Softwar e-based | nstruction Caching for Embedded Processors

Jason E Miller ~ Anant Agarwal

Computer Science and Artificial Intelligence Lab (CSAIL)
Massachusetts Institute of Technology
Cambridge, MA 02139

jasonm@alum.mit.edu, agarwal@mit.edu

Abstract

While hardware instruction caches are present in virtually all
general-purpose and high-performance microprocessors today,
many embedded processors use SRAM or scratchpad memories
instead. These are simple array memory structures that are di-
rectly addressed and explicitly managed by software. Compared
to hardware caches of the same data capacity, they are smaller,
have shorter access times and consume less energy per access. Ac-
cess times are also easier to predict with simple memories since
there is no possibility of a “miss.” On the other hand, they are more
difficult for the programmer to use since they are not automatically
managed.

In this paper, we present a software system that allows all or part
of an SRAM or scratchpad memory to be automatically managed
as a cache. This system provides the programming convenience of
a cache for processors that lack dedicated caching hardware. It has
been implemented for an actual processor and runs on real hard-
ware. Our results show that a software-based instruction cache can
be built that provides performance within 10% of a traditional hard-
ware cache on many benchmarks while using a cheaper, simpler,
SRAM memory. On these same benchmarks, energy consumption
is up to 3% lower than it would be using a hardware cache.

Categories and Subject Descriptors B.3.2 [Memory Structures]:
Design Styles—Cache memories; D.4.2 [Operating Systems]:
Storage Management—Storage hierarchies, virtual memory; C.4
[Performance of Systems]: Design studies; C.3 [Special-purpose
and Application-based Systems]: Real-time and embedded systems

General Terms Design, Experimentation, Measurement, Perfor-
mance

Keywords Software caching, instruction cache, chaining

1. Introduction

As portable devices such as cellular phones, PDAs and MP3 play-
ers play a larger role in society, people expect increasingly sophis-
ticated functionality from them. These devices are quickly becom-
ing universal communication and media interfaces, incorporating a
wide range of computationally intensive applications. The key to
enabling these applications is higher-performance embedded pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’06 October 21-25, 2006, San Jose, California, USA.

Copyright © 2006 ACM 1-59593-451-0/06/0010. . . $5.00

Reprinted from ASPLOS ’06, Proceedings of the Twelfth International Conference on
Architectural Support for Programming Languages and Operating Systems, October
21-25, 2006, San Jose, California, USA., pp. 293-302.

293

cessors. However, the ever-increasing gap between processor and
DRAM speeds is a major obstacle to acheiving this performance.
General-purpose processors mitigate long memory access latencies
by introducing caches into the memory hierarchy. However, caches
have not been broadly accepted in embedded systems for a variety
of reasons including: design and manufacturing cost, power con-
sumption and timing uncertainty.

Typically, caches are designed so that they function transpar-
ently to the software running on the processor. Special-purpose
hardware takes care of checking the cache for needed data, fetching
data from a larger memory and managing which subset of the total
data is currently in the cache. This makes programming processors
with caches easy since the programmer does not need to explicitly
manage the memory hierarchy. However, hardware caches are not
without their drawbacks. They are complex subsystems that require
substantial effort in initial design, timing closure and verification,
thereby increasing time-to-market and development costs. The tags
and control logic consume considerable area that is dedicated solely
to caching and is therefore unavailable for extra computation or
storage, increasing manufacturing costs. During operation, caches
consume a large fraction of the total processor power, especially for
low-power processors [26, 4]. Much of this power is used for tag
checks and control rather than the actual instruction accesses [41].
Finally, caches are seldom used in real-time environments because
they introduce unpredictable timing; unexpected cache misses can
result in missed real-time deadlines [28].

As a result of these problems, many embedded processors and
DSPs forgo hardware caches in favor of simpler, cheaper alterna-
tives [11]. In fact, even some larger multi-core processors such as
MIT’s Raw [35] and IBM’s Cell [16] use simple memories to re-
duce complexity and allow additional functional units to fit on a
single chip. Some of these processors provide only a simple on-
chip SRAM to hold all the program code and data (e.g., the Texas
Instruments TMS470, TMS320C28x and TMS320C000 family and
the SPE of Cell). Others (such as the TI TMS320C24x and Analog
Devices ADSP-21xx families) access external memory by default
but provide a small on-chip scratchpad memory [3] that can be
optionally accessed instead. Both of these are simple array mem-
ory structures that are directly addressed and explicitly managed
by software. Compared to hardware caches of the same data ca-
pacity, they are about 20% smaller, have shorter access times and
consume 20% to 50% less energy per access (assuming a 2-way set
associative cache). These reductions are mainly due to their lack of
tag storage and comparison structures. Access times are also eas-
ier to predict with SRAM and scratchpad memories since there is
no possibility of a miss. On the other hand, these simple memo-
ries are much more difficult for the programmer to use. Since they
are not automatically managed, the programmer typically needs to
painstakingly partition their code or data into manageable pieces
and then manually copy the pieces into or out of the local memory

as needed. This requires considerable effort and a detailed level of
knowledge about the program that is difficult to obtain when using
high-level languages.

This paper presents a complete software system that allows all
or part of a simple memory, such as an SRAM or scratchpad, to
be automatically managed as an instruction cache. This system
frees the programmer from the burden of meticulously managing
memory and provides performance similar to a hardware cache for
processors where the extra area and design effort are prohibitive.
In addition, there is the potential for lower power consumption
and increased performance, relative to a hardware cache, due to
customization of the software cache to each particular program’s
needs. The runtime portion of this system executes entirely on
the core CPU (time-sliced with the user application), making it
practical for use on a variety of existing architectures. Although
the advantages and disadvantages of caches discussed previously
apply equally to data and instruction caches, the two are accessed
in very different manners and patterns. Most program code is easily
analyzable and highly predictable while data accesses can be more
complex and harder to statically analyze. While either type of
cache can be implemented in software, they generally require very
different analysis and optimizations. In this work, we have decided
to focus on instruction caches exclusively. (See Section 5 for more
on data caches.)

This work builds on earlier work in overlays and virtual mem-
ory by transferring the concepts to current architectures and in-
corporating modern code-caching optimizations. Using these tech-
niques, we have effectively implemented a level-one instruction
cache entirely in software. Of course, the primary challenge with
implementing caches in software is achieving good performance.
Operations that take a single cycle in a hardware cache (such as
tag checks) can require many general-purpose instructions in soft-
ware. To combat this, the number of expensive operations must
be minimized. We find that with aggressive optimization, our soft-
ware cache is able to achieve performance within 10% of a general-
purpose hardware cache on many benchmarks.

This system is implemented on an actual processor and runs on
real hardware. It is independent of the source programming lan-
guage and has been used successfully with handwritten assembly
code and C programs to date. We also provide full support for inter-
rupts and allow arbitrary functions to be pinned down in the cache.
The system is complete and robust enough that it is being used as a
standard tool in several other independent research projects.

2. Design and Implementation

To explore the concept of software caching, we have implemented
a working system on the Raw prototype microprocessor [35, 36].
Raw is one of a new generation of tiled processors and is composed
of 16 processing cores (called tiles) arranged in a 2-D array and
connected by communications networks. However, this work deals
with only a single tile at a time. In isolation, each tile is similar to a
typical embedded processor. A single tile contains a 32-bit, 8-stage
RISC pipeline based on the MIPS instruction set with a 32 kB data
cache and a 32 kB directly-addressed SRAM instruction memory
(the I-mem). Instructions may only be fetched from the I-mem, not
directly from external memory. External memory is accessed by
sending messages over a special-purpose network to an external
SDRAM controller.

In this paper, we adopt the usage of the terms “virtual address”
and “physical address” from the early virtual memory literature.
Addresses within the I-mem are referred to as physical addresses
since they are the addresses understood directly by the hardware.
Addresses in the external memory are referred to as virtual ad-
dresses since they form the larger program address space that is
mapped into the I-mem by the software caching system.

294

2.1 Overview

The software instruction caching system consists of two compo-
nents: a runtime library and a preprocessor program. The runtime
library manages the cache during program execution. The prepro-
cessor transforms the original program code (which assumes a
32-bit address space) into appropriate cache blocks and modifies
control-flow instructions to use the runtime library.

All but the simplest programs make use of data and instruc-
tions in a dynamic way that is impossible to fully predict before
execution. Therefore, a software caching system must have a run-
time component to handle these unpredictable requests. The run-
time library is responsible for servicing requests for instructions
and managing the I-mem via normal processor instructions. It re-
mains resident in the lower part of the I-mem and uses the upper
part for storing blocks retrieved from DRAM. The runtime system
keeps track of what code is currently in the I-mem, fetches code
from external memory when needed, decides where to store that
code when it arrives and evicts code when necessary.

However, any work that can be done off-line reduces the amount
of work that needs to be done at runtime. Therefore, any efficient
software caching system will likely have an off-line preprocessing
phase as well. The preprocessor performs tasks such as rearranging
code into convenient chunks and modifying code to make use of
the runtime system.

After preprocessing, the modified object files are linked with the
runtime library to create the final, cache-enabled binary. As a result,
the I-cache system is actually integrated into each program. This
means that different programs could potentially use completely dif-
ferent caching schemes. Although this can cause some difficulties
when running in a multi-tasking environment, it is generally not a
concern for embedded processors which typically run a single pro-
gram at a time.

The basic unit of code manipulated by the cache is referred to
as a cache block. The cache is managed by pulling entire blocks
of code in from external memory as they are needed. As long as
execution stays within a block, the next instruction is guaranteed
to be present in the cache. When the flow of control leaves a block
and moves to a new block, the runtime system must check its data
structures to determine if the new block has already been loaded. If
it has, control is transferred to the new block immediately. If it has
not, the runtime system retrieves the block from external memory,
copies it into the cache (evicting an older block if necessary),
updates its data structures and then transfers control.

2.2 Code Modification

Since the I-caching system is integrated into each program, pro-
grams must be modified by a pre-processor in order to use it. This
modification may take place at any one of a number of points in
the tool chain. Potential choices include: the final stage of the com-
piler, before or during linking, and during loading of the program.
In our system, the code modification pass is performed by a binary
rewriter that operates on object files just before the linking stage.
Using a binary rewriter allows us to add instruction caching to pro-
grams from a number of different sources without having to write a
code modification pass for each source compiler. It also gives us the
potential to take extra time and memory to perform a more complex
analysis than would be practical with a loader implementation.

2.2.1 Cache Block Size

A cache block is defined as a chunk of program code that is re-
trieved, stored and evicted as a unit. It is similar to the concept of
a cache line in a hardware cache. There are many possible ways
to form blocks from the source program. Hardware caches simply
chop up the program into fixed-size lines without regard for the pro-
gram’s structure or control-flow. The obvious choice for a software

Modified Program Code

Original Program Code L1:

L1:
Destinations Table

jal_runtime.el
Lla:

Lia | Null
L1 L2
Null

jeql $3,$4, runtime.el
2: beasasa L1 jal runtime.e2

L4
L nop
L2:

jal L4
3:

la $31,L3
st $31, r31spill
jal_runtime.el

L.

©

(a) L3:
(b)

Figure 1. Example code modifications performed by the rewriter.
The grayed-out instructions represent non-control-flow instruc-
tions. For illustrative purposes, a block size of 5 instructions is
used here. Note that opcodes beginning with “b” use PC-relative
addressing while opcodes beginning with “j” use absolute address-

ing.

instruction cache is to use the program’s natural basic blocks as
cache blocks. Because basic blocks execute sequentially until they
reach their end, only the last instruction can cause control to leave
the block. Also, if the cache loads one basic block at a time, only in-
structions that will actually be executed will be fetched. Each cache
block in our system contains one basic block from the source pro-
gram. However, to simplify bookkeeping each cache block has a
fixed size. Therefore, basic blocks may need to be padded with NOP
instructions or split into multiple blocks in order to fit the cache
block size (see Fig. 1a,b). We have experimented with sizes of 8
and 16 instructions.

When using 8-word cache blocks, very large basic blocks need
to be split many times, creating extra runtime overhead. To reduce
this overhead, the rewriter may tag cache blocks with an autoload
value that causes the runtime system to automatically load up to
four consecutive cache blocks as a single unit. In effect, this allows
the system to use cache blocks of 8, 16, 24 or 32 words.

2.2.2 Control-flow Instructions (CFIs)

The key to the operation of the software instruction cache is the
modification of instructions that might cause control to pass out of
the current cache block. These instructions are modified to jump
to the runtime system instead of their original destinations (see
Fig. 1b). The runtime system determines the originally intended
destination, loads a new cache block into the cache if necessary,
and transfers control to the appropriate block.

For maximum efficiency at run time, it may be necessary for the
preprocessor to modify the addressing mode of CFls in addition
to their destinations. Because the runtime library remains resident
in I-mem at a fixed location, any CFI that jumps to it should
use an absolute addressing mode. This allows the CFI (and the
block that contains it) to be placed anywhere within the I-mem
and still jump to the same place. On the other hand, any CFI that
jumps to a location within its own cache block should use a PC-
relative addressing mode. Again, this will allow the cache block
to execute correctly no matter where it is placed. By selecting the
appropriate addressing mode during preprocessing, costly patching
of destination addresses can be avoided at run time. The Raw
instruction set contains both PC-relative and absolute conditional
branches, allowing most instructions to be directly replaced (see
the beq instruction in Fig. 1a and its replacement in Fig. 1b). If all
the various combinations of CFI type and addressing mode are not
available, they can be synthesized using sequences of other CFls,
albeit with a reduction in efficiency.

295

When CFls are modified to point to the runtime system, their
original destinations must be recorded. Therefore, the rewriter
builds a table (the destinations table) that contains the original
destinations for the CFls that exit each cache block (see Fig. 1c).
During run time, this table will be stored in DRAM along with
the program code. The addresses stored in the table are virtual
addresses, i.e., they specify the location of the desired code in the
external memory. The rewriter identifies all places where virtual ad-
dresses are used and converts them to physically-addressed calls to
the runtime system. The runtime system can then use the data from
the destinations table to fetch the appropriate code from DRAM.

Each cache block can have multiple exit addresses stored in
the destinations table. To communicate which address should be
fetched, the runtime system has multiple entry points. The rewriter
modifies the different CFls to jump to the appropriate entry point.
However, some CFls cannot have their addresses placed in the table
because their destinations are not known until runtime. Indirect
jumps get their destinations from a register and therefore require
a special entry point in the runtime that expects the destination to
be passed in a register. Additional entry points can be added for
other special CFls such as function calls or interrupt returns.

Our initial implementation had a special entry point for jump-
and-link instructions that retrieved both the jump destination and
the link address from the destinations table. However, we found that
this made it difficult to apply certain optimizations to these jumps
S0 a new approach was devised. The rewriter translates jump-and-
link instructions into an explicit save of the link address, followed
by a simple jump. Since the link address is virtual, it is independent
of the physical address at which the block is loaded and can there-
fore be determined statically by the rewriter. This transformation
eliminates a special case entry point from the runtime system and
allows the jump to be optimized just as a regular jump would be.
This technique can also be used for other compound instructions
that cannot be implemented atomically under software I-caching.

2.3 Runtime System
2.3.1 Data Structures

Choosing appropriate bookkeeping data structures is crucial to the
efficient operation of a software cache. Lookups must be very fast
to ensure that cache hits have minimal overhead. Data structure
size is just as important as speed because data structures should be
stored in on-chip memory to ensure they can be accessed quickly.
If stored in on-chip data memory, the bookkeeping structures will
compete with the user program for space. Instead, we devote a por-
tion of the I-mem to bookkeeping. Since the I-mem is already man-
aged by the cache, this is a simple matter of reducing the amount
of storage available for cache blocks. Either way, excessively large
structures will hurt performance by robbing space from other uses.

The primary function of the runtime system is to keep track
of which blocks are currently in the cache and transfer control
to the appropriate block given a requested virtual address. This
is accomplished using a hash table that maps a virtual address to
the physical address where that block is currently loaded. Using
a hash table provides fast lookups but has the potential problem of
conflicts. Since checking multiple entries sequentially (or following
a chain of pointers) would be very costly in software, conflicts
are resolved by simply overwriting the old entry. This means that
the block referenced by the old entry will still be in the cache but
the runtime system will have forgotten about it. Any chained (see
Section 2.3.3) references to the block will still be able to use it but
if the runtime receives a request for the block in the future, another
copy will be loaded. Therefore, a hash-table with a load factor of
about 0.5 is used to reduce the number of conflicts.

In addition to the virtual-to-physical address mapping, the run-
time system uses another table (the block data table) to store in-

formation about each block that is currently in the cache. Both this
table and the hash table have a number of entries proportional to the
total number of block storage slots within the I1-mem. Because the
cache block size is fixed, the number of storage slots is fixed and
the size of all of the local data is static and independent of the size
of the user program. This means that accessing and updating this
data is fast and efficient and that the total application size is limited
by the DRAM size, not the I-mem size.

2.3.2 Operation

When the runtime system receives control from a block, it finds
the virtual address of the next block to be executed based on the
runtime entry point to which the block jumped. Once the desired
destination address has been found, a lookup is performed in the
hash table and control is transferred to the corresponding physical
address. If the destination address is not found in the table, requests
for the block are sent to external memory. While the runtime system
waits for the response, it selects a location for the new blocks
and takes care of bookkeeping. When the response arrives the new
code is copied into the appropriate place in the cache and its exit
addresses (from the destinations table) are copied into the block
data table for future use. The runtime system then jumps to the new
block and the cycle repeats itself.

The selection of a location for the new block is one opportunity
to improve on the methods of a hardware cache. In software it is
feasible to implement a fully-associative cache where any cache
block may be placed in any slot within the cache. With a hardware
cache, each cache line is typically limited to a small number of slots
(between one and four) based on a hash of its address. If lines are
pinned in a hardware cache, some of these slots become unavailable
and the probability of thrashing increases significantly. In a fully-
associative cache, pinning a block has a negligible effect on the
placement of other blocks and thrashing is avoided. Furthermore, a
two-way set associative cache (for example) permits only one line
to be pinned in each set while a fully associative cache can pin
as many blocks as will fit in the cache [18]. Since pinning code is
crucial for meeting real-time deadlines, this is a valuable advantage
for embedded systems.

If the cache is full, something must be evicted to make room.
So far, we have implemented two different replacement policies:
FIFO and flush. FIFO evicts the oldest block in the cache while
flush clears the entire cache and starts fresh. These are the two
most common replacement policies used by the various systems
that employ software code caches [19]; however, our system is not
necessarily limited to these choices. (One benefit of implementing
a cache in software is that it can be updated after the hardware is
deployed, as additional improvements are made.)

Although conventional wisdom indicates that FIFO is not a
good replacement policy, it avoids the complications of tracking
fragmented free space that occur when using an LRU or random
policy with a fully-associative cache. Also, because this is an in-
struction cache rather than a data cache, the access patterns tend
to be more sequential making FIFO more appropriate. FIFO has
additional advantages over LRU and random when used with the
chaining optimization described in the following section.

The flush policy is commonly employed by dynamic binary
translators (see Section 5). It requires less bookkeeping than FIFO
because blocks do not need to be individually evicted. The disad-
vantage of the flush policy is that a lot of very recently used code is
evicted. However, as we will see later, the advantages of the flush
policy are only truly realized when it is combined with chaining.

2.3.3 Chaining

With the system described above, every change in control-flow
results in a call to the runtime system. Since even a hit in the

296

older older

Block Block
A) A |
\ ol \\
Block 1 | Runtime | Block | Runtime
B i | System ; B : System
1 :
i v
Block | i [Block
C i C .
i - = # Unrecorded chain
Block Y Block --=» Recorded chain
\
° @ S ®)

newer newer

Figure 2. Example of jumps between blocks (a) before chaining
and (b) after chaining. The chain from Block A to Block C does
not need to be recorded when using FIFO replacement because A
will be evicted before C.

runtime system takes about 40 cycles, the overhead is substantial
and performance is poor. Chaining is an established technique [7,
39, 10, 2] that cuts out unnecessary jumps to the runtime system by
modifying the code in the cache. When the runtime system loads
a block into the cache, it goes back and changes the destination
of the jump that requested the block so that it jumps directly to
the new block. Now the next time that code is executed, it will
skip the call to the runtime system and incur zero overhead (see
Fig. 2). Chaining can be performed not only when a new block is
loaded, but also when a block is requested that is already present
in the cache. In fact, the runtime system can chain every time it is
executed except when the original jump was indirect (i.e., the target
address was stored in a register) [7].

The difficulty with chaining is that it complicates deallocation.
When a block to which a chain has been created is evicted from the
cache, every jump that points to it must be changed back to a jump
to the runtime system. This allows the block to be reloaded in case
it is needed again. In order to perform this unchaining, the runtime
system must keep track of the jumps that have been modified to
point to each block.

In general, there can be any number of chains to a particular
block requiring a variable amount of storage for the unchaining
information. However, to reduce the size and complexity of the
data structures we statically allocate storage for only one chain per
block. When this space is full, either no new chains can be created
to this block or the old chain must be undone to make room for the
new chain. However, as a side-effect of a FIFO replacement strat-
egy, it is not necessary to keep track of chains that go from older
blocks to newer blocks (see Fig. 2b). If a chain goes from an older
block to a newer block, it is guaranteed that the block containing
the jump that was modified will be evicted from the cache before
the block that is the destination of the jump. Therefore, it will never
need to be unchained. Thus, with the single chain storage slot, we
can create an unlimited number of chains from older blocks and a
single chain from a newer block for each block in the cache.

Now the beauty of the flush replacement policy becomes clear.
If the entire cache is cleared at once, all chains that have been
created are automatically thrown out. Thus, it is not necessary to
keep track of or undo any chains. Now there no limits on which
jumps can be chained and each chain takes less time to create. In
our implementation it takes six cycles to create a chain with either
FIFO or flush. However, with FIFO it takes up to 24 additional
cycles to determine whether a chain needs to be recorded and
record it if it does.

Indirect Jump Optimization Although indirect jumps cannot be
directly chained, it is still possible to use chaining to optimize
them. The problem with indirect jumps is that they might go to
a different address each time they are executed while a chain goes

to a single, fixed address. However, since indirect jumps are usually
used for function returns and most functions are called from only
a few places in the program, each indirect jump will likely go
to a small number of different addresses. By separating out these
addresses, they can each be chained individually. We use the same
basic technique as DAISY [13] to accomplish this. The indirect
jump is replaced with a sequence of instructions that compares the
jump address to various individual addresses and then executes a
normal jump if it finds a match. These normal jumps can then be
chained as with any other jump. In our current implementation, this
sequence is built up dynamically at runtime.

In essence, the address is being pre-screened to see if it matches
a block that we have already seen. The drawback to this approach is
that the pre-screening takes time and space. If an indirect jump goes
to many different addresses, it can take longer to do all the individ-
ual comparisons than it would have to just call into the runtime. As
a compromise, we adopt the heuristic that the sequence may grow
only to fill any remaining space in the fixed-size cache block. How-
ever, if the rewriter sees that the empty space is below a threshold
value, it will split the basic block and move the indirect jump to a
new block. This ensures that a certain minimum number of indi-
vidual comparisons can be done. When using 8-word cache blocks,
moving the jump to its own block may still leave insufficient space.
In this case, the rewriter can add additional empty cache blocks af-
ter the jump to meet the minimum. In our experience, guaranteeing
space for at least 3 comparisons provides the best performance on
most benchmarks.

Although this optimization of indirect jumps is possible with
both the FIFO and flush policies, we have chosen to implement it
only with the flush policy. This is due to the additional complica-
tion and bookkeeping that would be required to undo the individual
chains in the sequence. The fact that the flush policy does not re-
quire unchaining allows us to pursue more aggressive optimization
techniques that might not be practical if they needed to be reversed.

2.4 Pinned code

A key feature for meeting real-time requirements in a cached en-
vironment is the ability to pin certain pieces of code in the cache.
These pinned sections of code cannot be evicted and will therefore
have consistent, predictable timing every time they are executed.
Our system allows the programmer to specify functions that are to
be pinned. These functions are stored in I-mem separately from the
region used to store cache blocks. Therefore, the amount of space
available for blocks is decreased. However, since the functions are
permanently stored in I-mem, they require no additional runtime
bookkeeping. Pinned functions are not modified by the rewriter so
that they will not incur any I-caching overhead.

3. Evaluation

This section presents experimental results for a software-based I-
cache system implemented on the Raw microprocessor. First, we
describe our experimental methodology. Then, we present results
on the performance of our software I-caching system. Next, we
discuss energy consumption and give the results of our power
estimation study. Finally, we briefly discuss the impact of using
fixed-size cache blocks and present data on the amount of padding
this requires.

3.1 Methodology

The system was evaluated using the Mediabench [23] benchmark
suite. This set of nine benchmarks provides a sampling of com-
munications and media applications that are important for the
embedded domain. All data was collected using the Raw cycle-
accurate simulator BTL. This simulator has been extensively val-
idated against the actual microprocessor and models it precisely

297

on a cycle-by-cycle basis [36]. Although our software instruction
caching system works equally well on the simulator and the Raw
chip, we use the simulator for this study because it provides a richer
set of profiling tools to inspect the operation of our system. BTL
also uses an idealized 1/0 model that provides very short, consistent
times for 1/0 operations. This effectively removes any 1/O effects
from the results, thereby allowing us to focus on the user code.

The simulator also allows us to simulate alternative processor
designs for comparison. In addition to simulating the actual Raw
hardware, BTL is able to simulate Raw with two alternative in-
struction memory models: a general-purpose hardware I-cache and
a larger SRAM instruction memory. The hardware I-cache mod-
eled is a two-way set associative cache with a 32 byte (8 word) line
size and a 32 kB capacity. To create a fair comparison between the
software system and the hardware cache, the size of the I-mem was
increased by 25% for the software I-cache so that it would consume
roughly the same die area as the hardware cache with its tag stor-
age. The larger SRAM model functions in exactly the same way as
the actual Raw chip but has an I-mem capacity of 256 kB. Using the
larger I-mem, the simulator is able to run all of these benchmarks
(except mesa) without requiring any form of caching.

To assess the energy consumption of our software I-cache, we
use a version of our simulator which is adapted to work with
Wattch [4]. Wattch provides a framework for estimating the en-
ergy utilization of a processor based on the major power-consuming
components: I-cache, D-cache, register file, integer and floating-
point ALUs and clock distribution. The models of the various com-
ponents were adjusted to roughly approximate the power consump-
tion of the actual microprocessor. CACTI [32] was used to gener-
ate the models for the hardware I-cache and SRAM memory as
discussed below. In our models, the hardware I-cache accounts for
about 25% of the total energy consumed.

3.2 Performance

Although attaining high performance was not the primary goal of
this research, it is none-the-less an important factor. Programmers
may be willing to sacrifice a small amount of performance for
programming convenience but will prefer hand-optimization if the
penalty is too great, particularly in the embedded domain. Perfor-
mance is also related to energy consumption. The additional in-
structions that a software I-cache must execute to manage itself will
require additional energy. Therefore, given a specific processor, re-
ducing the number of instructions executed improves performance
and decreases energy consumption.

To demonstrate the need for and effectiveness of the optimiza-
tions we have implemented, we present results from several dif-
ferent versions of the I-caching system. Fig. 3 shows the dramatic
impact that even a moderate amount of chaining can have. The first
column in each cluster represents the runtime of the benchmark us-
ing the general-purpose hardware cache model. The other results
are normalized to this column for reference. The second column
in each cluster is a baseline implementation that does not attempt
to do any chaining and uses a 16-instruction cache block. Clearly,
the performance of this version of the system is unacceptable since
all of the benchmarks took between 3.5x and 8.5x longer than they
would have with the hardware cache. The third column improves on
the baseline system by chaining when a request hits in the cache.
This version chains only normal branches and jumps, i.e., it does
not implement the optimizations for function calls and returns dis-
cussed earlier. We were initially concerned that the overhead of
chaining and unchaining would be detrimental to performance and
wanted to avoid creating chains that were unlikely to be used. The
fact that a request has hit in the cache indicates that the requested
block has been used at least once before and is therefore more likely
to be requested again in the future. Although the improvements us-

10
1 M] HW I-cache
9 Baseline (no chaining) (FIFO)
1 B Chain on hits (FIFO)
~ 8 l
L)]
87
g 6 |
g s -
.]
E YT W |
Sl el
2 I I
: il
0

epic
ipeg

IS
@
(2]

adpcm
g721
mesa
mpeg2
pegwit
rasta

Figure 3. Performance impact of basic chaining. Run times are
normalized to hardware I-cache performance.

ing this technique are impressive, three of the benchmarks still have
very poor performance (150% or more slowdown) and the rest are
only marginally acceptable (between 10% and 47% slowdown).

Fig. 4 shows the additional improvements obtained with addi-
tional optimizations. From these results it is clear that creating more
chains is almost always a good idea, even if they may not be used.
The first column in each cluster repeats the hit case chaining data
from Fig. 3 for reference. The second column improves on the first
by chaining on both hits and misses. In every case except jpeg,
this produced better performance than chaining on hits alone, al-
though for adpcm, epic, g721 and pegwit the effect was negligible.
In jpeg, some of the chains created on misses filled the chain slot
and prevented better chains from being created later. The third col-
umn shows the additional benefit realized when we changed the
way we handle function calls (see Section 2.2.2) and were able to
chain them as well. This change had a significant impact on ev-
ery benchmark (except adpcm) but g721 and mesa showed excep-
tional improvement due to the enormous number of function calls
they perform. This clearly demonstrates the importance of handling
function calls efficiently.

Each of the versions discussed so far has used the FIFO re-
placement policy. As a result, there were some chains that could
not be created due to the limited storage for unchaining informa-
tion. The fourth column remedies this by switching to the flush re-
placement policy. Again, we see a substantial improvement in most
benchmarks due to the additional chains that can be created and
the reduced overhead for creating those chains. Jpeg and mpeg2
benefited greatly from the additional chaining while g721, mesa
and rasta benefited most from the reduced cost of creating chains.
Epic, adpcm and gsm showed little improvement because the in-
creased miss rate offset the gains from improved chaining. The fifth
column shows the results of optimizing function returns (i.e., in-
direct jumps). The benchmarks that benefited from this the most
were the same ones that benefited from chaining of function calls,
namely g721 and mesa. However, additional profiling indicates that
our pre-screening heuristic was only moderately effective on g721,
pegwit and rasta, suggesting that additional improvements may be
possible. Once again, the performance penalty of ignoring calls to
(and the corresponding returns from) functions is clear.

Finally, the sixth column shows the performance when using 8-
word (rather than 16-word) cache blocks. Initially, changing from
16-word to 8-word blocks hurt performance on all benchmarks.
This was due to two factors. First, using smaller cache blocks re-

298

35 — Chain on hits (FIFO)
] Chain on hits and misses (FIFO)
Chain function calls (FIFO) —
30 J4— B Chain function calls (flush) M
B Chain function returns (flush)

— 1 H 8-word cache block (flush)
T 25 m i I
& 2 1
S]
E 20 I
o]
c]
=]
o 15
E
b=]
S 1.0
o]

0.5 -

0.0 - o - o

adpcm
epic
g721 4
gsm
Jpeg
mesa
mpeg2
pegwit
rasta

Figure 4. Performance improvement as optimizations are added.
Run times are normalized to hardware I-cache performance.

Hardware Large I-mem Software I-cache

Benchmark Cycles Cycles Cycles Overhead
adpcm 11.19M 11.18M 12.21M 9.1%
epic 73.98M 73.93M 80.05M 8.2%
g721 367.1M 367.1M 456.1M 24.2%
gsm 91.75M 91.40M 97.19M 5.9%
jpeg 44.98M 44.79M 47.33M 5.2%
mesa 79.76M — 99.23M 24.4%
mpeg2 1.646B 1.642B 1.816B 10.4%
pegwit 69.35M 69.24M 73.77M 6.4%
rasta 42.62M 40.78M 82.50M 93.6%

Table 1. Run time for Mediabench benchmarks in processor cy-
cles. “Overhead” is the percentage of extra cycles relative to the
hardware version.

quired large basic blocks to be split more times. Each split intro-
duces an extra jump instruction and causes separate calls to the
runtime system. Second, changing to smaller blocks left less empty
space to use for indirect jump optimization. No more than two pre-
screening comparisons could be performed. To address these is-
sues, this version also incorporates both the autoload feature and
the extra blocks for indirect jump chaining described earlier. Be-
cause the smaller cache blocks waste less space (see Section 3.4),
performance improved significantly on mpeg2 and rasta which have
a large number of capacity misses. However, performance was es-
sentially the same on g721, gsm, jpeg, mesa and pegwit and was
actually slightly worse on adpcm and epic. For these applications,
the relatively small gains in miss rate were offset by the increased
overhead of the more complex runtime system.

Table 1 shows the data from the hardware I-cache, larger SRAM
model and software system in tabular form. Because the software
system can be changed for each program, the programmer is free
to choose the version of the system that gives the best performance
for a particular application. Therefore, the “software” column lists
the value for the best variant on each benchmark. The large I-mem
model provides a lower bound on the runtime since the program
is stored entirely within the I-mem. The “Overhead” column is the
percentage of extra cycles relative to the hardware cache model. In
general, the hardware cache performed only slightly worse than the
large I-mem. On five of the nine benchmarks (adpcm, epic, gsm,
jpeg and pegwit), the software cache performed nearly as well as
the hardware cache, incurring less than 10% overhead. G721 and
mesa perform poorly due to their heavy use of function calls. Even
with our optimizations, storing the link address and performing

SRAM Direct Mapped 2-way Associative
Size Energy Energy Overhead Energy Overhead
8 kB 0.27673 0.38591 28.3% 0.55652 50.8%
16 kB 0.35856 0.47433 24.4% 0.63450 43.5%
32 kB 0.49692 0.62251 20.2% 0.75742 34.4%

Table 2. Energy (in nJ) per access for SRAM and cache models
generated by CACTI 3.2. The “Overhead” column indicates the
fraction of the energy used for tags or unused ways.

indirect jump address comparisons take extra cycles. On these
applications, more than half of the remaining overhead comes from
these sources. Finally, rasta suffers from a very high miss rate
because its working set is much larger than the available space.
Under these circumstances, chaining is less effective because many
blocks are evicted before their chains can be used.

3.3 Energy Consumption

Energy consumption is also an important consideration in the em-
bedded domain. A software I-caching system will not be practical
if it causes the energy required to complete a task to increase ex-
cessively. To evaluate the energy usage of our system, we compare
it to a hardware instruction cache.

Previous studies [26, 4, 17, 40] have shown that instruction
caches consume a substantial fraction of a modern processor’s
power. Data from actual processors [26, 4] as well as power estima-
tion tools [17, 40] indicate that instruction caches typically account
for roughly 18% to 33% of the total power consumption. Much
of this energy is used for things other than the actual data access
that is required. For example, a direct-mapped cache performs a
tag access in parallel with the data access and compares the tag to
the desired value. Set-associative caches typically access all ways
within a set in parallel and then discard the ways whose tags do
not match the desired tag. When using the software I-cache with a
directly-addressed SRAM memory, instruction fetches incur only
the data access cost. Of course, a software cache also expends extra
energy in the additional instructions it executes to manage itself.

To better understand the relative sizes of these extra energies, we
used CACTI 3.2 [38, 32] to estimate the access energy of several
different cache configurations. We modeled direct-mapped and 2-
way set associative caches (the most popular types for instruction
caches) with sizes ranging from 8 kB to 32 kB. Since CACTI does
not generate SRAM-only models, we used a direct-mapped cache
model and subtracted the energy for the tag lookup and comparison
components, leaving only the address decoding and data access
components. The results (shown in Table 2) indicate that between
20% and 50% of the energy consumed by the caches would be
eliminated when using equally sized SRAMs. Note that smaller
caches have higher overhead because the tags are larger.

Combining the data from CACTI with the cache power con-
sumption data from the literature, between 6% and 11% of the total
processor power is spent on tags or unused ways in a 32 kB, 2-way
set associative cache. This is the difference that would be seen if
the hardware I-cache could be magically replaced with an SRAM
without changing the instructions executed. However, the extra in-
structions executed by the software I-caching system increase the
total energy required to complete a computation and therefore re-
duce this difference. (On the other hand, it is also possible that a
software I-cache could manage the instruction memory more effec-
tively, thereby reducing the energy expended during misses.) Since
energy consumption is approximately proportional to the number of
instructions executed, roughly speaking, a software I-cache system
could incur an instruction overhead of about 10% versus a hardware
cache and still consume less energy for a given task.

299

207 +86.6%

15 -

+20.7%
+1.9% -1.79%

+18.8%

10 -0.3% -0.8% -2.6% -2.7%

Energy (normalized)

05

0.0

adpcm epic g721 gsm jpeg mesa mpeg2 pegwit rasta

Figure 5. Total energy used to complete each benchmark with a
software I-cache relative to a hardware I-cache.

To verify this analysis, the version of BTL with Wattch was
used to estimate the total energy needed to complete each of the
benchmarks with both the hardware and software I-caches. The
hardware cache is the same 2-way set associative cache described
above. In our model, the hardware cache accounts for about 25% of
total processor power which is consistent with the values reported
for actual processors in the literature [26, 4]. For the software
cache case, the model for the cache is replaced with the SRAM
model but everything else is left the same. For each benchmark,
the version of the software system that gave the best performance
was used. Fig. 5 shows the amount of energy used by the software
I-cache normalized to the amount used by the hardware cache.
The values on top of the bars indicate the difference between
the hardware and software cases. As expected, the software I-
cache is comparable to the hardware for the benchmarks where
its instruction overhead is around 10% or less. In fact, on four
of the benchmarks, the software I-cache system actually consumes
less energy than a hardware cache would have. However, it is also
clear from the other benchmarks that high instruction overhead can
dramatically increase the energy used.

3.4 Cache Block Padding

One factor that is contributing to the poor performance of rasta (and
to a lesser extent mesa and mpeg?2) is the use of a fixed cache block
size. These benchmarks have larger code working sets resulting in
higher miss rates. The problem is exacerbated by the padding that is
inserted to make small basic blocks fill the fixed size cache blocks.

Previous studies have reported average basic block sizes of 6
to 7 instructions [39]. Because our system frequently adds one or
two instructions to each block (to handle the fall-through case),
we expected to see an average block size of 8 or 9. However,
for 16-word cache blocks, we actually see an average of 5.75.
This discrepancy may be due to splitting of blocks larger than 16
instructions that would have brought the average up. The net effect
is that 60 to 65 percent of the instructions stored in the software
cache are padding and only 35 to 40 percent of the cache is used for
useful code. This is clearly a serious problem for larger benchmarks
where cache capacity is a critical factor in performance.

Switching to 8-word cache blocks causes more splitting and
reduces the average basic block size to 4.55 instructions. However,
since the cache blocks are smaller, the amount of padding drops
to about 40 percent and 60 percent of the instructions in the cache
are useful. On the other hand, reducing the cache block size allows
more blocks to fit in the cache and therefore requires more space
for the block data and hash tables. This space must be taken from
the space that was used to store cache blocks. This explains why we
do not see a large improvement in performance, even though much
less space is wasted on padding.

3.5 Discussion

Our results indicate that a software I-cache system can be a valu-
able tool for an embedded system. Performance on several of the
benchmarks was comparable to both the hardware cache and larger
I-mem. However, for many embedded processors, a hardware cache
is not an option for the reasons we have mentioned before: addi-
tional die area, additional design cost, unpredictable timing. For
these processors, we have created a tool that allows programmers to
have the programming convenience and approximate performance
of a hardware cache for non-critical portions of their code with-
out giving up predictable timing on critical portions. We have also
shown that this can be achieved while consuming less energy than
a hardware cache would.

Because the system is implemented in software rather than hard-
ware, it can be optimized for each individual application. For exam-
ple, while the 8-word cache block version of the system produced
the best performance on most of the benchmarks, the optimized
16-word version was better for adpcm and epic.

4. FutureWork

There are still numerous opportunities to improve this work. Profil-
ing results show that there are still a significant number of indirect
jumps that fall through to the runtime system in some benchmarks.
To address this, we plan to experiment with more sophisticated ver-
sions of the indirect jump chaining optimization. We may be able
to optimize more of them by improving our heuristic or performing
more analysis in the rewriter.

Based on our padding results, we can see that significant space
is still being wasted in the cache. There are two approaches to
reducing wasted space that we are considering. The first is to re-
move the requirement of fixed-size cache blocks and allow the
variable sized blocks to be dense packed. Although this is feasi-
ble it would require extensive changes to the operation of the run-
time system and rewriter. The second approach to reducing wasted
space is packing multiple basic blocks into each cache block. Su-
perblocks [20] (single entry, multiple exit non-looping regions of
the control-flow graph) may be a good choice for this. Beyond that,
we plan to experiment with including even larger portions of the
control-flow graph in a single block, including loop structures. Not
only does this have the potential to reduce wasted space, it could
also eliminate calls to the runtime system. The effect would be the
same as if all the jumps within the block were pre-chained. Of
course, these two approaches could also be combined to yield even
greater efficiency.

We would also like to look for additional ways to customize
cache behavior to each individual program. One technique for do-
ing this would be to incorporate profiling into the preprocessing
phase. Because embedded applications typically have fairly regu-
lar behavior and predictable inputs, profiling can be an effective
technique for identifying performance-critical regions of code. The
regions could then be incorporated into a single large cache block
or even pinned in the cache to reduce cache misses and power con-
sumption and increase performance.

In addition to working with conventional embedded architec-
tures, we would like to explore the possibilities of making minor
architectural changes to assist software-based caching. The chal-
lenge will be to devise efficient structures that maintain the reduced
complexity and power consumption of a simple memory architec-
ture while boosting performance or reducing the miss rate.

5. Related Work

This work has its roots in the early virtual memory work of the
1950’s and 60°s [9]. Systems from that period were usually built
with a primary core memory that was directly accessible by the

300

processor and a secondary disk or drum storage. To run programs
that were larger than the primary memory, code would have to be
swapped in from the secondary storage. This is analogous to the
I-mem and external DRAM arrangement of our system. Before the
development of hardware caches, the dominant strategies for im-
plementing virtual instruction memory were overlays [30, 33] and
segmentation [29]. Both of these systems work similarly to ours in
that they divide up the program into blocks and then load blocks
from the drum as they are needed. However, overlays typically use
a much larger granularity than our system, placing one or more en-
tire procedures in each block. Segmentation systems divide up a
program into uniform blocks without regard to program structure.
Both of these methods can result in large amounts of extra code
being loaded when a particular piece is needed. In addition, over-
lay systems have rigid constraints regarding which blocks can be
loaded simultaneously. Each overlay is assigned to a level based
on its position in the program call graph. When a new overlay is
loaded, it replaces the previous overlay of the same level, even if
there is other unused space in memory. Our system is far more flex-
ible because it can store any subset of the program basic blocks at
any given time allowing it to adapt to the dynamic needs of the pro-
gram. Finally, neither of these types of systems attempted to use op-
timizations like chaining because it was believed that the overhead
required to create chains would outweigh the benefit. For a modern
treatment of overlays, see the compiler for the Cell SPE [14].

Earlier work in software caches has dealt primarily with hard-
ware caches utilizing software miss handlers [6, 21, 18] or level two
caches [24, 18]. Other techniques make automatic use of scratchpad
memories [3, 11, 1] but they generally optimize only select portions
of a program rather than providing a complete caching solution.

Systems like the VMP multiprocessor [6] and Jacob and Mudge’s
software managed address translation [21] have a hardware cache
but employ a software cache-miss handler. VMP has hardware to
check tags and handle cache hits but fires a special interrupt to in-
voke a software handler on a miss. This approach allows for some
customization of cache behavior to a particular program and elim-
inates some of the cache hardware (i.e., the cache miss state ma-
chine). However, the tag storage and comparison structures are still
required. Furthermore, VMP uses a local memory, separate from
the cache, to store the miss handler routines. This means that there
is a static partitioning of the total local memory between the cache
and the miss handler. In our all-software system, there is a single
unified memory, allowing for a flexible partitioning of resources.

RAMPage [24] is an example of a system where some part of
the memory hierarchy is under software control but not the level
one cache. In the case of RAMPage, the level one caches (both
data and instruction) use conventional hardware designs but the
unified level two cache is software managed. If there is a miss in the
level two cache, the software system is invoked to fetch the needed
data from DRAM. This design permits some customization for an
individual program and eliminates the level two cache hardware,
but still requires expensive hardware for the level one cache.

The indirect index cache (I1C) [18] allows blocks to be loaded
anywhere in the cache and uses a hash table to keep track of them
as we do. However, it implements this hash table (and the lookups
within it) in hardware and only invokes software for cache misses.
Further, they do not attempt to run this software on the primary
CPU but instead, use a tightly coupled coprocessor. Finally, as with
RAMPage, the IIC is intended as a level-two cache, leaving the
performance-critical level-one cache to conventional hardware.

With the growing prevalence of scratchpad memories [3] in
embedded processors, several other techniques have been proposed
to make automatic use of them. Most of these techniques focus on
data [11] but several use scratchpad memory for code [1, 37, 34,
31]. These techniques use profiling or program analysis to identify

pieces of code that are likely to be used multiple times and then
either statically map them to the scratchpad or insert code into the
program to copy them into the scratchpad before they are used.
The assumption here is that instructions are normally fetched and
executed directly from an external memory and are only copied to
the scratchpad as an optimization. This work can be used for this
type of environment but is also applicable in the more challenging
situation where no code may be directly executed from the external
memory. In this case, one does not have the luxury of picking
and choosing the code that is cached but must instead manage all
code that is executed. Furthermore, the static, off-line selection of
regions to copy can lead to very poor performance if the dynamic
execution of the program is substantially different than expected
(due to unusual input data, for example) or if the program exhibits
different phases. This work handles all fetch decisions dynamically
and can therefore adapt to unusual patterns or phased execution.

HotPages [27] is the data cache equivalent to this project. Al-
though hardware cache designers typically implement instruction
and data caches very similarly, the differences in the way that in-
structions and data are used require somewhat different software
implementations. The baseline functionality for the two systems is
very similar. However, the differences arise when trying to opti-
mize away calls to the runtime system. While program code has
a simple, easily analyzable structure (a control-flow graph), data
has a more complex patterns and is less predictable. HotPages uses
pointer analysis to analyze memory accesses and then uses opti-
mized checks when it thinks the requested data is likely to be in the
cache already. However, it is still forced to do some sort of check
for nearly all requests. Because instruction streams are more pre-
dictable, a software instruction cache is frequently able to remove
the check completely (see Section 2.3.3).

The class of applications called “dynamic binary translators”
includes simulators (such as Mimic [25], Shade [7], Embra [39],
DAISY [12] and DELI [10]), dynamic code generators (such as
VCODE [15] and Java virtual machines) and run-time optimizers
(such as Dynamo [2] and DynamoRIO [5, 22]). Simulators and
dynamic code generators work by translating machine code (or
virtual machine code) into the machine code of the host computer
and running it. They typically do their translation at runtime so
that they can avoid a separate translation pass, insert extra code
for profiling or debugging [7, 39], or avoid translating code that is
never run. Run-time optimizers attempt to modify a program while
it’s running to increase performance or security. All of these types
of systems are frequently implemented using a translation cache.
As code is translated, it is placed into the cache and run from there.
The translation cache is, in essence, an instruction cache.

However, there are two major differences between these sys-
tems and a software-based instruction cache. First, the translation
cache is typically stored in the main memory of the host computer
and therefore can usually be sized to accommodate all but the very
largest programs [8, 13]. Because of this, simulation and dynamic
code generation systems only need to deal with their caches be-
coming full on an infrequent basis. On the other hand, instruction
caches are usually much smaller than the program they are trying
to run and may fill frequently. Therefore, the eviction policy and
mechanisms play a much larger role in the software I-cache.

The second big difference is that an instruction cache only loads
code into SRAM while a dynamic translator must also translate it.
The extra overhead for translating a piece of code is substantial.
DAISY spends an average of 4315 instructions doing translation of
each instruction in the source program [12]. Because of this extra
overhead, cache misses are proportionally much more expensive in
a translation system than they are in an instruction caching system.
As a result, the two types of systems may make different trade-offs
between cache management overhead and miss rate.

301

That said, many of the core mechanisms in dynamic binary
translators and software instruction caches are similar. The system
we have developed could be used as a platform on which to build a
simulator, virtual machine or dynamic optimizer.

6. Conclusions

In this paper we have demonstrated a software system that pro-
vides an automatically-managed level-one instruction cache for
processors that lack special-purpose caching hardware. This system
provides programming convenience, performance and energy con-
sumption comparable to what would be expected with a hardware
cache. It accomplishes this without giving up the ability to maintain
predictable timing on critical portions of real-time programs.

Our results show that performance within 10% of a hardware
cache is achievable on a variety of multimedia applications. The
key to achieving this performance is the elimination of calls to the
runtime portion of the system via chaining. In our experience, every
possible opportunity to chain should be taken. The extra overhead
of creating chains that may not be used is usually outweighed by
the benefits of the ones that are used. In the end, performance
will be limited by the calls to the runtime system that cannot be
optimized away. We are optimistic that future work will narrow
the gap between hardware and software caches even further and
demonstrate conclusively that they can play a valuable role in
embedded systems.

Acknowledgments

The first author would like to thank Volker Strumpen and Matthew
Frank for their early advice and discussions and Paul Johnson for
his assistance with the rewriter infrastructure.

This work was funded by DARPA, the National Science Foun-
dation, and MIT’s Project Oxygen.

References

[1] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri. A
post-compiler approach to scratchpad mapping of code. In CASES
'04: Proceedings of the 2004 international conference on Compilers,
architecture, and synthesis for embedded systems, pages 259-267,
Sep 2004.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In Proceedings of the ACM S GPLAN
2000 Conference on Programming Language Design and Implemen-
tation, pages 1-12. ACM Press, 2000.

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory: design alternative for cache on-chip memory
in embedded systems. In CODES '02: Proceedings of the tenth
international symposium on Hardware/software codesign, pages 73—
78, 2002.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA ’'00:
Proceedings of the 27th annual international symposium on Computer
architecture, pages 83-94, 2000.

D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and im-

plementation of a dynamic optimization framework for Windows. In
4th ACM Wbrkshop on Feedback-Directed and Dynamic Optimization
(FDDO-4), December 2000.

D. R. Cheriton, G. A. Slavenburg, and P. D. Boyle. Software-
controlled caches in the VMP multiprocessor. In Proceedings of
the 13th annual international symposium on Computer architecture,
pages 366-374. IEEE Computer Society Press, 1986.

B. Cmelik and D. Keppel. Shade: a fast instruction-set simulator for
execution profiling. In Proceedings of the 1994 ACM SGMETRICS
conference on Measurement and modeling of computer systems, pages
128-137. ACM Press, 1994.

2

—

[3

—

[4

—

5

—_

6

—_

[7

—

[8] R. F. Cmelik and D. Keppel. Shade: A fast instruction-set simulator
for execution profiling. Technical Report SMLI 93-12, UWCSE 93-
06-06, Sun Microsystems Laboratories, Inc. and the University of
Washington, 1993.

P. J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153—
189, 1970.

G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A.
Fisher. DELI: a new run-time control point. In MICRO 35:
Proceedings of the 35th annual ACM/IEEE international symposium
on Microarchitecture, pages 257-268, Nov 2002.

A. Dominguez, S. Udayakumaran, and R. Barua. Heap data allocation
to scratch-pad memory in embedded systems. Journal of Embedded
Computing, 1(4), 2005.

K. Ebcioglu and E. R. Altman. DAISY: Dynamic compilation for
100% architectural compatibility. In ISCA '97: Proceedings of the
24th annual international symposium on Computer architecture, pages
26-37, Jun 1997.

K. Ebcioglu, E. R. Altman, M. Gschwind, and S. W. Sathaye. Dynamic
binary translation and optimization. | EEE Transactions on Computers,
50(6):529-548, 2001.

A. E. Eichenberger, J. K. OBrien, K. M. OBrien, P. Wu, T. Chen, P. H.
Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang,
P. Zhao, M. K. Gschwind, R. Archambault, Y. Gao, and R. Koo. Using
advanced compiler technology to exploit the performance of the Cell
Broadband Engine architecture. 1BM Systems Journal, 45(1):59-84,
January 2006.

D. R. Engler. VCODE: a retargetable, extensible, very fast dynamic
code generation system. In Proceedings of the ACM SIGPLAN 1996
conference on Programming language design and implementation,
pages 160-170. ACM Press, 1996.

M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki. Synergistic processing in Cell’s multicore architecture.
|EEE Micro, 26(2):10-24, March-April 2006.

S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan,
M. Kandemir, T. Li, and L. K. John. Using complete machine
simulation for software power estimation: The SoftWatt approach.
In HPCA ' 02: Proceedings of the Eighth International Symposium on
High-Performance Computer Architecture, page 141, 2002.

E. G. Hallnor and S. K. Reinhardt. A fully associative software-
managed cache design. In ISCA '00: Proceedings of the 27th annual
international symposium on Computer architecture, pages 107-116,
2000.

K. Hazelwood and J. E. Smith. Exploring code cache eviction
granularities in dynamic optimization systems. In CGO '04:
Proceedings of the international symposium on Code generation
and optimization, page 89, 2004.

W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.
Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara,
G. E. Haab, J. G. Holm, and D. M. Lavery. The superblock: an
effective technique for VLIW and superscalar compilation. Journal of
Supercomputing, 7(1-2):229-248, 1993.

B. Jacob and T. Mudge. Software-managed address translation.
In HPCA '97: Proceedings of the 3rd IEEE Symposium on High-
Performance Computer Architecture, pages 156-167, Feb 1997.

V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution
via program shepherding. In USENIX Security Symposium, San
Francisco, August 2002.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a

tool for evaluating and synthesizing multimedia and communicatons
systems. In MICRO 30: Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, pages 330-335, 1997.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24] P. Machanick, P. Salverda, and L. Pompe. Hardware-software trade-
offs in a direct Rambus implementation of the RAMpage memory

hierarchy. ACM SIGPLAN Noatices, 33(11):105-114, 1998.
[25] C. May. Mimic: A fast System/370 simulator. In SGPLAN ’'87:

302

Papers of the Symposium on Interpreters and inter pretive techniques,
pages 1-13, New York, NY, USA, 1987. ACM Press.

J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W.
Dobberpuhl, P. M. Donahue, J. Eno, G. W. Hoeppner, D. Kruckemyer,
T. H. Lee, P. C. M. Lin, L. Madden, D. Murray, M. H. Pearce,
S. Santhanam, K. J. Snyder, R. Stephany, and S. C. Thierauf. A
160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. |EEE JSSC,
31(11):1703-1714, November 1996.

C. Moritz, M. Frank, W. Lee, and S. Amarasinghe. Hot pages:
Software caching for Raw microprocessors. Technical Report LCS-
TM-599, Massachusetts Institute of Technology Lab for Computer
Science, 1999.

H. Muller, D. May, J. Irwin, and D. Page. Novel caches for predictable
computing. Technical Report CSTR-98-011, Department of Computer
Science, University of Bristol, Oct 1998.

[26]

[27]

[28]

[29] P. Naur. The performance of a system for automatic segmentation of
programs within an ALGOL compiler (GIER ALGOL). Communica-

tions of the ACM, 8(11):671-676, 1965.

[30] R. J. Pankhurst. Operating systems: Program overlay techniques.
Communications of the ACM, 11(2):119-125, 1968.

[31] R. A. Ravindran, P. D. Nagarkar, G. S. Dasika, E. D. Marsman, R. M.
Senger, S. A. Mahlke, and R. B. Brown. Compiler managed dynamic
instruction placement in a low-power code cache. In CGO ’05:
Proceedings of the international symposium on Code generation and
optimization, pages 179-190, March 2005.

[32] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An integrated cache
timing, power and area model. Technical Report 2001/2, Compaq
Western Research Laboratory, Dec 2001.

[33] T. R. Spacek. A proposal to establish a pseudo virtual memory via
writable overlays. Communications of the ACM, 15(6):421-426, 1972.

[34] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning
program and data objects to scratchpad for energy reduction. In
DATE '02: Proceedings of the conference on Design, automation and
test in Europe, pages 409-417, Mar 2002.

M. B. Taylor, J. Kim, J. E. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma,
A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal. The Raw microprocessor: A
computational fabric for software circuits and general-purpose
programs. |EEE Micro, 22(2):25-35, Mar 2002.

M. B. Taylor, W. Lee, J. E. Miller, D. Wentzlaff, |. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. Evaluation
of the Raw microprocessor: An exposed-wire-delay architecture for
ILP and streams. In ISCA '04: Proceedings of the 31st annual
international symposium on Computer architecture, pages 2-13, Jun
2004.

M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic overlay of
scratchpad memory for energy minimization. In CODES*+ISSS’04:
Proceedings of the 2nd |IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 104-109,
2004.

S. J. E. Wilton and N. P. Jouppi. CACTI: An enhanced cache access
and cycle time model. IEEE JSSC, 31(5):677-688, May 1996.

[39] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine
simulation. In Measurement and Modeling of Computer Systems,
pages 68-79, 1996.

[40] S.-H. Yang, B. Falsafi, M. D. Powell, and T. N. Vijaykumar.
Exploiting choice in resizable cache design to optimize deep-
submicron processor energy-delay. In HPCA '02: Proceedings of
the Eighth International Symposium on High-Performance Computer
Architecture, pages 151-161, Feb 2002.

[41] M. Zhang and K. Asanovic. Highly associative caches for low-power
processors. In Kool Chips Workshop, 33rd International Symposium
on Microarchitecture, 2000.

(35]

(36]

(37]

(38]

