile number (the “absolute
address”), which is converted into a relative X and Y
distance. When we add I/O devices to the periphery, we
suddenly need to include them in the absolute name
space.

However, with the addition of the I/O nodes, the X
and Y dimensions of the network are no longer powers
of two. This means that it will be costly to convert from
an absolute address to a relative X and Y distance when
the message is sent.

Additionally, if we place devices on the left or top
of the chip, the absolute addresses of the tiles will no
longer start at 0. If we place devices on the left or right,
the tile numbers will no longer be consecutive. For pro-
grams whose tiles use the dynamic network to commu-
nicate, this makes mapping a hash key to a tile costly.

Finally, I/O addressing has a problem because of
dimension ordered routing. Because dimension ordered
routing routes X, then Y, devices on the left and the right
of the chip can only be accessed by tiles that are on the
same row, unless there is an extra row of network that
links all of the devices together.

8.8 THE FUNNY BITS

All of these problems could be solved by only plac-
ing devices on the bottom of the chip.

However, the “funny bits” solution which I propose
allows us full flexibility in the placement of I/O devices,
and gives us a unique name space.

The “funny bit” concept is simple. An absolute
address still has a tile number. However, the three high-
est order bits of the address, previously unused, are
reserved for the funny bits. These bits are preserved

upon translation of the absolute address to relative
address. These funny bits specify a final route that
should be done after all dimensioned ordered routing
has occurred. These funny bits can only be used to route
off the side of the chip. It is a programmer error to use
the funny bits in a send to a tile.

With this mechanism, the I/O devices no longer
need to be mapped into the absolute address space. To
route to an I/O device, one merely specifies the address
of the tile that the I/O device is attached to, and sets the
bit corresponding to the direction that the device is
located at relative to the tile.

The funny bits mechanism is deadlock free because
once again, it acts more like another processor attached
to the dynamic network than a link on the network. A
more rigorous proof will follow in subsequent theses.

An alternative to the funny bits solution is to pro-
vide the user with the ability to send messages with rela-
tive addresses, and to add extra network columns to the
edge of the tile. This solution was used by the Alewife
project [Kubiatowicz98]. Although the first half of this
alternative seemed palatable, the idea of adding extra
hardware (and violating the replicated uniform nature of
the raw chip) was not.

8.9 SUMMARY

In this section, I discussed a number of ways in
which the Raw chip could deadlock. I introduced two
solutions, deadlock avoidance and deadlock recovery,
which can be used to solve this problem.

I continued by re-examining the requirements of the
dynamic network for Raw. I showed that a pair of logi-
cal dynamic networks was an elegant solution for Raw’s
dynamic needs.

The high-priority network uses a deadlock-avoid-
ance scheme that I labelled the “Matt Frank protocol.”
Any users of this network must obey this protocol to
ensure deadlock-free behaviour. This network is used
for memory, interrupt, I/O, DMA and other communica-
tions that go off-chip.

The high-priority network is particularly elegant for
memory accesses because, with minimal resources, it
provides four properties: First, the memory system
scales down. Second, the high-priority network supports
partner memories, which means that each tile is
assigned to a particular DRAM. By doing the assign-
ments intelligently, the compiler can divide the band-
41

width of the high-priority network evenly among the
tiles. Third, this system allows the existence of a mem-
ory dropbox, a DRAM which all of the tiles can access
directly. Lastly, it allows the existence of a memory
maintainer; which means at least one tile can access all
of the memories.

The low-priority network uses deadlock recovery
and has maximum protocol flexibility and places few
restrictions on the user. The deadlock recovery mecha-
nism makes use of the high-priority network to gain
access to copious amounts of memory (external
DRAM). This memory can be used to store both the
instructions and the data of the deadlock recovery mech-
anism, so that precious on-chip SRAM does not need to
be reserved for rare deadlock events.

This deadlock solution is effective because it pre-
vents deadlock and provides good performance with lit-
tle implementation cost. Additionally, it provides an
abstraction layer on the usage of the dynamic network
that allows us to ignore the interactions of the various
clients of the dynamic network.

Finally, I introduced the concept of “funny bits”
which provides us with some advantages in tile address-
ing. It also allows all of the tiles to access the I/O
devices without adding extra network columns.

With an effective solution to the deadlock problem,
we can breath easier.
42

9 Implementation of
the DYNAMIC NET-
WORKS
9.0 INTRODUCTION

This chapter serves as a specification for the
dynamic networks. To read more about the motivation
of the current dynamic networks, please refer to “The
Design and Implementation of a Raw Architecture
Workstation.”

9.1 A TALE OF TWO DYNAMIC NETWORKS

The Raw chip has two logical dynamic networks
(DNs), connecting the raw tiles in a two-dimensional
point-to-point mesh topology.

The general dynamic network (GDN) is sup-
ported by a deadlock recovery mechanism which allows
us to employ a diverse collection of protocols without
having to prove deadlock properties about them.

The memory dynamic network (MDN) is
restricted to protocols which follow a specific deadlock
avoidance pattern, the Matt Frank protocol. These pro-
tocols all communicate with the periphery of the chip.
Interrupt, DRAM and device messages consitute the pri-
mary traffic for this network.

9.2 THE DYNAMIC NETWORK HARDWARE

In this section, we will discuss the various compo-
nents of the dynamic network. We will discuss the
wires, the routers, and the processor interface to the net-
work.

9.2.1 The Dynamic Network Hardware

The two DNs have separate routers and input buff-
ers, and separate physical data wires. They are essen-
tially two copies of the exact same hardware.

Since the DNs use the SIB protocol, the inter-tile
wiring of the static networks and the DNs is identical.
The diagram “The Dynamic Network Wires” shows the
signals that run between dynamic routers on separate
tiles.

9.2.1.1 Alternative: Multiplexing the Wires

 Since we do not anticipate heavy traffic on both
networks simultaneously, we could multiplex the physi-
cal data wires that connect the two logical networks.
The multiplexing of the data wires would be performed
transparently without user intervention. Although, the
high-priority network is labelled “high-priority,” the
physical wires would be round-robin shared. Thus, from
the perspective of the hardware, the networks have
equal priority.

The round-robin sharing would work as follows:
If neither network has a data word to send, nothing

occurs. If one network has a data word to send, it sends
it. If both networks have a data word to send, the net-
work which sent the last data word will stall a cycle and
allow the other network to procede.

Although we suspect that this configuration will
offer good performance even in the event of heavy load,
it remains to be proven.

 However, multiplexing the dynamic networks adds
an extra mux on the tile-to-tile path. This would make
the tile-to-tile delay greater on the dynamic network
than on the static network, a property we would like to
avoid. For the time being we will assume that the
dynamic networks are not multiplexed.

9.2.2 The Dynamic Network Router

The dynamic network is a dimension-ordered,
wormhole routed flow-controlled network [Dally86].
The router routes in the X direction, then in the Y direc-

The Dynamic Network Wires

DataOut [31:0]

ValidOut

DataIn [31:0]

ValidIn

YummyIn

YummyOut

Dynamic
Router
43

tion. We implemented the protocol on top of the SIB
protocol that was used for the static network. The figure
entitled “The Dynamic Network Router” illustrates this.
The dynamic network router is identical to the static net-
work router, except it has a dynamic scheduler instead
of the actual switch processor.

9.2.2.1 Dynamic Network Message Format

Each dynamic network message that travels
through the network has a header, followed by the mes-
sage data.

This header is described in the figure “Dynamic
Message Header.” The header contains a route encoded
by an absolute X position and an absolute Y position, a
length and F, the funny bits. The middle fourteen bits
(non-bold font) are ignored by the dynamic routers. The
absX and absY positions encode the position on the
Raw mesh that the message is destined for. Each tile has
a SPR which indicates the tile’s x and y position, which

is used to determine if a message has arrived or not. The
length field details the number of words in the message,
not counting the header. The final route (F) field
encodes specifies the direction of the final route to be
performed after all X-Y routing is performed. The
header restricts the maximum size of a raw array to a
32x32 array, and restricts message transfer sizes to 31
words, not including the header. The header word is
dropped upon delivery to the destination tile, so the
recipient of the message never sees it. However, when
the message is routed off the sides of the pins, the
header is retained, and is visible to outside devices.
Thus the settings of the “usr” and “origY/origX” fields
are completely irrelevant to a receiving tiles.

9.2.3 Dynamic Scheduler

The dynamic sheduler examines the headers of
incoming message. If the X position is not equal, then it
initializes a state machine which will transfer one word
per cycle of the header and message out of the west or
east port, based on the sign of the difference between the
tile’s position and the message’s destination.

 If the X position is equal, and the Y position is not
equal, the message is sent out of the south or north ports.
If both X and Y are equal, then the final route bits
encode the final route to be performed. The final route

and top bits fields are never cleared as the message is
passed along.

It is invalid to specify a final route which does not
go off of the side of the chip. In fact, with a naive imple-
mentation, a final route which does not go off the side of
the chip will actually end up be infinitely routed back
and forth inside the network. We may want to modify
the switches slightly so that messages that come from
the same direction as we are to route to are squashed.
This would involve supressing the “valid out” signal on
a send, and updating the “spaceAvail” counter appropri-
ately.

 Because multiple input messages can contend for
the same output port, there needs to be a priority
scheme. We use a simple clock-wise round robin sched-
uler to select between contenders. This means that an
aggressive producer of data will not be able to block

...

Dynamic Scheduler

The Dynamic Network Router

Control

Out

XBar

SIBs

Dynamic Message Header

abs Y abs XF length

3

31 29 28 24 10 9 5 4 0

5 55 104

origY origXusr

Table 3: Final Route Field

0 1 2 3 4 5 6 7

none inv W S E N inv inv
44

other users of the network from getting their messages
through.

Because the scheduler must parse the message
header, and then modify it to forward it along, the origi-
nal design took two cycles for the header to pass
through the network. Each word after that would only
take one cycle. We have arrived at slightly different
solution which allows through-routes to occur in a sin-
gle cycle latency, but turns occur with two cycle latency.
This design appears to have good critical path properties
and gives us reasonable performance, especially, on
large Raw mesh configurations.

9.2.4 Dynamic Network Interfaces

The two networks appear very similar from the pro-
grammer’s perspective. However, the semantics of each
network are slightly different. In this section, we
describe the common interface, and then describe the
particulars for each network.

9.2.4.1 The Common Network Interface

The dynamic network ports appear to the user as
$CGNI and $CGNO (for the general network) and
$CMNI and $CMNO (for the memory network).

In either case, the user sends a message by writing a
message header into the network, followed by the data-
words. The message header was described in the section
“Dynamic Network Message Format.”

The user can use the “IHDR” instruction to con-
struct a message header. (Typically, the target for the
IHDR instruction will be the $cgno port.) Since there is
nothing magical about the “IHDR” instruction, the user
could also use choose to construct his/her own header,
or even store commonly used headers in memory.

low N bits of R3 = tile number

IHDR $cgno, 0x400($3)

The IHDR instruction converts the low N bits to a
location on the mesh, filling in the appropriate X and Y
destination. The top 12 bits of the imm field are blindly
copied into the top 12 bits of the header. The origin of
the message is inserted, mostly for debugging reasons.
We do not anticipate that F or usr fields will be set to
anything except zero. The IHDR instruction is used for
applications which use low-order interleaving type com-
munication, within the array of tiles.

The DN_XPOS, DN_YPOS, GDN_XMASK,
GDN_YMASK, GDN_XADJ, GDN_YADJ, and
GDN_YSHIFT values are located in a special purpose
register. These provide the relevant data required to
translate from an address to a position within the pro-
cess’s virtual configuration (say 4x4) to an absolute
address on the mesh (which could be say 32x32.)

Alternatively, the OHDR instruction specifies a dif-
ferent sort of translation, (used by the hardware caching
mechanism), which is intended for memory and device
accesses external to the tile.

The DRAMs are mapped into a common 32bit
address space, which is doled out according to the
dimensionality of the Raw processor. A 4x4 Raw chip
has 8 ports each of which own 512 MB of the address
space, while a 32x32 chip has 64 ports, each of which
own 64 MB of DRAM. It is possible to use some skanky
tricks to increase the amount of addressible memory, but
I think that a commercial Raw implementation would
use a 64 bit dataword anyways, making the address
space issue a moot point. The job of the OHDR instruc-
tion is to take an address and generate the correct header
which will transport data to the port that that address has
been assigned to.

IHDR Header Construction

4

IHDR result, R3, 0x0400

(R3[4:0]

((R3[11:0] >> GDN_YSHIFT[2:0])

Imm [15:4]

abs Y abs XF length

3

31 29 28 24 10 9 5 4 0

5 55

15 14

55

1920

DN_XPOS

DN_YPOS

 & GDN_YMASK[4:0]) + GDN_YADJ[4:0]

 & GDN_XMASK[4:0]) + GDN_XADJ[4:0]
45

The OHDR instruction uses R3 to fill in the F, X,
and Y fields. The origX and origY fields are also
updated with the DN_XPOS and DN_YPOS values.
This constitutes a return tile address for the instruction.
The bits 12..4 of the immediate are copied into bits
28..20 of the result. This immediate thus specifies the
length of the message for the DN, as well as an optional
request type. This somewhat convoluted mechanism
allows the user to convey much of the standard informa-
tion (destination, source, request type, and length) with
a single instruction. This saves network latency and
bandwidth. Note that the X dimension and Y dimension
of the tile array do not have to be the same.

The MDN_EXTEND bit is a later-arriving feature
which modifies the behaviour of the OHDR instruction,
mapping addresses on all four sides of the chip, instead
of just on two. This requires a modification in the dead-
lock avoidance protocols of the machine, but enables the
tiles to use a greater proportion of the pin bandwidth for
memory traffic.

0x0*
0x2*
0x4*
0x6*

0x
C

*

0x
8*

0x
E

*

0x
A

*

0x00xx_xxxx
0x08xx_xxxx
0x10xx_xxxx
0x18xx_xxxx
0x20xx_xxxx
0x28xx_xxxx
0x30xx_xxxx
0x38xx_xxxx
0x40xx_xxxx
0x48xx_xxxx
0x50xx_xxxx
0x58xx_xxxx
0x60xx_xxxx
0x68xx_xxxx
0x70xx_xxxx
0x78xx_xxxx

0x
80

xx
_x

xx
x

0x
88

xx
_x

xx
x

0x
90

xx
_x

xx
x

0x
98

xx
_x

xx
x

0x
A

0x
x_

xx
xx

0x
A

8x
x_

xx
xx

0x
B

0x
x_

xx
xx

0x
B

8x
x_

xx
xx

0x
C

0x
x_

xx
xx

0x
C

8x
x_

xx
xx

0x
D

0x
x_

xx
xx

0x
D

8x
x_

xx
xx

0x
E

0x
x_

xx
xx

0x
E

8x
x_

xx
xx

0x
F0

xx
_x

xx
x

0x
F8

xx
_x

xx
x

0x0*
0x1*
0x2*
0x3*
0x4*
0x5*
0x6*
0x7*

0x
8*

0x
9*

0x
A

*
0x

B
*

0x
C

*
0x

D
*

0x
E

*
0x

F*

Address Ranges Assigned to Ports,

(for 4x4, 8x8 MDN_EXTEND = 1, 8x8,

0x0*
0x1*
0x2*
0x3*

0x
A

*

0x
8*

0x
B

*

0x
9*

0x4*
0x5*
0x6*
0x7*

0x
E

*

0x
C

*

0x
F

*

0x
D

*

0x08*
0x10*
0x18*
0x20*
0x28*
0x30*
0x38*

0x00*

0x
80

*
0x

88
*

0x
90

*
0x

98
*

0x
A

0*
0x

A
8*

0x
B

0*
0x

B
8*

0x48*
0x50*
0x58*
0x60*
0x68*
0x70*
0x78*

0x40*

0x
C

0*
0x

C
8*

0x
D

0*
0x

D
8*

0x
E

0*
0x

E
8*

0x
F

0*
0x

F
8*

 4x4 MDN_EXTEND = 1, 8x4, and 16x16 Raw)

0x2*
0x4*
0x6*

0x0*

0x
8*

0x
9*

0x
A

*
0x

B
*

0x
C

*
0x

D
*

0x
E

*
0x

F
*

OHDR Header Construction

OHDR $cmno, 0x1FF0($3)

switch (R3[31])

0: ABS_X = side ? 0 : MDN_XMAX;
 FBITS = side ? west : east;
 ABS_Y = (bits >> MDN_YSHIFT)

 ABS_Y = side ? 0 : MDN_YMAX;
 FBITS = side ? north : south;
 ABS_X = (bits >> MDN_XSHIFT)

1:

(5 >= MDN_xSHIFT >= 0)

4

Imm [12:4]

abs Y abs XF length

3

31 29 28 24 10 9 5 4 0

5 55

15 14

55

1920

DN_XPOS

DN_YPOS

3 --> 4x4
2 --> 8x8
1 --> 16x16
0 --> 32x32

side = R3[30] & MDN_EXTEND;
bits = MDN_EXTEND ?
 R3[29..25] : R3[30..26]

4 --> 2x2

5 --> 1x1
46

9.2.4.2 Memory Network Interface

When a word is written into the MDN, the value
goes directly out to the MDN switch for interpretation.
This offers the greatest performance. However, it means
that it is the programmers’ responsibility to ensure the
atomicity of the message send. For the most part, this
means that interrupts should be masked during an out-
standing transaction. It also means that users of the
MDN must gaurantee that no cache miss occurs during
MDN accesses. More detail is given on this subject in
elsewhere in this document.

During a hardware cache miss, the pipeline is fro-
zen, so interrupts are implicitly masked.

9.2.4.3 Memory Interrupts

External devices can signal interrupts to user tiles
using the Memory network. The interrupt controller
must be positioned on the SE-most tile so that it can
communicate with all of the tiles, and maintain our com-
munication discipline. In order to avoid deadlock, each
tile’s dynamic network hardware must be prepared to
remove interrupt messages at all times. This will occur
transparent to the user. However, the corresponding
“External Interrupt” bit will be set in the appropriate
user-accessible field.

This interrupt notification will be used by both the
O/S and devices to communicate with tiles in a asyn-
chronous, dead-lock free method.

The interrupt controller will be implemented on an
FPGA and will interact with the devices and the tile in
an appropriate manner. Only one outstanding interrupt
per tile will be allowed. Once the tile branches to its
handler, it will acknowledge the interrupt controller
(which will give it an interrupt number or a vector to
jump to) and further external interrupts may occur.

An interrupt message will be defined as messages
whose length field is set to zero and whose user field is
set to 1111. Interrupt messages only make sense inside
the tile. There is no fixed interpretation of interrupt mes-
sages outside of the chip.

9.2.4.4 General Network Interface

This section is deprecated. The GDN interface is
identical to the MDN interface. Ignore the following
two paragraphs:

“Because the general network can deadlock, a more
rigorous mechanism must be put in place than for the
MDN. We call this device a commit buffer. When the
user writes to $cgno, the value is queued up in the com-
mit buffer. When the last word is written (the message
length is encoded by the header word), the commit
buffer commences the streaming of data into the GDN.
A write to $cgno during the time between which the last
word is written to the commit buffer and the time at
which the last word leaves the commit buffer will cause
the processor to stall.

In the event of an interrupt or context switch, it may
be necessary to drain uncommited elements from the
commit buffer. There is a SPR which shows how many
elements are left in the buffer, and another register
which a read from will cause the youngest message
word to be dequeued. The programmer can check the
element count register, and then read the other values
out, including the header word. “

9.2.4.5 General Network - Deadlock Recovery

The general network has a watchdog timer which is
incremented every cycle that data is available on the
general network but the network port is not read. If data
is read, or nothing is available, the counter will be reset
to zero. If this counter reaches the watchdog value, an
interrupt will be caused. The interrupt handler will pull
words out of the network and store them locally (which
may possibly go out to DRAM). It will then set a flag,
and the DRVAL register, which will enable virtualiza-
tion of the network.

Interrupting Message Header

4

abs Y abs XF

3

31 29 28 24 10 9 5 4 0

5 55

15 14

55

1920

111100000
Table 4: User Fields, MDN

Value meaning

0000 Cache-line Read (Addr)

0001 DMA Read - North

0010 DMA Read - West

0011

0100 Cache-line Write (Addr, 8 Words)

0101 Escape (next word is command)
47

9.3 SUMMARY

The dynamic network design leveraged many of the
same underlying hardware components as the static
switch design. Its performance is not quite as good as
the static network’s because the route directions are not
known a priori. A great deal more was said in the dead-
lock section of this document.

0110 User defined

0111 DMA Write (Address, Mask, 8 Words)

1000 DMA tagged Read Reply (multi session)

1001 User defined

1010 User defined

1011 User defined

1100 User defined

1101 MDN Relay

1110 System Monitor Service (external)
Store Acknowledgement (internal to chip)
(The Store_Ack message type looks at the
sender field to determine if the “Partner” or
“Non-partner” counter should be decre-
mented.)

1111 reserved

Table 4: User Fields, MDN

Value meaning
48

10 Memory Network Redux

10.0 INTRODUCTION

The original deadlock avoidance discipline for the
memory network created restrictions on the directional-
ity of network requests and replies. Essentially, tiles
could only send requests to the east and south. This
guaranteed that requests and replies never conflicted,
and thus that the I/O devices could always make for-
ward progress. Unfortunately, this strategy restricts the
flexibility of DRAM (only half of the I/O ports could be
used for DRAM) and device placement on the chip and
makes communication with the devices on the left and
top side of the chip particularly cumbersome. Addition-
ally, it means that tiles are inherently unequal and non-
uniform; the upper-left hand tile has far superior powers
than the lower right-hand tile. This complicates the pro-
gramming module and reduces the Raw processor’s
applicability as a computing fabric.

Additionally, the original deadlock avoidance
scheme relies on the flow-control within the mesh net-
work to prevent deadlock. In other words, if one device
is running behind, its input will back up into the net-
work, causing unrelated I/O transactions to block as
well. Conventional thought predicts that dynamic net-
works tend to break down as congestion approaches
%30. It is preferable that the I/O port have enough buff-
ering to sink unprocessed requests so that it will not
have a more global effect on performance.

Finally, even in the case that all of the tiles are tar-
getting the same I/O port, and they would need to wait
anyways, the local round-robin policy of the routers
does not translate into a globally fair policy. This is the
so called “Parking Lot” pathology. Imagine four tiles on
a row all repeatedly transmitting to a DRAM on the east
side of the chip on that same row. The tile closest to the
DRAM will get %50 of the bandwidth (because the
bandwidth will be equally shared between a tile’s com-
pute processor and all of the tiles west of it) , the next
tile will get %25, and the last two %12.5. On the other
hand, if the port can sink the messages and keep the net-
work clear, the tiles will get a near-equal alotment of the
bandwidth.

10.1 Buffer Metering

The “buffering metering” protocol is summarized
with the following rules:

1. Each network node is not allowed to block on a
memory network send unless it can guarantee that its
input buffers can sink all of memory network messages
that it may be receiving.

The data caches trivially obey this protocol; $cmno
has 16 elements of buffering. The worst possible case
occurs when a read request (2 words) followed by an
evict message (10 words) is sent. If the last word of the
read request has escaped the buffer, it is gauranteed that
the buffer has 16 elements of buffering to receive the 12
elements of the evict message. So the processor will not
be blocked when the read request response arrives, and
thus it will always be able to sink all of the memory net-
work words it is receiving.

The I/O nodes have a more complex analysis. Each
I/O node can receive requests from every tile. Because it
pulls values off of the network, and then places
responses back onto the network, it is possible that it
may block on output due to other traffic in the network.
In that case, it needs to gaurantee that it can continue to
pull off any words that are coming on the network. If no
disciplines were imposed, the tiles would have the
potential to stream an infinite amount of data into the I/
O node and cause it to deadlock.

The solution that we employ allocates enough
RAM at the I/O node to sink a finite number (>=1) of
messages from each tile. Nominally, each tile is allo-
cated 12 words of space on the input buffer. This
amounts to 12 N words of buffer space for every I/O
port. Additionally, each tile is allocated an additional
quantity of buffers on one I/O ports that is typically (but
doesn’t strictly have to be) directly N,E,W or S of it.
This allows for high bandwidth transfers between the
tile and its “partner” port. Finally, there is a pool of
free buffers, maintained by the OS, which can be allo-
cated to I/O devices or software running on the tiles.

The existance of partner ports derives from two
important factors: first, a desire to partition memory
requests from tiles in order to load balance the ports.
The stacks and other local data structures of the tiles can
be assigned by the runtime system to the partner DRAM
of a tile. Secondly, the FBITs protocol degenerates to
some degree on I/O port that are not in a direct line with
the originating tiles -- because of dimension-ordered
routes, they end up flattening (see figure “Fbits Related
Flattening”) to the links on the edges of the chips for
either the request or the reply side of the transaction.
Note that the two straight routes do not observe any
flattening. Alternative, non-dimension-order routing
protocols could also be used to alleviate the flattening
problem.
49

We supplement the cache with a counter (the “store
counter”) that counts the number of outstanding stores.
When a store request is issued, it is decremented. When
a store request reply is received, it is incremented.
Should the counter value be zero at the time of a cache

transaction, the cache state machine will stall until it
receives the message. The store counter is actually
implemented as two counters that disinguish between
the partner port, and the non-partner port. Because of
timing issues, the cache state machine actually will stall
if either of the counters is zero.

The software can also access the I/O ports and must
maintain the discipline as well. The software can query
the operating system for additional buffers on a particu-
lar I/O port, and ensure that it does not excede the maxi-
mum number of words in flight at any time.

Alternatively it can carefully interact with the store
counter and borrow accesses from the hardware (more
complex). It issues this by issuing an mtsri/mtsr instruc-
tion to STORE_ACK with the DECREMENT_MODE
set. It also needs to check the appropriate store counter
and make sure that it is non-zero. Alternatively, the
software can maintain the counter separately, use non-
acking stores from the DRAMS, and use pings to ensure
that data has arrived.

The buffer metering scheme is somewhat of an
experiment. It is likely that for larger or commercial
Raw arrays, separate request-reply networks combined
with an ample but moderate amount of buffering at the I/
O ports will lower the minimum IQ required for pro-
gramming Raw!

FBits Related Flattening

0x0*
0x1*
0x2*
0x3*

0x
A

*

0x
8*

0x
B

*

0x
9*

0x4*
0x5*
0x6*
0x7*

0x
E

*

0x
C

*

0x
F

*

0x
D

*

Example of a good full-bandwith Raw
memory allocation.partner
50

11 INTERRUPTS
11.0 Types of interrupts supported

There are two classes of interrupts that we support,
synronous and asynchronous.

The asynchronous interrupts have some degree of
flexibility in when they can issue relative to when the
processor knows that the interrupting condition exists.
There are three asynchronous interrupts supported: the
external interrupt, the general network availability inter-
rupt, and the timer interrupt.

The synchronous interrupts, on the other hand, must
be initiated at certain place in the code stream. Deferring
these interrupts can be disastrous. There are three syn-
chronous interrupts supported; the GDN_COMPLETE
(“message finished”) interrupt, the GDN_REFILL
(“dynamic refill”) interrupt, and the TRACE interrupt.

11.0.1 Two Interrupt Levels

The TIMER and EXTERNAL interrupts need to be
operational even in the middle of a GDN_AVAIL inter-
rupt. This means that we need to be able to take inter-
rupts with a interrupt handler. We could achieve this by
requiring the GDN_AVAIL handler to mask the appro-
priate bits and return to non-interrupt mode. However,
doing so requires that the user save registers, and per-
form a number of operations which increases the mes-
sage response latency and occupancy.

Instead, we have two interrupt types, “SYSTEM”
and “USER”, which use different sets of SPRs to save
off the PC. The “USER” interrupt does not disable SYS-
TEM interrupts from happening. However, the SYS-
TEM interrupts do disable the “USER” interrupt. The
GDN_AVAIL interrupt is the only interrupt which oper-
ates at the USER level.

11.1 Priority of the Interrupts

0. GDN_REFILL (highest)
1. GDN_COMPLETE
2. TRACE
3. EXTERNAL
4. TIMER
5. GDN_AVAIL
6. EVENT_COUNTER (lowest)

11.2 Interrupt Procedure

First Cycle:

An interrupt occurs if the following value is non-
zero (a find last one operation is executed on this value
to find the highest priority interrupt):

(EX_MASK & EX_BITS[5:0]) &
(EX_BITS[USER] 1 1 1 1 1)
& (EX_BITS[SYSTEM] replicated 6 times)

The interrupt is converted to a vector by shifting.
This address is fed to the fetch unit (so it can be fetched
on the next cycle.) Meanwhile, the processor decode
stage stalls. If the interrupt is [0..4], it is a system inter-
rupt, EX_PC is saved, and EX_BITS[SYSTEM] is set
to 0. If the interrupt is the GDN_AVAIL interrupt (i.e. a
USER interrupt), EX_UPC is saved, and
EX_BITS[USER] is set to 0 (system interrupts can still
occur).

Second cycle:

The decode stage stalls again. The first instruction
is being fetched. The address of the next instruction at
(VEC+4) is setup for the IMEM.

Third cycle:

The first instruction of the handler is now being
executed in the decode stage.

If a instruction memory store or load instruction
is present in the pipeline, the interrupt procedure
must be stalled appropriately. The instruction mem-
ory operation has priority.

Nth Cycle:

When a system handler is done, it will execute an
ERET. This will restart the processor at address EX_PC
and sets EX_BITS[SYSTEM] to 1.

 When a user handler is done, it will execute DRET,
which returns to EX_UPC, and sets EX_BITS[USER]
to 1.

11.3 Synchronous Interrupts

In order to get the behaviour of synchronous inter-
rupts correct, it is important the interrupts be enabled on
51

the cycle immediately following the DRET. If somehow
two synchronous interrupts occur on the same cycle, the
highest priority interrupt will be serviced, will return,
and immediately the next highest priority interrupt
should be serviced before any instructions are executed.
If interrupts are not immediately enabled. then an
instruction may slip in in-between the interrupts, prov-
ing disastrous.

Synchronous interrupts must be blocked by the
SYSTEM interrupt mask because more than one of
them may trigger at the same time. Furthermore, they
must disable interrupts upon activation for the same rea-
son.

11.3.1 GDN Refill Interrupt

The GDN refill interrupt is enabled by setting the
GDN_REFILL bit in the EX_MASK register.

When a read to cgni occurs in the decode stage, it
will be substituted with the value in the GDN_RF_VAL
register. If the instruction does not stall, the
GDN_REFILL bit of the EX_BITS register will be
asserted for the next cycle.

Since the synchronous interrupts have priority over
the asynchronous resets, this interrupt is gauranteed to
occur on the next cycle (since the GDN_REFILL bit is
presumably enabled.) This is the way it must be, the
next instruction might read $cgni and thus will have
need of the refill services.

The firing of the GDN_REFILL interrupt will reset
the GDN_REFILL bit of the EX_BITS register.

11.3.2 GDN Complete Interrupt

When the OS wants to context switch, it needs to
ensure that the user finishes any incomplete messages
on the GDN network. It does this by checking the
GDN_PENDING field of the GDN_BUF SPR. This
register reports how many words are required to com-
plete the current message. The OS should make sure to
read this register at least 5 or 6 instructions after the last
write to $CGNO, since it will not be up-to-date until the
results leave the pipeline and enter the $CGNO buffer.

(A special IB_WATCHER watches the values
heading to CGNO from the processor pipeline. It keeps
track of each message that the processor issues, main-
taining a count of how many words are left to go. This

value is reflected in the so-called PENDING field of the
GDN_BUF SPR.)

To enable the GDN_COMPLETE interrupt, the OS
sets the GDN_REMAIN SPR to the value of the PEND-
ING field of the GDN_BUF SPR. The OS also enables
the GDN_COMPLETE bit of the EX_MASK.
GDN_REMAIN decrements each time an instruction
issues which writes to CGNO.

When the GDN_REMAIN counter reaches zero,
and the GDN_COMPLETE bit of EX_MASK is set, the
GDN_COMPLETE bit of the EX_BITS is set, meaning
that the message is complete. An interrupt will occur
before the next instruction is issued.

* Note that a direct set of the GDN_REMAIN
counter has a refractory period of up to one cycle; i.e., it
will not be decremented if a instruction that writes to
CGNO is placed in the cycle immediately after the
MTSR to GDN_REMAIN. *

In the likely case, the operating system will also set
the watchdog timer and give the user some reasonable
amount of time to complete the send. If the user fails to
do so, the operating system will fill write in data ele-
ments until the message has been completed, and then
kill the process.

It is important to get the timing right of this inter-
rupt, so that interrupt is asserted before the user can
issue another send back-to-back with the last one.

11.3.3 Trace Interrupt

The trace interrupt is used for debugging support of
the Raw processor. There are both TRACE bits in both
the EX_BIT and the EX_MASK SPRs. When the pro-
cessor wants to single step, it will (with interrupts off)
set the EX_MASK trace interrupt bit and perform the
ERET operation. The processor will execute exactly one
instruction at user level, at which point the EX_BIT bit
will be set to one, enabling an interrupt. Although other
synchronous interrupts may fire before this one, the
trace interrupt will fire before the second instruction has
executed in user mode.

The EX_BIT bit is reset automatically when the
processor vectors to the TRACE handler.

The TRACE bit is enabled in the EX_BIT (and
remains enabled until the interrupt fires) when:
52

((!stalled last cycle & EX_BITS[SYSTEM]
 & EX_MASK[TRACE]))

The trace EX_BIT can be cleared by the OS (for
instance, for a context switch) by ERET to a nop
instruction. The trace bit EX_BIT can be set (for
instance, to context switch back to a program) in a sub-
tle way by the OS through the GDN_COMPLETE inter-
rupt mechanism. However, since the trace operation is
an OS facility, it is not expected that this would be nec-
essary. Most likely the OS would dispatch directly to
the TRACE interrupt vector on its own in order to emu-
late this functionality.
The trace bit can be used to emulate the GDN complete
interrupt, theoretically.

The primary purpose of the trace bit is to allow single-
stepping, and to allow stepping over breakpoints with
out implementing a partial machine simulator.

The trace bit can be found in the motorola 68K and x86
processors.

11.4 Asynchronous Interrupts

11.4.1 External (MDN) Interrupts

External interrupts are triggered by one-word mes-
sages sent by the off-chip interrupt controller. These
interrupts indicate that some device requires the proces-
sor’s attention. The operating system may also trigger
the interrupt controller to perform some operation on its
behalf.

The delivery mechanism for external interrupts are
described in more detail in the “Dynamic Network sec-
tion.” The memory network is used because its disci-
pline gaurantee deadlock free and relatively timely
delivery of interrupts.

11.4.2 Timer Interrupts

The watchdog timer is configured to initiate an
interrupt if WATCH_VAL == WATCH_MAX. There are
various conditions which can reset the value of
WATCH_VAL.

11.4.3 GDN Avail Interrupt

The GDN_AVAIL interrupt is asserted if data is
available on the general network input queue. This
allows the processor to perform receive unexpected
dynamic messages without polling. This interrupt is
assumed to be under user control, and has the lowest pri-

ority. It is important that this interrupt not disable the
deadlock detection mechanism, else we will not be able
to recover from deadlock on the general network.

11.4.4 Interrupt Levels

The TIMER and EXTERNAL interrupts need to be
operational even in the middle of a GDN_AVAIL event.
We could achieve this by requiring the user to mask the
appropriate bits and return to non-interrupt mode. How-
ever, doing so requires that the user save registers, and
perform a number of operations which increases the
message response latency and occupancy.

In the interests of decreasing these times, we place
the GDN_AVAIL interrupt at a lower level (let’s call it
“user level.”) This allows other interrupts to continue to
occur even in the user’s general network handler.

The other four interrupt types do not have such
hefty requirements for latency, and can be placed in the
same priority group (let’s call it “system level.”)

With two interrupt priority levels, we need two reg-
isters to save the exception PCs at both levels. Hence,
we have both the EX_PC and EX_UPC special purpose
registers.

11.4.5 Masks and enables

The EX_ENABLE read-only register has two bit
positions, one indicating if system level interrupts are
disabled, and the other indicating if user level interrupts
are disabled.

The EX_MASK register allows the user to mask
out various interrupts.

The EX_BITS register registers the presence of
interrupt requests. These bits are implicitly cleared
when:

GDN_
COMPLETE

when the interrupt fires.

GDN_AVAIL data is removed from general
network

TIMER when the interrupt fires

TRACE when the interrupt fires

EXTERNAL when the interrupt fires

GDN_REFILL when the interrupt fires
53

This subtlely allows us to avoid having special
instructions to set individual bits, which is required for
atomicity reasons. If we read the value of EX_BITS,
changed it and wrote it back, an interrupt might have
come in in the meantime, causing us to loose an inter-
rupt.

The GDN_AVAIL bit is wired more or less directly
(perhaps with one intermittant register) to the “validout”
wire of the CGNI SIB.

The GDN_COMPLETE bit of the EX_BITS regis-
ter is set by a special IB_WATCHER which watches
values heading to $cgno. It can be hooked up in a clever
fashion to count the number of words that are left in the
message.

The EXTERNAL bit is an actual register, which is
set to a ‘1’ when an external interrupt message arrives
on the MDN.

The TIMER bit is set to ‘1’ anytime that the timer
reaches “MAXVAL”, and the timer interrupt is enabled.

The DRET, ERET, INTOFF and INTON instruc-
tions enable and disable all interrupts (user and system).
The UINTOFF and UINTON instructions enable and
disables user interrupts. These must be effective imme-
diately in the beginning of the EXECUTE stage (so that
an interrupt does not occur on the next cycle in the
DECODE stage), so that interrupts do not happen after
they are executed. Note the diagram “SPR Update
Logic” which shows a subtle difference in how these are
implemented.

When an interrupt fires, it disables interrupts for the
next cycle, after the effects of the DRET, ERET,
INTOFF, and INTON. See “SPR UPDATE LOGIC.”

EVENT_COU
NTERS

when EVENT_BITS is zero

use
by logic

this cycle

update
logic

Circuitry for Changes to SYSTEM/USER

use
by logic
this cycle

update
logic

Circuitry for changes to all other SPRs

(ie xINTON/xINTOFF, DRET/ERET

SPR UPDATE LOGIC

 instrs in Execute stage)

interrupt
detect
logic?
54

12 MULTITASKING
12.0 MULTITASKING

One of the many big headaches in processor design
is enabling multitasking -- the running of several pro-
cesses at the same time. This is not a major goal of the
Raw project. For instance, we do not provide a method
to protect errant processes from modifying memory or
abusing I/O devices. It is nonetheless important to make
sure that our architectural constructs are not creating
any intractable problems. Raw could support both spa-
tial and temporal multitasking.

In spatial multitasking, two tiles could be running
separate processes at the same time. However, a mecha-
nism would have to be put in place to prevent spurious
dynamic messages from obstructing or confusing unre-
lated processes. A special operating system tile could be
used to facilitate communication between processes.

12.1 CONTEXT SWITCHING

Temporal multitasking creates problems because it
requires that we be able to snapshot the state of a Raw
processor at an unknown location in the program and
restore it back later. Such a context switch would pre-
sumably be initiated by a dynamic message on the
Memory network. Saving the state in the main processor
would be much like saving the state of a typical micro-
processor. Saving the state of the switch involves freez-
ing the switch, and loading in a new program which
drain all of the switch’s state into the processor.

The dynamic and static networks present more of a
challenge. In the case of the static network, we can
freeze the switches, and then inspect the count of values
in the input buffers. We can change the PC of the switch
to a program which routes all of the values into the pro-
cessor, and then out to the southeast shared DRAM over
the high-priority dynamic network. Upon return from
interrupt, that tile’s neighbor can route the elements
back into the SIBs. Unfortunately, this leaves no
recourse for tiles on the edges of the chip, which do not
have neighbor tiles. This issue will be dealt with later in
the section.

The dynamic network is somewhat easier. In this
case, we can assume command of all of the tiles so that
we know that no new messages are being sent. Then we
can have all of the tiles poll and drain the messages out
of the network. The tiles can examine the buffer counts
on the dynamic network SIBs to know when they are

done. Since they can’t use the dynamic network to indi-
cate when they are done (they’re trying to drain the net-
work!) they can use the common DRAM, or the static
network to do so. Upon return, it will be as if the tile
was recovering from deadlock; the DYNAMIC REFILL
mechanism would be used. For messages that are in the
commit buffer, but have not been LAUNCHed, we pro-
vide a mechanism to drain the commit buffer.

12.1.1 Context switches and I/O Atomicity

One of the major issues with exposing the hardware
I/O devices to the compiler and user is I/O atomicity.
This is a problem that occurs any time resources are
multiplexed between clients. For the most part, we
assume that a higher-order process (like the operating
system) is ensuring that two processes don’t try to write
the same file or program the same sound card.

However, since we are exposing the hardware to the
software, there is another problem. Actions which were
once performed in hardware atomically are now in soft-
ware, and are suddenly not atomic. For instance, on a
request to a DRAM, getting interrupted before one has
read the last word of the reply could be disastrous.

The user may be in the middle of issuing a message,
but suddenly get swapped out due to some sort of con-
text switch or program exit. The next program that is
running may initiate a new request with the device. The
hardware device will now be thoroughly confused. Even
if we are fortunate enough that it just resets and ignores
the message, the programs will probably blithely con-
tinue, having lost (or gained) some bogus message
words. I call this the I/O Message Atomicity problem.

There is also the issue that a device may succeed in
issuing a request on one of the networks, but context
switch before it gets the reply. The new program may
then receive mysterious messages that were not
intended for it. I call this the I/O Request Atomicity
problem.

The solution to this problem is to impose a disci-
pline upon the users of the I/O devices.

12.1.1.1 Message atomicity on the static
network

To issue a message, enclose the request in an inter-
rupt disable/enable pair. The user must guarantee that
this action will cause the tile to stall with interrupts dis-
abled for at most a small, bounded period of time.

This may entail that the tile synchronize with the
switches to make sure that they are not blocked because
55

they are waiting for an unrelated word to come through.
It also means that the message size must not over-

flow the buffer capacity on the way to the I/O node, or if
it does, the I/O device must have the property that it
sinks all messages after a small period of time.

12.1.1.2 Message atomicity on the dynamic
network

If the commit buffer method is used for the high-or-
low priority dynamic networks, then the message send is
atomic. If the commit buffer method is not used, then
again, interrupts must be disabled, as for the static net-
work. Again, the compiler must guarantee that it will
not block indefinitely with interrupts turned off. It must
also guarantee that sending the message will not result
in a deadlock.

12.1.1.3 Request Atomicity

Request atomicity is more difficult, because it may
not feasible to disable interrupts, especially if the time
between a request and a reply is long.

However, for memory accesses, it is reasonable to
turn off interrupts until the reply is received, because we
know this will occur in a relatively small amount of
time. After all, standard microprocessors ignore inter-
rupts when they are stalled on a memory access.

For devices with longer latencies (like disk drives!),
it is not appropriate to turn off interrupts. In this case,
we really are in the domain of the operating system. One
or more tiles should be dedicated to the operating sys-
tem. These tiles will never be context switched. The
disk request can then be proxied through this OS tile.
Thus, the reply will go to the OS tile, instead of the
potentially swapped out user tile. The OS tile can then
arrange to have the data transferred to the user’s DRAM
space (possibly through the DMA port), and potentially
wake up the user tile so it can operate on the data.

12.2 SUMMARY

In this section, I showed a strategy which enables
us to expose the raw hardware devices of the machine to
the user and still support multi-tasking context switches.
This method is deadlock free, and allows the user to
keep the hardware in a consistent state in the face of
context switches.
56

13 THE MULTICHIP
PROTOTYPE
13.0 THE RAW FABRIC / SUPERCOMPUTER

The implementation of the larger Raw prototype
creates a number of interesting challenges, mostly hav-
ing due to with the I/O requirements of such a system.
Ideally, we would be able to expose all of the networks
of the peripheral tiles to the pins, so that they could con-
nect to an identical neighbor chip, creating the image of
a larger Raw chip. Just as we tiled Raw tiles, we will tile
Raw chips! To the programmer, the machine would look
exactly like a 256 tile Raw chip. However, some of the
network hops may have an extra cycle of latency.

13.1 PIN COUNT PROBLEMS AND SOLUTIONS

Our package has a whopping 1124 signal pins. This
in itself is a bit of a problem, because building a board
with 16 such chips is non-trivial. Fortunately, our mesh
topology makes building such a board easier. Addition-
ally, the possibility of ground bounce due to simulta-
neously switching pins is sobering.

For the ground bounce problem, we have a poten-
tial solution which reduces the number of pins that
switch simultaneously. It involves sending the negation
of a signal vector in the event that more than half of the
pins would change values. Unfortunately, this technique
requires an extra pin for every thirty-two pins, exacer-
bating our pin count problem. Alternatively, we can
switch to a differential signalling system (two pins per
signal), clock the pins at twice the rate, so that we use
the same number of pins. The signal gurus inform me
that this creates a net cancellation of supply strain.

Unfortunately, 1124 pins is also not enough to
expose all of the peripheral networks to the edges of the
chip so that the chips can be composed to create the illu-
sion of one large tile. The table entitled “Pin Count -
ideal” shows the required number of pins. In order to
build the Raw Fabric, we needed to find a way to reduce
the pin usage.

We explored a number of options:

13.1.1 Expose only the static network

One option was to expose only the static network.
Originally, we had opted for this alternative. However,
over time, we became more and more aware of the
importance of having a dynamic I/O interface to the
external world. This is particularly important for sup-
porting caching. Additionally, not supporting the
dynamic network means that many of our software sys-
tems would not work on the larger system.

13.1.2 Remove a subset of the network links

For the static network, this is not a problem -- the
compiler can route the elements accordingly through
network to avoid the dead links.

For a dimension ordered wormhole routed network,
a sparse mesh created excruciating problems. Suddenly,
we have to route around the “holes”, which means that
the sophistication of the dynamic network would have
to increase drastically. It would be increasingly hard to
remain deadlock free.

TABLE 5. Pin Count - ideal

Purpose Count

Testing, Clocks, Resets, PSROs 10

Dynamic Network Data 32x2x16

Dynamic Network Thanks Pins 2x2x16

Dynamic Network Valid Pins 1x2x16

Dynamic Network Mux Pins 1x2x16

Static Network Data 32x2x16

Static Network Thanks Pins 1x2x16

Static Network Valid Pins 1x2x16

Total 70*32+10

= 2250

TABLE 6. Pin Count - with muxing

Purpose Count

Testing, Clocks, Resets, PSROs 10

Network Data 32x2x16
57

13.1.3 Do some more muxing

The alternative is to retain all of the logical links
and mux the data pins. Essentially, the static, dynamic
and high-priority dynamic networks all become logical
channels. We must add some control pins which select
between the static, dynamic and high-priority dynamic
networks. See the Table entitled “Pin Count - with mux-
ing.”

13.1.4 Do some encoding

The next option is to encoding the control signals:

This encoding combines the mux and valid bits.
Individual thanks lines are still required.

At this point, we are only 70 pins over budget. At
this point, we can:

13.1.5 Pray for more pins

The fates at IBM may smile upon us and provide us
with a package with even better pin counts. We’re not
too far off.

13.1.6 Find a practical but ugly solution

As a last resort, there are some skanky but effective
techniques that we can use. We can multiplex the pins of
two adjacent tiles, creating a lower bandwidth stripe
across the Raw chip. Since these signals will not be
coming from the same area of the chip, the latency will
probably increase (and thus, the corresponding SIB
buffers). Or, we can reduce the data sizes of some of the
paths to 16 bits and take two cycles to send a word.

More cleverly, we can send the value over as a 16
bit signed number, along with a bit which indicates if
the value fit entirely within the 16 bit range. If it did not,
the other 16 bits of the number would be transmitted on
the next cycle.

13.2 SUMMARY

Because of the architectural headaches involved
with exposing only parts of the on-chip networks, we
have decided to use a variety of muxing, encoding and
praying to solve our pin limitations. These problems are
however, just the beginning of the problems that the
MULTI-CHIP Raw system of 2007 would encounter. At
that time, barring advances in optical interconnects,
there will have an even smaller ratio of pins to tiles. At
that time, the developers will have to derive more clever
dynamic networks [Glass92], or will have to make
heavy use of the techniques described in the “skanky
solution” category.

Dynamic Network Thanks 2x2x16

Dynamic Network Valid 1x2x16

Mux Pins 2x2x16

Static Network Thanks 1x2x16

Static Network Valid Pins 1x2x16

Total 39*32+10

= 1258

TABLE 7. States -- encoded

State Value

No value 0

Static Value 1

Memory Dynamic 2

Low Priority Dynamic 3

TABLE 8. Pin Count - with muxing and encoding

Purpose Count

Testing, Clocks, Resets, PSROs 10

Network Data 32x2x16

Dynamic Network Thanks 2x2x16

Encoded Mux Pins 2x2x16

Static Network Thanks 1x2x16

Total 37*32+10

= 1194

TABLE 6. Pin Count - with muxing

Purpose Count
58

14 CONCLUSIONS
14.0 CURRENT PROGRESS ON THE
PROTOTYPE

We are fully in the midst of the implementation
effort of the Raw prototype. I have written a C++ simu-
lator named btl, which corresponds exactly to the proto-
type processor that we are building. It accurately models
the processor on a cycle-by-cycle basis, at a rate of
about 8000 cycles per second for a 16 tile machine. My
pet multi-threaded, bytecode compiled extension lan-
guage, bC, allows the user to quickly prototype external
hardware devices with cycle accurate behaviour. The bC
environment provides a full-featured programmable
debugger which has proven very useful in finding bugs
in the compiler and architecture. I have also written a
variety of graphic visualization tools in bC which allow
the user to gain a qualitative feel of the behaviour of a
computation across the Raw chip. See the Appendages
entitled “Graphical Instruction Trace Example” and
“Graphical Switch Animation Example.” Running
wordcount reveals that the simulator, extension lan-
guage, debugger and user interface code total 30,029
lines of.s,.cc,.c,.bc, and.h files. This does not include the
20,000 lines of external code that I integrated in.

Rajeev Barua and Walter Lee’s parallelizing com-
piler, RawCC, has been in development for about two
years. It compiles a variety of benchmarks to the Raw
simulators. There are several ISCA and ASPLOS papers
that describe these efforts.

Matt Frank and I have ported a version of GCC for
use on serial and operating system code. It uses inline
macros to access the network ports.

Ben Greenwald has ported the GNU binutils to sup-
port Raw binaries.

Jason Kim, Sam Larsen, Albert Ma, and I have
written synthesizeable verilog for the static and dynamic
networks, and the processors. It runs our current code
base, but does not yet implement all of the interrupt han-
dling and deadlock recovery schemes.

Our testing effort is just beginning. We have Krste
Asanovic’s automatic test vector generator, called Tor-
ture, which generates random test programs for MIPS
processors. We intend to extend it to exert the added
functionality of the Raw tile.

We also have plans to emulate the Raw verilog. We
have a IKOS logic emulator for this purpose.

Jason Kim and I have attended IBM’s ASIC train-
ing class in Burlington, VT. We expect to attend the
Static Timing classes later in the year.

A board for the Raw handheld device is being
developed by Jason Miller.

This document will form the kernel of the design
specification for the Raw prototype.

14.1 PRELIMINARY RESULTS

We have used the Raw compiler to compile a vari-
ety of applications to the Raw simulator, which is accu-
rate to within %10 of the actual Raw hardware.
However, in both the base and parallel case, the tile has
unlimited local SRAM. Results are summarized below.

More information on these results is given in [Barua99].

Mark Stephenson, Albert Ma, Sam Larsen, and I
have all written a variety of hand-coded applications to
gain an idea of the upper bound on performance for a
Raw architecture. Our applications have included
median filter, DES, software radio, and MPEG encode.
My hand-coded application, median filter, has 9 sepa-
rate interlocking pipeline programs, running on 128
tiles, and attains a 57x speedup over a single issue pro-
cessor, compared to the 4x speedup that a hand-coded
dual-issue Pentium with MMX attains. Our hope is that
the Raw supercomputer, with 256 MIPS tiles, will
enable us to attain similarly outrageous speedup num-
bers.

TABLE 9. Preliminary Results - 16 tiles

Benchmark

Speedup
versus one
tile

Cholesky 10.30

Matrix Mul 12.20

Tomcatv 9.91

Vpenta 10.59

Adpcm-encode 1.26

SHA 1.44

MPEG-kernel 4.48

Moldyn 4.48

Unstructured 5.34
59

14.2 EXIT

In this design document, I have traced the design
decisions that we have made along the journey to creat-
ing the first Raw prototype. I detail how the architecture
was born from our experience with FPGA computing. I
familiarize the reader with Raw by summarizing the
programmer’s viewpoint of the current design. I moti-
vate our decision to build a prototype. I explain the
design decisions we made in the implementation of the
static and dynamic networks, the processor, and the pro-
totype systems. I finalize by showing some results that
were generated by our compiler and run on our simula-
tor.

The Raw prototype is well on its way to becoming a
reality. With many of the key design decisions deter-
mined, we now have a solid basis for finalizing the
implementation of the chip. The fabrication of the chip
and the two systems will aid us in exploring the applica-
tion space for which Raw processors are well suited. It
will also allow us to evaluate our design and prove that
Raw is, indeed, a realizable architecture.
60

14.3 REFERENCES

J.L. Hennessey, “The Future of Systems Research,”
IEEE Computer Magazine, August 1999. pp. 27-33.

D. L. Tennenhouse and V. G. Bose, “SpectrumWare -
A Software-Oriented Approach to Wireless Signal
Processing,” ACM Mobile Computing and Networking
95, Berkeley, CA, November 1995.

R. Lee, “Subword Parallelism with MAX- 2”, IEEE
Micro, Volume 16 Number 4, August 1996, pp. 51-59.

 J. Babb et al. “The RAW Benchmark Suite: Compu-
tation Structures for General Purpose Computing,”
IEEE Symposium on Field-Programmable Custom
Computing Machines, Napa Valley, CA, April 1997.

Agarwal et al. “The MIT Alewife Machine: Architec-
ture and Performance,” Proceedings of ISCA ‘95,
Italy, June, 1995.

Waingold et al. “Baring it all to Software: Raw
Machines,” IEEE Computer, September 1997, pp. 86-
93.

Waingold et al. “Baring it all to Software: Raw
Machines,” MIT/LCS Technical Report TR-709, March
1997.

Walter Lee et al. “Space-Time Scheduling of Instruc-
tion-Level Parallelism on a Raw Machine,” Proceed-
ings of ASPLOS-VIII, San Jose, CA, October 1998.

R. Barua et al. “Maps: A Compiler Managed Memory
System for Raw Machines,” Proceedings of the
Twenty-Sixth International Symposium on Computer
Architecture (ISCA), Atlanta, GA, June, 1999.

T. Gross. “A Retrospective on the Warp Machines,”
25 Years of the International Symposia on Computer
Architecture, Selected Papers. 25th Anniversary Issue.
1998. pp 45-47.

J. Smith. “Decoupled Access/Execute Computer
Architectures,” 25 Years of the International Symposia
on Computer Architecture, Selected Papers. 25th Anni-
versary Issue. 1998. pp 231-238. (Originally in ISCA 9)

W. J. Dally. “The torus routing chip,” Journal of Dis-
tributed Computing, vol. 1, no. 3, pp. 187-196, 1986.

J. Hennessey, and D. Patterson “Computer Architec-
ture: a Quantitative Approach (2nd Ed.)”, Morgan
Kauffman Publishers, San Francisco, CA, 1996.

M. Zhang. “Software Floating-Point Computation on
Parallel Machines,” Master’s Thesis, Massachusetts

Institute of Technology, 1999.

S. Oberman. “Design Issues in High Performance
Floating Point Arithmetic Units,” Ph.D. Dissertation,
Stanford University, December 1996.

E. Berlekamp, J. Conway, R. Guy, “Winning Ways for
Your Mathematical Plays,” vol. 2, chapter 25, Aca-
demic Press, New York, 1982.

John D. Kubiatowicz. “Integrated Shared-Memory
and Message-Passing Communication in the Alewife
Multiprocessor,” Ph.D. thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering
and Computer Science, February 1998.

C. Moritz et al. “Hot Pages: Software Caching for
Raw Microprocessors,” MIT CAG Technical Report,
Aug 1999.

Fred Chong et al. “Remote Queues: Exposing Mes-
sage Queues for Optimization and Atomicity,” Sym-
posium on Parallel Algorithms and Architecture (SPAA)
Santa Barbara, July 1995.

K. Mackenzie et al. “Exploiting Two-Case Delivery
for Fast Protected Messaging.” Proceedings of 4th
International Symposium on High Performance Com-
puter Architecture Feb. 1998.

C. J. Glass et al. “The Turn Model for Adaptive Rout-
ing,” 25 Years of the International Symposia on Com-
puter Architecture, Selected Papers. 25th Anniversary
Issue. 1998. pp 441-450. (Originally in ISCA 19)
61

15 APPENDAGES

Raw user’s manual
62

Massachusetts Institute of Technology
Laboratory of Computer Science

RAW 823 and 824
ISA

User’s Manual
63

1.0 Foreword

This document is the ISA manual for the Raw prototype processor. Unlike other Raw documents,
it does not contain any information on design decisions, rather it is intended to provide all of the
information that a software person would need in order to program a Raw processor. This docu-
ment assumes a familiarity with the MIPS architecture. If something is unspecified, one should
assume that it is exactly the same as a MIPS R4000.
(See http://www.mips.com/publications/index.html, “R4000 Microprocessor User’s Manual”.)

2.0 Processor
Each Raw Compute Processor looks very much like a MIPS R4000.

The follow items are different:

0. Registers 24, 25, 26, and 27 are used to address network ports and are not available as GPRs.
1. Floating point operations use the same register file as integer operations.
2. Floating point compares have a destination register instead of setting a flag.
3. The floating point branches, BC1T and BC1F are removed, since the integer versions have equivalent functionality.
4. Instead of a single multiply instruction, there are three low-latency instructions, MULH, MULHU, and MULLO
which place their results in a GPR instead of HI/LO.
5. The pipeline is eight stage pipeline, with FETCH, DECODE, RF/STALL, EXE, MUL, MEM, FPU and WB stages.
6. Floating point divide uses the FD register instead of a destination register.
7. The instruction set, the timings and the encodings are slightly different. The following section lists all of the
instructions available in the processor. There are some omissions and some additions. For actual descriptions of the
standard computation instructions, please refer to the MIPS manual. The non-standard raw instructions (marked with
823 and 824) will be described later in this document.
7a. A tile has 8k words (32bit word) of local instruction memory, and 8k words (64 bit word) of switch memory.
The Raw 824 ISA also supports a mode with a cached instruction memory.
8. A tile has a 8k word (32 bit word) , 2-way set-associative, 3 cycle latency data cache with 32 byte lines. For
replacement, it has the following replacement policy: use set 0 if it is invalid, otherwise use set 1 if it is invalid, other-
wise use the least recently used of the two sets. The cache uses a 2 element bypassing write buffer to defer stores until
after the tag has been checked. See the TAGSW instruction for more information.
9. cvt.w does round-to-nearest even rounding (instead of a “current rounding mode”). the trunc operation (which is
the only one used by GCC) can be used to round-to-zero.
10. All floating point operations are single precision.
11. The Raw prototype is a LITTLE ENDIAN processor. In other words, if there is a word stored at address P, then
the low order byte is stored at address P, and the most significant byte is stored at address P+3. (Sparc, for reference,
is big endian.)
12. Each non-branching instruction instruction has one bit reserved in the encoding, called the S-bit. The S-bit deter-
mines if the result of the instruction is written to $csto port, in addition to the register file. If the instruction has no
output, the behaviour of the S-bit is undefined. The S-bit is set by using an exclamation point with the instruction, as
follows:

and! $3,$2,$0 # writes to static switch and r3

13. All multi-cycle non-branch operations (loads, multiplies, divides) on the raw processor are fully interlocked.
14. We use static branch prediction, and no delay slots. A “+” appended to the end of the conditional branch/jmp indi-
64

cates that the branch is likely taken, a “-” indicates that the branch is likely not taken. If it is unspecified, then the
assembler applies a simple heuristic (backwards branches taken) and sets the appropriate bit. The mispredict penalty
is 3 cycles. For instance beq+ $csto, loop indicates a branch likely to “loop.” The same holds true for the switch
processor.

3.0 Register Conventions

 The following register convention map has been modified for Raw from page D-2 of the MIPS
manual). Various software systems by the raw group may have more restrictions on the registers.

The switch processor has the following register conventions:

$0,$1,$2 -- caller saved. $3 -- link register

Table 1: Register Conventions

reg alias Use

$0 Always has value zero.

$1 $at Reserved for assembler

$2..$3 Used for expression evaluation and to hold procedure return values.

$4..$7 Used to pass first 4 words of actual arguments. Not preserved across
procedure calls.

$8..$15 Temporaries. Not preserved across procedure calls

$16..$23 Callee saved registers /
Must be restored by interrupt handlers for i-caching to function.

$24 $cst[i/o] Static network input port.

$25 $cgn[i/o] User Dynamic Network input/output port.

$26 $csti2 Second static network input port.

$27 $cmn[i/o] Memory Dynamic network input/output port.

$28 $gp Global pointer.

$29 $sp Stack pointer.

$30 A callee saved register.

$31 The link register.
65

4.0 Instruction Set

Sample Instruction Listing:

The Raw Chip implements the 823 ISA.
The 824 ISA is available only in simulation, and only when “824 mode” is enabled.

1 10 11

31

5 5

25 21 20 16 15 0

base rtRAW
Offset

165

2627

s

1

RAW raw rt, base(offs)
3

1

occupancyencoding

latencyusageopcode

823

823: instruction is available in Raw 823 and Raw 824 ISAs.

824: instruction is available in Raw 824 ISA only.

 (otherwise, instruction is available in MIPS, Raw 823, and Raw 824 ISAs.)

SIM: instruction is available in simulator only to facilitate certain types of measurements in simulator
823/824: instruction is a Raw 824 instruction, but has the correct behaviour on 823.
66

5.0 Integer Computation Instructions

Replaces LUI. [rt] [rs] + (imm << 16)

Enables full-address space hardware instruction caching. Relative branch reachs +/− 128 MB of code.

Enables full-address space hardware instruction caching. Relative function call.
[r31] <- PC+4
branch by offs4

31

5 5 5

25 21 20 16 15 0

rs rtADDIU

26

s

1 16

signed immediateADDIU ADDIU rt, rs, imm 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 0 0 1

ADDUSPECIAL

26

s

1

ADDU ADDU rd, rs, rt 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 10 0

ANDSPECIAL

26

s

1

AND rd, rs, rtAND 1

0 0 1 0 0

31

5 5 5

25 21 20 16

rs rtANDI

26

s

1 16

15 0

unsigned immediateANDI ANDI rt, rs, imm 1

0 0 1 1 1

31

5 5 5

25 21 20 16 15

rs rtAUI

26

s

1

0

16

unsigned immediate AUI rt, rs, immAUI 1
823

←

1 1 0 0 0

31

5 26

25 21 20 16

B

2627

1

1

15 0

signed offs4BL BL offs4 1

824

1 1 0 0 1

31

5 26

25 21 20 16

BAL

2627

1

1

15 0

signed offs4BLAL BLAL offs4 1

824

1 1 0 1 1

31

5 5 5

25 21 20 16

rs rtBEQ

2627

p

1 16

15 0

signed offs4BEQ BEQ rs, rt, offs 1m

1 1 0 0 0

31

5 5 5

25 21 20 16

rs BGEZREGIMM

26

p

1 16

15 0

signed offs4
0 0 0 1 0BGEZ BGEZ rs, offs 1m
67

Branch and add.
tmp = [rs]; [rs] = tmp + SPR[incr];
if (rt != tmp) branch offs4;

Count leading zero. Counts the number of leading ‘0’ bits.

Note: the DIVU/DIV instruction has on cycle of occupancy on the fetch unit, but occupies the divide
unit for the whole duration of the instruction.

31

5 5

25 21 20 16

rs BGEZAL

2627

16

15 0

signed offs4
1 0 0 1 0BGEZAL BGEZAL rs, offs 1m

1 1 0 0 0
5

REGIMMp

1

31

5 5

25 21 20 16

rs BGTZ

2627

16

15 0

signed offs4
0 0 0 1 1BGTZ BGTZ rs, offs 1m

1 1 0 0 0
5

REGIMMp

1

31

5 5

25 21 20 16

rs BLEZ

2627

16

15 0

signed offs4
0 0 0 0 1BLEZ BLEZ rs, offs 1m

1 1 0 0 0
5

REGIMMp

1

31

5 5

25 21 20 16

rs BLTZ

2627

16

15 0

signed offs4
0 0 0 0 0BLTZ BLTZ rs, offs 1m

1 1 0 0 0
5

REGIMMp

1

31

5 5

25 21 20 16

rs BLTZAL

26

16

15 0

signed offs4
1 0 0 0 0BLTZAL BLTZAL rs, offs 1m

1 1 0 0 0
5

REGIMMp

1

1 1 0 10

31

5 5 5

25 21 20 16

rs rtBNE

26

p

1 16

15 0

signed offs4BNE BNE rs, rt, offs 1m

1 1 0 0 1

31

5 5 5

25 21 20 16

rs rtBNEA

26

p

1 16

15 0

signed offs4BNEA BNE rs, rt, offs 1m

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rd 0 0 0 0 0
1 1 1 0 0 1

CLZ

26

CLZ CLZ rd, rs 10 0 0 0 0
SPECIALs

1 5

0 0 0 0 0

823

0 0 0 0 0

31

5 5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
0 1 1 0 1 0

DIVSPECIAL

2627

0

1 5

15 11

0 0 0 0 0DIV DIV rs, rt
1

42

0 0 0 0 0

31

5 5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
0 1 1 0 1 1

DIVUSPECIAL

26

0

1 5

15 11

0 0 0 0 0 DIVU rs, rtDIVU 1

42
68

[31] PC+4; if ([rs] == [rt]) { PC (targ4 << 2) }

[31] PC+4; if ([rs] >= 0) { PC (targ4 << 2)}

[31] PC+4; if ([rs] > 0) { PC (targ4 << 2)}

[31] PC+4; if ([rs] <= 0) { PC (targ4 << 2)}

[31] PC+4; if ([rs] < 0) { PC (targ4 << 2)}

[31] PC+4; if ([rs] != [rt]) { PC (targ4 << 2) }

J 1
11 0 0 0

31

5 5 5

25 21 20 16

JREGIMM

26

1

1 16

15 0

targ4
0 1 1 0 0

J targ0 0 0 0 0

1 1 1 1 1

31

5 5 5

25 21 20 16

rs rtJEQL

26

p

1 16

15 0

targ4JEQL JEQL rs, rt, targ4 1m

823

← ←

31

5 5

25 21 20 16

rs JGEZL

26

16

15 0

targ4
0 0 1 1 0JGEZL JGEZL rs, targ4 1m

823

1 1 0 0 0
5

REGIMMp

1

← ←

31

5 5

25 21 20 16

rs JGTZL

26

16

15 0

targ4
0 0 1 1 1JGTZL JGTZL rs, targ4 1m

823
1 1 0 0 0

5

REGIMMp

1

← ←

31

5 5

25 21 20 16

rs JLEZL

2627

16

15 0

targ4
1 0 1 0 1JLEZL JLEZL rs, targ4 1m

823

1 1 0 0 0
5

REGIMMp

1

← ←

31

5 5

25 21 20 16

rs JLTZL

2627

16

15 0

targ4
1 0 1 0 0JLTZL JLTZL rs, targ4 1m

823
1 1 0 0 0

5

REGIMMp

1

← ←

31

5 5

25 21 20 16

rs rt

26

16

15 0

targ4JNEL JNEL rs, rt, targ4 1m

823 1 1 1 1 0
5

JNELp

1

← ←

JAL 1

31

5 5

25 21 20 16

JAL

26

16

15 0

targ4
1 1 1 0 0

JAL targ0 0 0 0 0
1 1 0 0 0

5

REGIMMp

1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1

JALRSPECIAL

26

0

1

JALR JALR rs 4
69

Jump register, disabling hardware caching. Used to transition from hardware to software cached mode.

Jump register, enabling hardware caching. Used to transition from software to hardware cached mode.

The low two bits of the addression are ignored. However, during a cache miss, they are actually sent off of the edge of
the chip, for debugging purposes.

This instruction allows the user to extend the instruction set, and does not exist on the real chip.
However, the opcode has been selected such that, on the real Raw chip, the instruction merely trashes
the output register. So, as long as a program containing MAGIC instructions does not rely on them for
correctness, programs containing these instructions will run on the real chip.

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0

JRSPECIAL

26

0

1

JR JR rs 4

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1
JRHOFFSPECIAL

26

0

1

JRHOFF JRHOFF rs 4

824

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0
JRHONSPECIAL

26

0

1

JRHON JRHON rs 4

824

1 0 0 0 0

31

5 5

25 21 20 16 15 0

base rtLB
signed offset

165

26

s

1

LB LB rt, base(offs)
3

1

1 0 0 0 1

31

5 5

25 21 20 16 15 0

base rtLBU
signed offset

165

26

s

1

LBU LBU rt, base(offs)
3

1

1 0 0 1 0

31

5 5

25 21 20 16 15 0

base rtLH
signed offset

165

2627

s

1

LH LH rt, base(offs)
3

1

1 0 0 1 1

31

5 5

25 21 20 16 15 0

base rtLHU
signed offset

165

2627

s

1

LHU LHU rt, base(offs)
3

1

1 0 1 0 0

31

5 5

25 21 20 16 15 0

base rtLW
signed offset

165

2627

s

1

LW LW rt, base(offs)
3

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rt code
0 0 0 0 0 1

MAGIC

2627

MAGIC magic rt, rs,code 1
0 0 0 0 0

SPECIALs

1 5

rs

SIM
70

FD holds result of floating point divider. Blocks until FP divider is ready.

FD holds result of floating point divider. Blocks until FP divider is ready.

Like MIPS , but for the integer divider only.

Like MIPS , but for the integer divider only.

The contents of register rs and rt are multiplied as signed values to obtain a 64-bit result.
The high 32 bits of this result is stored into register rd.

Operation: [rd] ([rs]*s[rt])63..32

The contents of register rs and rt are multiplied as unsigned values to obtain a 64-bit result.
The high 32 bits of this result is stored into register rd.
Operation: [rd] ([rs]*u[rt])63..32

31

10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 rd 0 0 0 0 0
0 1 0 1 0 0

MFFD

2627

MFFD MFFD rd 1

823
0 0 0 0 0

5

SPECIALs

1

31

10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 rd 0 0 0 0 0
0 1 0 0 0 0

MFHI

2627

MFHI MFHI rd 10 0 0 0 0
5

SPECIALs

1

31

10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 rd 0 0 0 0 0
0 1 0 0 1 0

MFLO

2627

MFLO MFLO rd 10 0 0 0 0
5

SPECIALs

1

31

5 15 6

25 21 20 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1

MTFD

2627

MTFD MTFD rs 1

823
0 0 0 0 0

5

SPECIAL0

1

31

5 15 6

25 21 20 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1

MTHI

2627

MTHI MTHI rs 1

823
0 0 0 0 0

5

SPECIAL0

1

31

5 15 6

25 21 20 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1

MTLO

2627

MTLO MTLO rs 1

823
0 0 0 0 0

SPECIAL0

1 5

31

5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
1 0 1 0 0 0

MULH

2627

5

15 11

rd MULH rd, rs, rtMULH
823

2

10 0 0 0 0
SPECIALs

1 5

←

31

5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
1 0 1 0 0 1
MULHU

2627

5

15 11

MULHU MULHU rd, rs, rtrd

823

2

10 0 0 0 0
SPECIALs

1 5

←

71

The contents of register rs and rt are multiplied as signed values to obtain a 64-bit result.
The low 32 bits of this result is stored into register rd.

Operation:[rd] ([rs]*[rt])31..0

The contents of register rs and rt are multiplied as unsigned values to obtain a 64-bit result.
The low 32 bits of this result is stored into register rd.
Operation: [rd] ([rs]*u[rt])31..0

Population count -- sums all “1” bits in the input.

Rotate Left And Mask (or, Rotate Right and Mask)
Operation: [rt] = ([rs] lrot SA) & MASK (MB,ME,Z)

Note that the assembler takes the full mask (e.g., 0xf0f00FFF) and encodes it for you. If it can’t be encoded,
it will tell you. Also, the user can use RRM assembly alias.

MASK: case { ME[1], ME[0], Z }
 001: MASK = { MB[4] MB[3] MB[2] MB[1] MB[0] ME[4] ME[3] ME[2] }replicated 4 times
 111: MASK = nibble mask; i.e. { MB[4] MB[4] MB[4] MB[4] MB[3] MB[3] MB[3] MB[3]
 MB[2] MB[2] MB[2] MB[2] MB[1] MB[1] MB[1] MB[1]
 MB[0] MB[0] MB[0] MB[0] ME[4] ME[4] ME[4] ME[4]
 ME[3] ME[3] ME[3] ME[3] ME[2] ME[2] ME[2] ME[2] }

31

5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
0 1 1 0 0 0
MULLO

26

5

15 11

MULLO MULLO rd, rs, rtrd

823

2

10 0 0 0 0
SPECIALs

1 5

←

31

5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
0 1 1 0 0 1
MULLU

26

5

15 11

MULLU MULLO rd, rs, rtrd

823

2

10 0 0 0 0
SPECIALs

1 5

←

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 1 1 1

NOR

2627

NOR NOR rd, rs, rt 10 0 0 0 0
SPECIALs

1 5

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 1 0 1

OR

26

OR OR rd, rs, rt 10 0 0 0 0
SPECIALs

1 5

31

5 5

25 21 20 16

rs rt

26

16

15 0

unsigned immediateORI ORI rt, rs, imm 1
0 0 0 0 0

ORIs

1 5

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rd 0 0 0 0 0
1 1 1 0 0 0

POPC

26

POPC POPC rd, rs 10 0 0 0 0
SPECIALs

1 5

0 0 0 0 0

823

31

5 5 55 5

25 21 20 16 15 11 10 6 5 0

rs rt SA MB

2627

RLM RLM rt, rs, SA, M 1RLM

823

ME Z
1 0 1 X 0 0

6

72

 xx0: MASK = bit range; if (MB <= ME) bits MB..ME set to 1, else all bits except ME..MB set to 1.

Rotate Left and Mask With Insert
Operation: [rt] = (([rs] lrot SA) & MASK(MB,ME,Z)) | ([rt] & ~MASK(MB,ME,Z))

Rotate Left Variable And Mask
Operation: [rd] = ([rs] lrot rt) & MASK(MB,ME,Z)
e.g, RLVM $3,$4,$5,0xffff0000

31

5 5 55 5

25 21 20 16 15 11 10 6 5 0

rs rt SA MB

2627

RLMI RLMI rt,rs, SA,M 1RLMI

823

ME Z

6

1 0 1 X 0 1

31

5 5 55 5

25 21 20 16 15 11 10 6 5 0

rs rt rd MB

2627

RLVM RLVM rd,rs,rt,M 11 0 1 X 1 0
RLVM

6823

ME Z

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rt SA
0 0 0 0 0 0

SLL

2627

SLL SLL rt, rs,sa 1
0 0 0 0 0

SPECIALs

1 5

rs 0 0 0 0 0

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
0 0 0 1 0 0

SLLV

26

SLLV SLLV rd, rs, rt 10 0 0 0 0
SPECIALs

1 5

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 1 0 1 0

SLT

26

SLT SLT rd, rs, rt 10 0 0 0 0
SPECIALs

1 5

1 0 1 1 0

31

5 5 5 16

25 21 20 16 15 0

rs rt signed immediateSLTI

26

s

1

SLTI SLTI rt, rs, simm 1

1 0 1 0 1

31

5 5 5 16

25 21 20 16 15 0

rs rt signed immediate
SLTIU

2627

s

1

SLTIU SLTIU rt, rs,simm 1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 1 0 1 1

SLTU

2627

SLTU SLTU rd, rs, rt 1
0 0 0 0 0

SPECIALs

1 5

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rt SA
0 0 0 0 1 1

SRA

2627

SRA SRA rt, rs,sa 1
0 0 0 0 0

SPECIALs

1 5

rs 0 0 0 0 0

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd
0 0 0 1 1 1

SRAV

2627

SRAV SRAV rd, rs, rt0 0 0 0 0 10 0 0 0 0
SPECIALs

1 5
73

The low two bits of the address are ignored. However, during a cache miss, they are actually sent off of the edge of
the chip, for debugging purposes.

6.0 Floating Point Computation Instructions

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rt SA
0 0 0 0 1 0

SRL

2627

SRL SRL rt, rs,sa 1
0 0 0 0 0

SPECIALs

1 5

rs 0 0 0 0 0

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd
0 0 0 1 1 0

SRLV

2627

SRLV SRLV rd, rs,rt0 0 0 0 0 10 0 0 0 0
SPECIALs

1 5

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 0 1 1

SUBU

2627

SUBU SUBU rd, rs, rt 10 0 0 0 0
SPECIALs

1 5

0 1 0 0 0

31

5 5

25 21 20 16 15 0

base rtSB
signed offset

165

2627

0

1

SB 1SB rt, offset(base)

0 1 0 1 0

31

5 5

25 21 20 16 15 0

base rtSH
signed offset

165

2627

0

1

SH 1SH rt, offset (base)

0 1 1 0 0

31

5 5

25 21 20 16 15 0

base rtSW
signed offset

165

2627

0

1

SW rt, offset(base) 1SW

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 1 1 0

XOR

2627

XOR XOR rd, rs, rt 10 0 0 0 0
SPECIALs

1 5

0 0 0 1 1

31

5 5 5

25 21 20 16

rs rtXORI

2627

s

1 16

15 0

unsigned immediateXORI XORI rt, rs, imm 1

0 0 1 1 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 rd
0 0 0 1 0 1

ABSFPU

2627

s

1

ABS.s ABS.s rd, rs
4

1
fmt
74

Description: Precisely like MIPS but the result is stored in rt, instead of a flags register.

Description: Precisely like MIPS but always uses round to nearest even rounding mode.
Converts to fixed point.

Description: Precisely like MIPS but the result is stored in the FD register, instead of a FPR.
Note: the DIV.s instruction has one cycle of occupancy on the fetch unit, but occupies the divide
unit for the whole latency of the instruction (12 cycles).

Converts to fixed point. Does not use round to nearest even rounding mode.

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd fmt
0 0 0 0 0 0

ADD

2627

ADD.s ADD.s rd, rs, rt
4

10 0 1 1 0
5

FPUs

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd fmt
1 1 x x x x

cond

2627

C.xx.s C.xx.s rd, rs, rt
4

1
823

0 0 1 1 0
5

FPUs

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 rd fmt
1 0 0 0 0 0

CVT.S

2627

CVT.s CVT.s rd, rs
4

10 0 1 1 0
5

FPUs

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 rd fmt
1 0 0 1 0 0
CVT.W.s

2627

CVT.w CVT.w rd, rs
4

1
823

0 0 1 1 0
5

FPUs

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt fmt
0 0 0 0 1 1

DIV.s

2627

DIV.s DIV.s rs, rt
12

0 0 0 0 0

823
0 0 1 1 0

5

FPUs

1

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd fmt
0 0 0 0 1 0

MULT.s

2627

MUL.s MUL.s rd, rs, rt
4

10 0 1 1 0
5

FPUs

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 rd fmt
0 0 0 1 1 1

NEG.s

2627

NEG.s NEG.s rd, rs
4

10 0 1 1 0
5

FPUs

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd fmt
0 0 0 0 0 1

SUB.s

2627

SUB.s SUB.s rd, rs, rt
4

10 0 1 1 0
5

FPUs

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rd fmt
0 0 1 1 0 1
TRUNC.w.s

2627

TRUNC.w TRUNC.w rd, rs
4

1
0 0 0 0 00 0 1 1 0

5

FPUs

1

75

7.0 Floating Point Compare Options

Table 2: Floating Point Comparison Condition (for c.xxx.s)

Predicate Relations(Results) Invalid operation
exception if
unorderedCond Mnemonic Definition Greater Than Less Than Equal Unordered

0 F False F F F F No

1 UN Unordered F F F T No

2 EQ Equal F F T F No

3 UEQ Unordered or Equal F F T T No

4 OLT Ordered Less Than F T F F No

5 ULT Onordered or Less Than F T F T No

6 OLE Ordered Less Than or Equal F T T F No

7 ULE Unordered or Less Than or
Equal

F T T T No

8 SF Signaling False F F F F Yes

9 NGLE Not Greater Than or Less
Than or Equal

F F F T Yes

10 SEQ Signaling Equal F F T F Yes

11 NGL Not Greater Than or Less
Than

F F T T Yes

12 LT Less Than F T F F Yes

13 NGE Not Greater Than or Equal F T F T Yes

14 LE Less Than or Equal F T T F Yes

15 NGT Not Greater Than F T T T Yes
76

8.0 Administrative Instructions

Returns from an interrupt, JUMPs through EX_UPC, enables USER interrupts for next instruction that executes.

Returns from an interrupt, JUMPs through EX_PC, enables SYSTEM interrupts for next instruction that executes.

See dynamic network section.

The 16-bit offset is sign-extended and added to the contents of base to form the effective address. The word at that
effective address in the instruction memory is loaded into register rt. Last two bits of the effective address must be
zero.

Operation: Addr ((offset15)16 || offset15..0) + [base]

 [rt] IMEM[Addr]

Clears the interrupt enable bit.

Sets the interrupt enable bits.

The 16-bit offset is sign-extended and added to the contents of base to form the effective address. The contents of rt
are stored at the effective address in the instruction memory.

Operation: Addr ((offset15)16 || offset15..0) + [base]

IMEM[Addr] [rt]
Move from event register.

0 1 0 1 1

31

5 10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

DRET COMM

26

0

1

DRET DRET 10 0 0 0 0

823

31

10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1

ERET

26

ERET ERET 10 0 0 0 0

823
0 1 0 1 1

5

 COMM0

1

31

5 5

25 21 20 16 15 0

rs rt unsigned imm

16

26

IHDR IHDR rt, rs, imm

823

1
1 1 1 0 1

IHDR

5

0

1

0 0 0 0 1

31

5 5

25 21 20 16 15 0

base rtILW
signed offset

165

26

s

1

ILW ILW rt, offs(base)
5

2
823

←

←

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

00000 0 0 0 0 0
0 0 0 0 0 1

INTOFF

26

INTOFF 100000 INTOFF0 0 0 0 0

823
0 1 0 1 1

5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

00000 0 0 0 0 0
0 0 1 0 0 1

INTON

26

INTON 100000 INTON0 0 0 0 0

823
0 1 0 1 1

5

 COMM0

1

31

5 5

25 21 20 16 15 0

base rt signed offset

16

2627

ISW ISW rt, offs(base) 2

823
0 1 0 0 1

ISW

5

0

1

←

←

77

Move from event counter. Note: MFEC actually captures its value in the RF stage. [rd] = EC[rs]
Thus a sequence like:
lw $0,4($0) # cache miss in TV
nop # TL
mfec $4, EC_CACHE_MISS # Execute -- will not register the cache miss
mfec $4, EC_CACHE_MISS # RF -- will register the cache miss
Also, there is one cycle of lag between when the event actually occurs and when
the event counter is actually updated.
 For example, you need a nop between a MTEC and a MFEC to the same register.

Loads a word from a status register. See “status and control register” table.

Operation: [rd] = SR[rs]

“MDN unlock”
Marks end of mdn locked region. Enables interrupts.

“MDN lock”
Signals to hardware and software caching system that the following imm5 * 8 instructions need to be resident
in the cache in order for correct execution to occur. Also, disables interrupts.

Move to event counter. EC[rt] = [rs]

Loads a word into a control register, changing the behaviour of the Raw tile. See “status and control register” page.

Operation: SR[rt] = [rs]

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0
0 1 0 0 1 0

MFEC

2627

MFEC 1rd MFEC rd,rs0 0 0 0 0

823
0 1 0 1 1

5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0
0 1 0 0 0 0

MFSR

2627

MFSR 1rd MFSR rd,rs0 0 0 0 0

823
0 1 0 1 1

5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

00000 0 0 0 0 1
0 0 1 0 0 1

INTON

26

MUNLK 100000 MUNLK0 0 0 0 0

823/824
0 1 0 1 1

5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

00000 0 0 0 0 1
0 0 0 0 0 1

INTOFF

26

MLK 1imm5 MLK <imm5>0 0 0 0 0

823/824
0 1 0 1 1

5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt 0 0 0 0 0
0 1 0 0 1 1

MTEC

2627

MTEC 10 0 0 0 0 MTEC rt ,rs

823
0 1 0 1 1

5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt 0 0 0 0 0
0 1 0 0 0 1

MTSR

2627

MTSR 10 0 0 0 0 MTSR rt ,rs

823
0 1 0 1 1

5

 COMM0

1

78

Loads a word into a control register, changing the behaviour of the Raw tile. See “status and control register” page.

Operation: SR[rt] = 016 || imm

See dynamic network section.

Like OHDR, but disables interrupts.

Stalls in RF stage until: interrupt fires, a word comes into the NESW buffers of st1/st2 or CGNI or CMNI.
returns bit vector: G000 0000 0000 0000 0000 0neswNESWMT
G =gdn avail, T = timer, M = cmni, W = cWi ... w = cWi2

The 16-bit offset is sign-extended and added to the contents of base to form the effective address. The word at that
effective address in the switch memory is loaded into register rt. Last two bits of the effective address must be zero.

Operation: Addr ((offset15)16 || offset15..0) + [base]
[rt] SWMEM[Addr]

Also occupies one cycle on switch fetch unit.

The 16-bit offset is sign-extended and added to the contents of base to form the effective address. The contents of rt
are stored at the effective address in the switch memory.

Operation: Addr ((offset15)16 || offset15..0) + [base]
SWMEM[Addr] [rt]

Also occupies one cycle on switch fetch unit.

1 1 1 0 0

31

5 5 5

25 21 20 16 15 11 10 6 5 0

0 0 0 0 0 rtMTSRi

2627

0

1

MTSRi 1MTSRi rt, imm

823 16

unsigned immediate

0 1 1 1 0

31

5 5

25 21 20 16 15 0

rs rtOHDR
signed offs

165

2627

1

OHDR OHDR rt, imm(rs)

823

10

0 1 1 1 1

31

5 5

25 21 20 16 15 0

rs rtOHDRX
signed offs

165

2627

1

OHDRX OHDRX rt, imm(rs)

823

10

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

0 0 0 0 0
1 0 0 0 0 0
PWRBLK

2627

PWRBLK 1rd PWRBLK rd0 0 0 0 0

823

0 0 0 0 0
0 1 0 1 1

5

 COMM0

1

0 0 1 0 1

31

5 5

25 21 20 16 15 0

base rtSWLW signed offset

165

2627

s

1

SWLW SWLW rt, offs(base)
5

1
823

←

←

0 1 1 0 1

31

5 5

25 21 20 16 15 0

base rtSWSW signed offset

165

2627

0

1

SWSW SWSW rt, offs(base)
3

1
823

←

←

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

00000 0 0 0 0 0
0 0 1 0 10
UINTON

2627

UINTON 100000 UINTON0 0 0 0 0

823
0 1 0 1 1

5

 COMM0

1

79

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

00000 0 0 0 0 0
0 0 0 0 10
UINTOFF

2627

UINTOFF 100000 UINTOFF0 0 0 0 0

823
0 1 0 1 1

5

 COMM0

1

80

8.1 Cache Administrative Instructions - Address Based

Checks if rs + (s*16384+aaaa << 5) is in the cache. If it is, it invalidates it. An invalidation takes 4 additional cycles.

Checks if rs + (s*16384+aaaa << 5) in the cache. If it is and the line is dirty, the corresponding cache line is written
the dirty bit is cleared. The line is NOT invalidated. If the address is not in the cache, this instruction
takes 1 cycles, if it is in the cache but not dirty, it takes 5 cycles, otherwise, it takes at least 13 cycles.

Checks if rs + (s*16384+aaaa << 5) in the cache. If it is and the line is dirty, the corresponding cache line is written
the dirty bit is cleared. The line is then invalidated. If the address is not in the cache, this instruction
takes 1 cycles, if it is in the cache but not dirty, it takes 5 cycles, otherwise, it takes at least 13 cycles.

0 1 0 1 1

31

5 55 6

25 16 15 11 10 6 5 0

0 1 1 1 1 0
AINV COMM

26

0

1

AINV AINV rs, saaaa 0 0 0 0 0

823

21 20

rs 0 0 0 0 0 1,5saaaaa

0 1 0 1 1

31

5 55 6

25 16 15 11 10 6 5 0

0 1 1 1 0 0
AFL COMM

26

0

1

AFL AFL rs, saaaa 0 0 0 0 0

823

21 20

rs 0 0 0 0 0 1,5,13saaaaa

0 1 0 1 1

31

5 55 6

25 16 15 11 10 6 5 0

0 1 1 1 0 1
AFLINV COMM

26

0

1

AFLINV AFLINV rs, saaaa 0 0 0 0 0

823

21 20

rs 0 0 0 0 0
1,5,13

saaaaa
81

8.2 Cache Administrative Instructions - Tag based

The input parameters of the tag based cache instructions do not specify memory addresses, but rather positions in
the tag array of the cache. Bit 15 of the rs value specifies the set (since the cache is two-way set associative.) and bits
14..6 specify the line (there are 512 lines of 32 bytes each), using the convention that bit 1 is the first bit of the word.
These instructions should be employed only if you know what you are doing. If you are depending on the state of the
cache not changing, make sure to disable interrupts during this period (and later re-enable them!) The additional 5-bit
“saaaa” field allows one to specify an immediate offset to the input register. The S bit in the field can be used to tog-
gle the set, the four aaaa bits allow an offset of between 0 and 15 cache lines to be specified. To use the saaaa mode,
append an “I” to the end of the mnuemonic, as in the examples.

Writes the line located at <set + s, line + a a a a, 5b00000 > pair back to memory. Does not flush if the line is
not dirty or not valid. Does not invalidate the line. Sets the MRU bit to the other set.

Gets the line address for a <set + s, line + aaaa, 5b00000> pair.

Returns a 1 if the given {set + s/line + a a a a/5b00000} pair is valid, otherwise a 0.
Not to be issued cycle after LOAD/STORE because of RAW hazards on tag memory.

Writes to the tags. base specifies a { set + s, line + aaaa, 5b00000 } pair. The 19th bit is the valid bit, the other bits are
the physical tag. The dirty bit is cleared. The MRU bit is set to the other set. Not to be issued cycle after LOAD/
STORE because of WAW hazards on tag memory. The set bit is the 15th bit. (bit numbers start at 1.)
Cache replacement policy: If set0 is invalid, picks that set, else if set1 is invalid, pick that set, else pick the LRU set.

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs saaaaa
0 1 1 0 0 1

TAGFL

26

TAGFL 00000 TAGFLI rs, saaaa0 0 0 0 0

823

30 1 0 1 1
5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs s a a a a
0 1 1 0 1 0
TAGLA

2627

TAGLA rd TAGLAI rd, rs,0 0 0 0 0

823

3

1 saaaa
0 1 0 1 1

5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs s a a a a
0 1 1 0 1 1
TAGLV

2627

TAGLV rd TAGLVI rd, rs, 0 0 0 0 0

823

3

1
 saaaa

0 1 0 1 1
5

 COMM0

1

31

5 5 55 6

25 21 20 16 15 11 10 6 5 0

base s a a a a
0 1 1 0 0 0

TAGSW

2627

TAGSW 00000 TAGSWI rt, base,rt

823

1
 saaaa

0 1 0 1 1
5

 COMM0

1

82

9.0 Opcode Map

OPCODE Map

This map is for the first six bits of the instruction (the “opcode” field.)
The branch predictor can just look at the top 3 bits of the instruction for a predicted branch.

SPECIAL Map

This map is for the last six bits of the instruction when opcode == “SPECIAL”.

instruction[28..26]

000 001 010 011 100 101 110 111

111 REGIMM+ BNEA+ BNE+ BEQ+ BL BLAL JNEL+ JEQL+

110 LB! LBU! LH! LHU! LW! SLTIU! SLTI! ADDIU!

101 RLM RLMI RLVM RLM! RLMI! RLVM! !

100 SPECIAL! ILW! ORI! XORI! ANDI! SWLW! FPU! AUI!

011 REGIMM- BNEA- BNE- BEQ- MTSRI IHDR JNEL- JEQL-

010 LB LBU LH LHU LW SLTIU SLTI ADDIU

001 SB ISW SH COM SW SWSW OHDR OHDRX

000 SPECIAL ILW ORI XORI ANDI SWLW FPU AUI

instruction[2..0]

000 001 010 011 100 101 110 111

000 SLL MAGIC SRL SRA SLLV SRLV SRAV

001 JR JALR JRHON JRHOFF

010 MFHI MTHI MFLO MTLO MFFD MTFD

011 MULL MULLU DIV DIVU

100 ADDU SUBU AND OR XOR NOR

101 MULH MULHU SLT SLTU

110

111 POPC CLZ
83

FPU Function map
This opcode map is for the last six bits of the instruction when the opcode field is FPU.

COM Function map
This opcode map is for the last six bits of the instruction when the opcode field is COM.

REGIMM Map
This map is for the rt field of the instruction when opcode == “REGIMM.”

instruction[2..0]

000 001 010 011 100 101 110 111

000 ADD.s SUB.s MUL.s DIV.s ABS.s NEG.s

001 TRUNC.s

010

011

100 CVT.S CVT.W

101

110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

instruction[2..0]

000 001 010 011 100 101 110 111

000 DRET INTOFF UINTOFF ERET

001 INTON UINTON

010 MFSR MTSR MFEC MTEC

011 TAGSW FLUSH TAGLA TAGLV AFL AFLINV AINV

100 PWRBLK

instruction[18..16]

000 001 010 011 100 101 110 111

00 BLTZ BLEZ BGEZ BGTZ

01 J

10 BLTZAL BGEZAL JLTZL JLEZL JGEZL JGTZL

11 JAL
84

10.0 Status and Control Registers
85

Status Reg Name Purpose

0 SW_FREEZE RW Switch is frozen (1, 0)

1 SW_BUF1 R # els in static switch buffers (sss NNN EEE SSS WWW III OOOOO)
(s,N,E,S,W,I <= 4, O <= 8)

2 SW_BUF2 R # els in switch buffers pair 2 (sss NNN EEE SSS WWW III OOOOO)
(s,N,E,S,W,I <= 4, O <= 8)

3 MDN_BUF R # els in mdn switch buffers (NNN EEE SSS WWW III OOOOO)
(N,E,S,W,I <= 4, O <= 16)

4 SW_PC RW Switch’s PC, byte address (ie low three bits are zero.)
When a write occurs to this register, it causes a branch mispredict in the
switch. Allow at least three cycles for the corresponding instruction at that
switch PC to be executed.

5 BR_INCR RW Increment value for BNEA instruction. (32 bits)

6 EC_DYN_CFG RW Event counter - Dynamic Network events - Config
[30:16] = memory network NNN EEE SSS WWW PPP
[14:0] = general network NNN EEE SSS WWW PPP
See event counter section for the meaning of the possible values.

7 WATCH_VAL RW 32 bit Timer count up 1 per cycle

8 WATCH_MAX RW value to reset/interrupt at

9 WATCH_SET RW mode for watchdog counter (Stall Dynamic) (2 bits)

10 CYCLE_HI RW number of cycles from bootup (hi 32 bits) (read first) (writeable for test)

11 CYCLE_LO RW number of cycles from bootup (low 32 bits) (read second, subtract 1)
(writeable for test)

12 EVENT_CFG2 RW Event counter configuration, part 2. See event counter section.

13 GDN_RF_VAL RW Dynamic refill value (32 bits)

14 GDN_REMAIN RW GDN_COMPLETE countdown register

16 GDN_BUF R # els in gdn switch buffers (PPPPP NNN EEE SSS WWW III OOOOO)
(PPPPP = GDN_PENDING)
(N,E,S,W,I <= 4, O <= 16, P < 32)

17 GDN_CFG RW General dynamic network configuration
[31:27] GDN_XMASK - Masks X bits from an address (5 bits)
[26:22] GDN_YMASK - Mask Y bits from an address (5 bits)
[21:17] GDN_XADJ - Adjust from local to global X address (5 bits)
[16:12] GDN_YADJ - Adjust from local to global Y address (5 bits)
[11:09] GDN_YSHIFT - Gets Y bits from an address (3 bits 0..5)

18 STORE_METER RW STORE_ACK COUNTERS
[31:27] PARTNER_Y - Y location of partner port
[26:22] PARTNER_X - X location of partner port
[21] ENABLE - enable store meter-based stalls
[10] DECREMENT_MODE (reads always 0)
[9:5] COUNT_PARTNER - counter, num partner accesses left
[4:0] COUNT_NON_PARTNER - counter num non-partner accesses left

When writing without Bit 10 set, the user must make sure that all store acks have
been received, otherwise the counter’s value may change spontaneously later.
With Bit 10 set, only bits 5 and 0 are used; they specify respectively, whether
COUNT_PARTNER or COUNT_NON_PARTNER should be decremented. Bit 10
86

mode mtsris should be executed at least two cycles after any instruction that can
cache miss.

19 MDN_CFG RW Memory Network configuation
[31:27] DN_XPOS - Absolute X position of tile in array (5 bits)
[26:22] DN_YPOS - Absolute Y position of tile in array (5 bits)
[21:17] MDN_XMAX - X Coord of East-Most Tiles (5 bits)
[16:12] MDN_YMAX - Y Coord of South-Most Tiles (5 bits)
[10:09] MDN_XSHIFT - Shift amount (2 bits) (Sim uses addt’l bit 11)
[07:06] MDN_YSHIFT - Shift amount (2 bits) (Sim uses addt’l bit 08)
[00:00] MDN_EXTEND - Use all four edges of the chip

20 EX_PC RW PC where system-level exception occurred

21 EX_UPC RW PC where user exception occurred.

22 FPSR RW Floating Point Status Register (E V Z O U I)
(Unimplemented, Invalid, Div by Zero, Overflow,
 underflow, Inexact Operation)
These bits are sticky, ie a floating point operation can only set the bits, never
clear. However, the user can both set and clear all of the bits.
These flags are set the cycle after the floating point instruction has finished
its result, i.e. to get a valid value, you need to insert 3 nops to read the cor-
rect value.

23 EVENT_BITS R [15:0] the list of events that has triggered

24 EX_BITS R [6:3] = EVENT_COUNTER / GDN_AVAIL / TIMER / EXTERNAL
[2:0] = TRACE / GDN_COMPLETE / GDN_REFILL

“1” indicates a request for a given interrupt occured at some point
Other bits are implicitly reset.

[31:30] = USER / SYSTEM
Indicates whether exceptions are enabled.
SYSTEM = 0 --> all interrupts disabled
USER = 0 --> user interrupts disabled

25 EX_MASK RW [6:3] = EVENT_COUNTER / GDN_AVAIL / TIMER / EXTERNAL
[2:0] = TRACE / GDN_COMPLETE / GDN_REFILL

A “1” indicates that that exception is enabled.

26 EVENT_CFG RW [0] 1,0 --> single / global instr mode (single mode uses bits 15:1)
[15:1] PC to profile (omit low two bits) for single mode
each bit enables an event counter (C = cache, B = branch)
[31:16] Enables for all of the events

Status Reg Name Purpose
87

These status and control registers are accessed by the MTSR and MFSR instructions, and by the
UINTOFF, UINTON instructions.

Status Registers - Bank 2 (Raw 824 only)

27 POWER_CFG RW bit 0 = disable power saving in comparator
bit 1 = disable power saving in ALU
bit 2 = disable power saving in FPU
bit 3 = disable power saving in multiplier
bit 4 = disable power saving in divider
bit 5 = disable power saving in data cache
bit 6 = enable power saving in instr memory
bit 7 = enable power saving in data memory
bit 8 = enable power saving in switch memory
bit 9 = disable pwrblk wake up after timer wakeup
bit 10 = disable pwrblk wake up after external wakeup
(the following can be set and cleared by both the chip and mtsr/mtsri...)
bit 11 = timer wakeup pending on return to pwrblk instruction
bit 12 = external wakeup pending on return to pwrblk instruction
at reset, set to 0.

28 TN_CFG RW

29 TN_DONE W

30 TN_PASS W

31 TN_FAIL W

Status Reg Name Purpose

0 HW_ICACHE R bit 0 = hw icaching enabled

1

Status Reg Name Purpose
88

11.0 Exception Vectors

The exceptions vectors are stored in IMEM. One of the main concerns with storing vectors in
unprotected memory is that they can be easily overwritten by data accesses, resulting in an unsta-
ble machine. Since we are a Princeton architecture, however, the separation of the instruction
memory from the data memory affords us a small amount of protection. Another alternative is use
a register file for this purposes. Given the number of vectors we support, this is not so exciting.
The ram requirements of these vectors is 4 words per vector: this lets us put a 32bit value into a
register and jump somewhere (useful if the vectors are going to be cached by the i-caching sys-
tem).

sw save($gp), $3
lw $3, vec($gp)
jmp icache.vec

Vector Name
Imem Addr

>> 4
Purpose

0 VEC_GDN_REFILL 0 Dynamic Refill Exception

1 VEC_GDN_COMPLETE 1 GDN send is complete

2 VEC_TRACE 2 Trace interrupt

3 VEC_EXTERN 3 External Exception, over MDN

4 VEC_TIMER 4 Timer Exception

5 VEC_GDN_AVAIL 5 Data avail on GDN

6 VEC_EVENT_COUNTERS 6 Event Counter Interrupt

7

89

12.0 Switch Processor

The switch processor is responsible for routing values between the Raw tiles. One might view it
as a VLIW processor which can execute a tremendous number of moves in parallel. The assembly
language of the switch is designed to minimize the knowledge of the switch microarchitecture
needed to program it while maintaining the full functionality.

The switch processor has three structural components:

1. A 1 read port, 1 write port, 4-element register file.
2. A pair of crossbars, which is responsible for routing values to neighboring switches.
3. A sequencer which executes a very basic instruction set.

A switch instruction consists of a processor instruction and a list of routes for the two crossbars.
All combinations of processor instructions and routes are allowed subject to the following restric-
tions:

1. The source of a processor instruction can be a register or a switch port but the destination must
be a register.
2. The source of a route can be register or a switch port but the destination must always be a
switch port.
3. Two values can not be routed to the same location.
4. If there are multiple reads to the register file, they must use the same register number. This is
because there is only one read port.
5. routes between [cN, cS, cE, cW, cst1] and [cN2, cS2, cE2, cW2, cst2] are forbidden.
To switch domains, one should route the word through swo2 or swo1.
It will appear on swi2 or swi1 on the next cycle.

For instance,

MOVE $3,$2 ROUTE $2->$csti, $2->$cNo, $2->$cSo, $cSi->$cEo
MOVE $3,$csto ROUTE $2->$csti, $2->$cNo, $2->$cSo, $cSi->$cEo

are legal because they read exactly one register (r2) and write one register (r3).

JAL $3, myAddr ROUTE $csto->$2

is illegal because the ROUTE instruction is trying to use r2 as a destination.

JALR $2,$3 ROUTE $2->$csti

is illegal because two different reads are being initiated to the register file (r2,r3).

JALR $2,$3 ROUTE $2->$csti, $cNi->$csti

is illegal because two different writes are occurring to the same port.
90

13.0 Switch Processor Instruction Set

Branch equal to zero, then decrement. MUST BE REGISTER-REGISTER.
 r2_old = r2;
 r1 = r2 - 1;
 if (r2_old == 0) goto ofs16

Branch not equal to zero, then decrement. MUST BE REGISTER-REGISTER.
 r2_old = r2;
 r1 = r2 - 1;
 if (r2_old != 0) goto ofs16

BEQZ/JEQZ <rp>, ofs16
823

beqz $cEi, myRelTarget

R = 1/0, pr = 0 or 1, op = 7, imm = (ofs16 >> 3), rego = <rp>

BEQZD/JEQZD <r1>,<r2> ofs16
823

 beqzd $1,$2 myRelTarg

R = 1/0, pr = 0 or 1, op = E, imm = (ofs16 >> 3), rego = <regi> rsrc = <r1>, rdst = <r2>

BLEZ/JLEZ <rp>, ofs16
823

blez $cNi, myRelTarget
R = 1/0, pr = 0 or 1, op = C, imm = (ofs16 >> 3), rego = <rp>

BLTZ/JLTZ <rp>, ofs16
823

bltz $cNi, myRelTarget
R = 1/0, pr = 0 or 1, op = 1, imm = (ofs16 >> 3), rego = <rp>

BNEZ/JNEZ <rp>, ofs16
823

bnez $2, myRelTarget
R = 1/0, pr = 0 or 1, op = 2, imm = (ofs16 >> 3), rego = <rp>

BNEZD/JNEZD <r1>,<r2> ofs16
823

 bnezd $1,$2 myRelTarg
R = 1/0, pr = 0 or 1, op = D, imm = (ofs16 >> 3), rego = <regi> rsrc = <r1>, rdst = <r2>

BGEZ/JGEZ <rp>, ofs16
823

bgez $cSti, myRelTarget

R = 1/0, pr = 0or 1, op = 3, imm = (ofs16 >> 3), rego = <rp>

BGTZ/JGTZ <rp>, ofs16
823

bgtz $cNi, myRelTarget
R = 1/0, pr = 0 or 1, op = 6, imm = (ofs16 >> 3), rego = <rp>
91

Switch instruction formats

DEBUG imm13
823

debug imm13
R = 0, pr = 0, op =15, imm = (imm13) , rego = <none>

BAL/JAL <rd>, ofs16
823

jal $2, myAbsTarget
R = 1/0, pr = 1, op = 4, imm = (ofs16 >> 3), rego = “none”, rdst = <rd>

JALR <rd>, <rp>
823

jalr $2, $cWi
R = 0, pr = 0, op = 0 (other), ext_op = 3, rego = <rp>, rdst = <rd>

B/J ofs16
823

j myAbsTarget
R = 1/0, pr = 1, op = 5, imm = (ofs16 >> 3), rego = “none”

JR <rp>
823

jr $cWi
R = 0, pr = 0, op =0 (other), ext_op = 2, rego = <rp>

MOVE <rd>, <rp>
823

move $1, $cNi
R = 0, pr = 0, op =0 (other), ext_op = 1, rego = <rp>, rdst = <rd>

NOP
823

nop
R = 0, pr = 0, op =0 (other), ext_op = 0, rego = <none>
92

63

2 2 31

pr imm rdst rsrc rego

4 3

cNo

30

3

cEo

2757

op =7, imm = (0), rego = <rp>, rdst = <rd>

register number, if a register is read

route instruction sources

ExOp instruction format (and conceptual wiring of switch crossbars)

Default instruction format

3 3 33

cSo cWo cNo2
3 3

cEo2

3

cSo2csti cWo2 csti2
3

swo2 swo1

3 3

0

rego cNo cEo cSo cWo cNo2 cEo2 cSo2csti cWo2 csti2swo2 swo1

Crossbar control

C
ro

ss
ba

r
D

at
a

fr
om

 b
uf

fe
rs

cNi
cEi
cSi
cWi
csto

Crossbar output (to neighboring tile or proc input port)

regi
cNi2

cEi2
cSi2

cWi2
csto

regi

swo2
swo1

Crossbar control

C
ro

ss
ba

r
D

at
a

fr
om

 b
uf

fe
rs

cNo
cEo
cSo
cWo
csti
rego

cNo
cEo2
cSo2
cWo2
csti2

2

op

1 13

w

1

59 44 42 39 36 33 24 21 18 15 12 9 6 3

63

Exopop

59

...

57

441 2

rego

0

w = (which bit) whether rego is from 1st or 2nd xbar)

pr = (whether we predict a branch/jump or not)

48 44

00 9’b00

swi1
swi2

27 24

R

1

R = (relative bit) - add PC to imm (for branches)

58
93

Opcode Map (bits 62..58)

Note: for this implementation, the BXX instructions are automatically rewritten into the equiva-
lent JUMP versions on swsw instructions. The switch RTL code (except in implementation of the
swlw/swsw instructions) does not need to treat the branches and jumps separately.

ExOp Map (bits 47..44)

Port Name Map (primary static switch)

Port Name Map (secondary static switch)

instruction[60..58]

000
(R=0)

010
(R=0)

100
(R=0)

110
(R=0)

001
(R=1)

011
(R=1)

101
(R=1)

111
(R=1)

00 ExOp JLTZ JNEZ JGEZ BLTZ BNEZ BGEZ

01 JAL J JGTZ JEQZ BAL B BGTZ BEQZ

10

11 JLEZ JNEZD JEQZD DEBUG BLEZ BNEZD BEQZD

instruction[45..44]

00 01 10 11

00 NOP MOVE JR JALR

01

10

11

Port 000 001 010 011 100 101 110 111

none csto cWi cSi cEi cNi swi1 regi

Port 000 001 010 011 100 101 110 111

none csto cWi2 cSi2 cEi2 cNi2 swi2 regi
94

14.0 Event Counter Support

The event counters are built as an array of 16 c_trigger modules. Each c_trigger has a 32 bit
counter. These counters count down every time a particular event occurs. When the counter tran-
sitions from 0 to -1, it will assert a line (the “trigger”) which will hold steady until the user writes
new value into the counter. These triggers are visible in the EVENT_BITS register, and are OR’d
together to form the EX_BITS EVENT_COUNTER bit, which can cause an interrupt. The
counter latches the PC (without the low zero bits) of the instruction that caused the event into bits
[31:16] of the counter (use the rlm instruction to extract them!). The counter will continue to
count down regardless of the setting of the trigger. Because the PC is stored in the high bits, there
is a window of time in which subsequent events will not corrupt the captured pc. Note that if the
event is not instruction related, the setting of the PC is undefined. The event counters can be both
read and written by the user. There is typically a one cycle delay between when an event occurs
and when a mfec instruction will observe it, there is also a number of cycles (2) before an event
trigger interrupt will fire.

Table 3: Event counters
headings: # = counter number, s = stage associated with this event.
(M = memory, E = execute, F = fpu, S = switch, R = register fetch, @ = ignores single instruction mode)

s Function Notes EVENT_CFG2

0 @ Cycles so handler can bound acquisition time bit 25 = 0

0 F Write Over Read detects when a resident cache line is marked
dirty by a sw to an odd address for the first time.
note: if the sw instruction is preceded by a lw/
sw/flush instruction, this mechanism does not
have the bandwidth to verify the previous state
of the bits. It will conservatively count it as an
event.

bit 25 = 1

1 M Cache Writebacks includes flushes

2 M Cache Fills

3 M Cache Stall Cycles Total number of cycles that backend of pipeline
is frozen by cache state machine. Includes write-
back and fill time, as well as timing stolen by
non-dirty flush instruction executions.

4 E Cache Miss Ops # of flush, lw, sw instructions Bit 0 = 0

4 E FPU Ops number of instructions issued to FPU
(includes *.s, *.w)

Bit 0 = 1

5 E Possible Mispredicts Conditional Jumps and Branches,
ERET, DRET, JR, JALR

Bit 1 = 0

5 E Possible Mispredicts Possible Mispredicts due to wrong SBIT
(i.e, only conditional jumps and branches)

Bit 1 = 1

6 E Actual Mispredicts Mispredicts Bit 2 = 0

6 E Actual Mispredicts Mispredicts due to wrong SBIT Bit 2 = 1

7 @ Switch Stalls On switch (PC captured is switch pc)

8 @ Possible Mispredicts On switch (PC captured is switch pc)

9 @ Actual Mispredicts On switch (PC captured is switch pc)

10 @ Pseudo Rand LFSR X_next = (X >> 1) | (xor(X[31,30,10,0]) << 31)
note: sampling this more than once per 32 cycles
will produce highly correlated numbers.

11 R Func Unit Stalls Stalls due to bypassing (e.g., the output of the
preceding instruction is not available yet) or
because of interlocks on the fp/int dividers.

Bit 3 = 1/0

11 @ GP General Network Processor Port Counting Bit 4 = 1/0

11 @ MP Memory Network Processor Port Counting Bit 5 = 1/0

11 @ Instrs Issued1 Number of instructions that enter Execute stage. Bit 23 = 1/0

12 R Non-cache stalls # stalls not due to cache misses
(includes isw/ilw stalls, if trigger fires on isw/
ilw, the pc will be the pc of the instruction in the
rf stage, rather than the isw/ilw instruction)

Bit 6 = 1/0

12 @ GW General Network West Port Counting Bit 7 = 1/0

12 @ MW Memory Network West Port Counting Bit 8 = 1/0

13 R ISW/ILW issued # ilw/isw instructions issued Bit 9 = 1/0

13 @ GS General Network South Port Counting Bit 10 = 1/0

13 @ MS Memory Network South Port Counting Bit 11 = 1/0

13 @ Instrs Issued2 Number of instructions that enter execute stage Bit 24 = 1/0

14 R CSTO stalls Blocked on CSTO Bit 12 = 1/0

14 R CGNO stalls Blocked on CGNO Bit 13 = 1/0

14 R CMNO stalls Blocked on CMNO Bit 14 = 1/0

14 @ GE General Network East Port Counting Bit 15 = 1/0

14 @ ME Memory Network East Port Counting Bit 16 = 1/0

15 R CSTI stalls No data available on CSTI Bit 17 = 1/0

15 R CSTI2 stalls No data available on CSTI2 Bit 18 = 1/0

15 R CGNI stalls No data available on CGNI Bit 19 = 1/0

15 R CMNI stalls No data available on CMNI Bit 20 = 1/0

Table 3: Event counters
headings: # = counter number, s = stage associated with this event.
(M = memory, E = execute, F = fpu, S = switch, R = register fetch, @ = ignores single instruction mode)

s Function Notes EVENT_CFG2

 The low bits of the EVENT_CFG register allow the user to only count events that occur on a
single instruction at a particular main processor PC instead of across all PCs. For single instruc-
tion mode, set the low bit of EVENT_CFG, and place the PC to sample (excluding the low two
zero bits) into bits [15:1]. In cases where the event does not have an associated main processor
PC (marked with the “@” in the table), the EVENT_CFG single instruction mode setting is
ignored. The high bits of EVENT_CFG selectively enable counting on a per event basis, but do
not suppress existing triggers.

The EVENT_CFG2 SPR allows the user to configure the events that a particular event
counter counts. The Event Counter table shows the setting of these bits. In the cases where two
events are listed in the same box, the counter is configured through EVENT_CFG2 to count one
or the other. In cases where multiple events share the same event counter but are not listed in the
same box, the corresponding bits EVENT_CFG2 select the subset of events that will trigger an
increment of the event counter. In some cases, there are nonsensical combinations (say GE and
csto stalls).

 The meaning of the GN GE GS GW GP MN ME MS MW MP events are configured by the
EC_DYN_CFG SPR. Each event corresponds to a network N (G = general, M = memory) and a
direction D (N=north, E=east, ...) The meanings are as follows:

15 @ GN General Network North Port Counting Bit 21 = 1/0

15 @ MN Memory Network North Port Counting Bit 22 = 1/0

val ec_dyn_cfg fields - Description

0 # cycles the output port D wanted to transmit but could not because of blockage on a neighboring tile

1 # of words transmitted from input port D to output port P

2 # of words transmitted from input port D to output port W

3 # of words transmitted from input port D to output port S

4 # of words transmitted from input port D to output port E

5 # of words transmitted from input port D to output port N

6 # of words transmitted from input port D

7 # cycles that input port D had data to transmit was not able to

Table 3: Event counters
headings: # = counter number, s = stage associated with this event.
(M = memory, E = execute, F = fpu, S = switch, R = register fetch, @ = ignores single instruction mode)

s Function Notes EVENT_CFG2

15.0 Administrative Procedures

Warning: This stuff is somewhat outdated.

Interrupt masking

To be discussed at a later date.

Processor thread switch (does not include switch processor)

EPC must be saved off and new values put in place. A ERET
will cause an atomic return and interrupt enable.

mfsr $29, EPC
sw $29, EPC_VAL($0)
lw $29, NEW_EPC_VAL($0)
mtsr EPC, $29
lw $29, OLD_R29($0)
eret # return and enable interrupt bits

Freezing the Switch

The switch may be frozen and unfrozen at will by the processor.
This is useful for a variety of purposes. When the switch is frozen,
it ceases to sequence the PC, and no routes are performed.

Reading or Write the Switch’s PC

The switch processor’s PC can be written at any time. However, it is often the case that one will
want to freeze the switch before doing so.

mtsr SW_PC, $2 # set new switch PC to $2

The PC of the switch may be read at any time, in any order. However, we imagine that this opera-
tion will be most useful when the switch is frozen.

mtsri FREEZE, 1# freeze the switch
mfsr $2, SW_PC# get PC
mtsri FREEZE, 0 # unfreeze the switch

Reading or Writing the Processors’s IMEM

This will stall the processor for one cycle per access. The read or write will cause
the processor to stall for one cycle. Addresses are multiples of 4. Any low bits will
be ignored.

ilw $3, 0x160($2)# load a value from the proc imem
isw $5, 0x168($2)# store a value into the proc imem

Reading or Writing the Switch’s IMEM

The switch can be frozen or unfrozen. The read or write will cause
the switch processor to stall for one cycle. Addresses are multiples of 4. Any low bits will
be ignored. Note that instructions must be aligned to 8 byte boundaries. The switch imem
instructions are 64 bits. They are store in XINU form; i.e., the word containing the opcode is
stored last, at an address ending in xxx100b.

 When looking at a hex-dump of the instructions, the last byte of the instruction contains the
opcode.

swlw $3, 0x160($2) # load a value from the switch imem
swlw $4, 0x164($2) # load a value from the switch imem

(this word contains the opcode)

swsw $5, 0x168($2) # store a value into the switch imem
swsw $6, 0x168($2) # store a value into the switch imem

Determining how many elements are in a given switch buffer

At any point in time, it is useful to determine how many elements are waiting in the buffer of a
given switch. There are two SRs used for this purpose, SWBUF1, which is for the first set of input
an output ports, and SWBUF2, which is for double-bandwidth switch implementations. The for-
mat of these status words is as follows:

to discover how many elements are waiting in csto queue

mfsr $2, SWBUF1 # load buffer element counts
andi $2, $2, 0x1F # get $csto count

Using the watchdog timer

The watchdog timer can be used to monitor the dynamic network and determine if a deadlock
condition may have occurred. WATCH_VAL is the current value of the timer, incremented every
cycle, regardless of what is going on in the processor.
WATCH_MAX is the value of the timer which will cause a watch event to occur:

There are several bits in WATCH_SET which determine when WATCH_VAL is reset and if an
interrupt fires (by default, these values are all zero):

code to enable watch dog timer for dynamic network deadlock

mtsr WATCH_MAX, 0xFFFF # 65000 cycles
mtsr WATCH_VAL, 0x0 # start at zero
mtsr WATCH_SET, 0x3 # interrupt on stall and no

dynamic network activity
jr 31

watchdog timer interrupt handler
pulls as much data off of the dynamic network as
possible, sets the DYNREFILL bit and then
continues

sw $2, SAVE1($0) # save a reg
(not needed
if reserved regs for handlers)

sw $3, SAVE2($1) # save a reg
lw $2, HEAD($0) # get the head index

Bit Name effect

0 DYN_MOVE reset WATCH_VAL when a data element is removed from dynamic network
(or refill buffer), or if no data is available on dynamic network ?

1 NOT_STALLED reset WATCH_VAL if the processor was not stalled ?

2

3

4

5

31 5 2 0

WATCH_SET
3

D

6

S
1 1 1 1 11status reg 11

147

0 00 0 0 0 0

lw $3, TAIL($0) # get the tail index
add $3, $3,1
and $3, $3, 0x1F # thirty-one element queue
beq $2, $3, dead # if queue full, we need some serious work
blop:
lw $2, TAIL($0)
sw $3, TAIL($0) # save off new tail value
sw $cgni, $2(BUFFER) # pull something out of the network
mfsr $2, D_AVAIL # stuff on the dynamic network still?
beqz $2, out # nothing on, let’s progress
lw $2, SAVE1($0) # restore register (delay slot)

otherwise, let’s try to save more
move $2, $3
add $3, $2, 1
and $3, $3, 0x1F # thirty-one el queue
bne $2, $3, blop # if queue not full, we process another
lw $2, SAVE1($0) # restore register (delay slot)

out:
mtsr DYNREFILL, 1 # enable dynamic refill
dret
lw $3, SAVE2($1) # restore register

Setting or Reading an Exception Vector

Exception vectors are instructions located at predefined locations in memory to which the proces-
sor should branch when an exceptional case occurs. They are typically branches followed by
delay slots. See the Exceptions sections for more information on this.

ILW $2, ExceptionVectorAddress($0) # save old interrupt instruction
ISW $3, ExceptionVectorAddress(40) # set new interrupt instruction

Using Dynamic Refill (DYNREFILL/EX_DYN_REF/DR_VAL)

Dynamic refill mode allows us to virtualize the dynamic network input port. This functionality is
useful if we find ourselves attempt to perform deadlock recovery on the dynamic network.
When DYNREFILL is enabled, a dynamic read will take its value from the “DR_VAL” register
and cause a EX_DYN_REF immediately after. The deadlock countdown timer (if enabled) will be
reset as with an dynamic read. This will give the runtime system the opportunity to either insert
another value into the refill register, or to turn off the DYNREFILL mode.

enable dynamic refill

mtsri DYNREFILL, 1 # enable dynamic refill
mtsr DR_VAL, $2 # set refill value
dret # return to user

drefill exception vector
removes an element off of a circular fifo and places it in DR_VAL
if the circular fifo is empty, disable DYNREFILL
if (HEAD==TAIL), fifo is empty
if ((TAIL + 1) % size == HEAD), fifo is full

sw $2, SAVE1($0) # save a reg (not needed if
reserved regs for handlers)

sw $3, SAVE2($1) # save a reg
lw $2, HEAD($0) # get the head index
lw $3, $2(BUFFER) # get next word
mtsr DR_VAL, $3 # set DR_VAL
add $2, $2, 1 # increment head index
and $2, $2, 0xF # buffer is 32 (31 effective) entries big
lw $3, TAIL($0) # load tail
sw $2, HEAD($0) # save new head
bne $2,$3, out # if head == tail buffer is empty
lw $2, SAVE1($0) # restore register (delay slot)
mstri DYNREFILL, 0 # buffer is empty, turn off DYNREFILL

out:
dret
lw $3, SAVE2($1) # restore register

Schedules

MBT: 20 JK: 21 SL: 2 JM: 5

MBT: 31+30 JK: 25+30 ALB: 25+30 SL: 9 JM: 5

Resources: Anant, Andras, Albert, Ben, JasonM, Saman,
 Elliot, Mark, JasonK, Walt, Sam, Omar, Michael, Matt, Kevin

These quantities are in work-weeks, not wall-clock weeks. They
do not include times for FIXES, SETBACKS, CLASSES,
CONFERENCES, PAPERS, VACATIONS, or IBM INTERACTIONS.

Design Sim RTL

Initial Run

Muxing / Pin Problems 3 jm 2 jm 2 sl

Caching - Integration 5 mt 4 mt 6 jk

Dynamic Network 3 mt 2 mt 8 jk

SPRs/INT 1 mt 1 mt 7 jk

Misc 4 mt

21 days = 5 weeks Mar 10

Pipelining, Timing Design Sim RTL

Planning 6 mt/jk

FPU 5 alb - 5 alb

Static Net 5 mt 5 jm 9 sl

Mustang 0 0 15 alb

Control 5 mt 8 mt 14 jk

Branch 5 mt 2 mt 5 jk

Timing Iteration 30 al/jk/mt

65 days = 13 weeks May 1

Hardware Path: 5+13+7 weeks = 25 weeks
Testing Path: 5+5+20 weeks = 30 weeks

Design Validation

RawCC (1 month) Walt

SUDS (1 month) Matt

I-Caching (1 month) Jason Miller

BenOS (1 month) Ben

ElliotCC (1 month) Elliot

 5 weeks

Design Verification

Testing Infrastructure
- Torture
- Test integration framework
- Basher infrastructure
- Testing Strategy

8 weeks

White box testers All 8 weeks

Bashers All 20 weeks

20 Weeks

Design Finalization

Pins PLLs, Clocks, IBM tools,
Design Rule Fixes

7 weeks (Albert, Omar)

Boards JasonM, Kevin

7 weeks

Massachusetts Institute of Technology
Laboratory of Computer Science

RAW Prototype Chip
Verification Strategy

Michael Taylor

Version 1.0

1.0 Foreword

This subdocument describes the verification strategy of the Raw processor. Verification seems to
be an uncertain science. This document is a first stab at trying to solidify our plans. I recommend
that readers of this document also read "www.cs.princeton.edu/~doug/papers/cmu.ps," which is
the reference that I have used for this document.

2.0 Introduction

The thesis of "Large-Scale Hardware Simulation: Modeling and Verification Strategies" is that
the purpose of verification is to find bugs. This may seem like a simple premise, but an alternative
view might presuppose that the purpose of verification is to attain assurance that the design is
sound.
If we believe the thesis of that paper, then our goal should be to find bugs in the design rather than
to seek assurance. That paper proposes that a more dynamic approach to bug finding should be
applied: explore approaches that maximize payoff, and change those approaches as they yield
lesser results. This implies that a basic idealogy and initial plan for bug finding should be applied,
but as more information about the types and frequencies of bugs becomes available, we should
adjust our plan. This amounts more or less to an open season on bugs, where the hunters rely on
previous experience and their own cleverness to bring the bugs in, rather than creating a grid
across the forest and checking each point.

3.0 Targetted (unit) Tests

Initial, we should have unit targetted tests for every major component of the chip. This includes:

Integer Datapath,
Floating Point Datapath,
Switch Processor,
Static Networks,
Dynamic Networks,
Muxing Logic,
Data Cache (including misses),
Fetch Unit (including mispredicts),
Interrupts and interrupt logic,
Status Registers,
Stall Logic,
Bypass Logic,
Off-chip I/O support

Some of these tests will require coordination of events between different systems in order to test
thoroughly. These tests will be hand-written by raw group members, and in such a way that we
can chain them together and test interaction conditions. These tests will take the form of programs

rather than as test-benchs for the verilog so that the results of the simulator and the rtl can be
cross-verified.

4.0 Unit test Methodology

To facilitate the creation of tests that operate in a common framework, we need to come up
with a set of primitives which test writers can use in their test code.

Certainly, two obvious ones are:

PASS();
FAIL();

It might also be productive to have some other hints that describe what resources this test
uses so that it can be automatically mixed with other tests.

5.0 Small Scale Test

There might also be a use in collecting together a set of smallish codes which exercise the
abilities of the chip but are still easy to debug. This allows us to rely on the compiler and external
resources for creating useful tests.

6.0 Random Tests

These are tests that are automatically generated by TORTURE, krste’s test generator program.

7.0 Bashing / Daemon testing

These tests are intended to target interactions of systems. They combined together tests with
interrupt handlers and other extra-ordinary behaviour. One idea is to have a stall signal in the tiles
which generates random stalls for random periods of time.

8.0 Code reviews

Careful reading of verilog code by relevant parties.

	1 INTRODUCTION
	1.0 MANIFEST
	1.1 MOTIVATION FOR A NEW TYPE OF PROCESSOR
	1.1.1 The sign of the times
	1.1.2 An old problem: SpecInt
	1.1.3 A new problem: Extroverted computing
	1.1.4 New problem, old processors?
	1.1.5 New problems, new processors.

	1.2 THIS DOCUMENT AND HOW IT RELATES TO RAW
	1.2.1 Design document thesis statement
	1.2.2 The goals of the prototype
	1.2.3 The Billion Transistor Question
	1.2.4 The “all-software hardware” question

	1.3 SUMMARY

	2 EARLY DESIGN DECISIONS
	2.0 THE BIRTH OF THE FIRST RAW ARCHITECTURE
	2.0.1 RawLogic, the first Raw prototype
	2.0.2 Our Conclusions, based on Raw logic
	2.0.3 Our New Concept of a Raw Processor

	3 WHAT WE’RE BUILDING
	3.0 THE FIRST RAW ARCHITECTURE
	3.0.1 A mesh of identical tiles
	3.0.2 The tile
	3.0.3 The tile processor
	3.0.4 The switch processor
	3.0.5 Putting it all together

	3.1 RAW MATERIALS
	3.1.1 The ASIC choice
	3.1.2 IBM: Our ASIC foundry
	3.1.3 Back of the envelope: A 16 tile Raw chip

	3.2 THE TWO RAW SYSTEMS
	3.2.1 A Raw Handheld Device
	3.2.2 A Multi-chip Raw Fabric, or Supercomputer

	3.3 SUMMARY

	4 STATIC NETWORK DESIGN
	4.0 STATIC NETWORK
	4.0.1 Flow Control
	4.0.2 The Static Input Block
	4.0.3 Static Network Summary

	4.1 THE SWITCH (SLAVE) PROCESSOR
	4.1.1 Partial Routes
	4.1.2 Virtual Switch Instruction Memory

	4.2 STATIC NETWORK BANDWIDTH
	4.3 SUMMARY

	5 DYNAMIC NETWORK PRIMER
	5.0 DYNAMIC NETWORK
	5.1 SUMMARY

	6 TILE PROCESSOR DESIGN
	6.0 NETWORK INTERFACE
	6.1 SWITCH BYPASSING
	6.1.1 Instruction Restartability
	6.1.2 Calculating the Tile-to-Tile Communication Latency

	6.2 MORE STATIC SWITCH INTERFACE GOOK
	6.3 MECHANISM FOR READING AND WRITING INTO INSTRUCTION MEMORY
	6.4 RANDOM TWEAKS
	6.5 THE FLOATING POINT UNIT
	6.6 RECONFIGURABLE LOGIC
	6.7 CGNO Commit Buffer
	6.8 SUMMARY

	7 I/O AND MEMORY SYSTEM
	7.0 THE I/O SYSTEM
	7.0.1 Raw I/O Model
	7.0.2 The location of the I/O ports (Perimeter versus Area I/O)
	7.0.3 Supporting Slow I/O Devices

	7.1 THE MEMORY SYSTEM
	7.1.1 The Path to Copious Memory

	7.2 SUMMARY

	8 DEADLOCK
	8.0 DEADLOCK CONDITIONS
	8.0.1 Dynamic - Dynamic
	8.0.2 Dynamic - Static
	8.0.3 Static - Dynamic
	8.0.4 Static - Static
	8.0.5 Unrelated Dynamic-Dynamic
	8.0.6 Deadlock Conditions - Conclusions

	8.1 POSSIBLE DEADLOCK SOLUTIONS
	8.2 DEADLOCK AVOIDANCE
	8.2.1 Ensuring that messages at the tail of all dependence chain are always sinkable.
	8.2.2 Limit the amount and directions of data injected into the network.
	8.2.3 Deadlock Avoidance - Summary

	8.3 DEADLOCK RECOVERY
	8.3.1 Deadlock Detection
	8.3.2 Deadlock Detection Approximation
	8.3.3 Deadlock recovery
	8.3.4 More deadlock recovery problems
	8.3.5 Deadlock Recovery - Summary

	8.4 DEADLOCK ANALYSIS
	8.5 THE RAW DEADLOCK SOLUTION
	8.6 THE HIGH-PRIORITY DYNAMIC NETWORK
	8.7 PROBLEMS WITH I/O ADDRESSING
	8.8 THE FUNNY BITS
	8.9 SUMMARY

	9 Implementation of the DYNAMIC NETWORKS
	9.0 INTRODUCTION
	9.1 A TALE OF TWO DYNAMIC NETWORKS
	9.2 THE DYNAMIC NETWORK HARDWARE
	9.2.1 The Dynamic Network Hardware
	9.2.1.1 Alternative: Multiplexing the Wires

	9.2.2 The Dynamic Network Router
	9.2.2.1 Dynamic Network Message Format

	9.2.3 Dynamic Scheduler
	9.2.4 Dynamic Network Interfaces
	9.2.4.1 The Common Network Interface
	9.2.4.2 Memory Network Interface
	9.2.4.3 Memory Interrupts
	9.2.4.4 General Network Interface
	9.2.4.5 General Network - Deadlock Recovery

	9.3 SUMMARY

	10 Memory Network Redux
	10.0 INTRODUCTION
	10.1 Buffer Metering

	11 INTERRUPTS
	11.0 Types of interrupts supported
	11.0.1 Two Interrupt Levels

	11.1 Priority of the Interrupts
	11.2 Interrupt Procedure
	11.3 Synchronous Interrupts
	11.3.1 GDN Refill Interrupt
	11.3.2 GDN Complete Interrupt
	11.3.3 Trace Interrupt

	11.4 Asynchronous Interrupts
	11.4.1 External (MDN) Interrupts
	11.4.2 Timer Interrupts
	11.4.3 GDN Avail Interrupt
	11.4.4 Interrupt Levels
	11.4.5 Masks and enables

	12 MULTITASKING
	12.0 MULTITASKING
	12.1 CONTEXT SWITCHING
	12.1.1 Context switches and I/O Atomicity
	12.1.1.1 Message atomicity on the static network
	12.1.1.2 Message atomicity on the dynamic network
	12.1.1.3 Request Atomicity

	12.2 SUMMARY

	13 THE MULTICHIP PROTOTYPE
	13.0 THE RAW FABRIC / SUPERCOMPUTER
	13.1 PIN COUNT PROBLEMS AND SOLUTIONS
	13.1.1 Expose only the static network
	13.1.2 Remove a subset of the network links
	13.1.3 Do some more muxing
	13.1.4 Do some encoding
	13.1.5 Pray for more pins
	13.1.6 Find a practical but ugly solution

	13.2 SUMMARY

	14 CONCLUSIONS
	14.0 CURRENT PROGRESS ON THE PROTOTYPE
	14.1 PRELIMINARY RESULTS
	14.2 EXIT
	14.3 REFERENCES

	15 APPENDAGES
	1.0 Foreword
	2.0 Processor
	3.0 Register Conventions
	4.0 Instruction Set
	5.0 Integer Computation Instructions
	6.0 Floating Point Computation Instructions
	7.0 Floating Point Compare Options
	8.0 Administrative Instructions
	8.1 Cache Administrative Instructions - Address Based
	8.2 Cache Administrative Instructions - Tag based

	9.0 Opcode Map
	10.0 Status and Control Registers
	11.0 Exception Vectors
	12.0 Switch Processor
	13.0 Switch Processor Instruction Set
	14.0 Event Counter Support
	15.0 Administrative Procedures
	2.0 Introduction
	3.0 Targetted (unit) Tests
	4.0 Unit test Methodology
	5.0 Small Scale Test
	6.0 Random Tests
	7.0 Bashing / Daemon testing
	8.0 Code reviews

