
The RAW Benchmark Suite:
Computation Structures for General Purpose Computing

Jonathan Babb, Matthew Frank, Victor Lee, Elliot Waingold,
Rajeev Barua, Michael Taylor, Jang Kim, Srikrishna Devabhaktuni, Anant Agarwal

MIT Laboratory for Computer Science
Cambridge, MA 02139
www.cag.lcs.mit.edu

Abstract

The RAW benchmark suite consists of twelve programs
designed to facilitate comparing, validating, and improv-
ing reconfigurable computing systems. These benchmarks
run the gamut of algorithms found in general purpose com-
puting, including sorting, matrix operations, and graph al-
gorithms. The suite includes an architecture-independent
compilation framework, Raw Computation Structures
(RawCS), to express each algorithm’s dependencies and
to support automatic synthesis, partitioning, and mapping
to a reconfigurable computer. Within this framework, each
benchmark is portably designed in both C and Behavioral
Verilog and scalably parameterized to consume a range of
hardware resource capacities.

To establish initial benchmark ratings, we have targeted
a commercial logic emulation system based on virtual wires
technology to automatically generate designs up to millions
of gates (14 to 379 FPGAs). Because the virtual wires
techniques abstract away machine-level details like FPGA
capacity and interconnect, our hardware target for this sys-
tem is an abstract reconfigurable logic fabric with memory-
mapped host I/O. We report initial speeds in the range of
2X to 1800X faster than a 2.82 SPECint95 SparcStation 20
and encourage others in the field to run these benchmarks
on other systems to provide a standard comparison.

1 Introduction

One goal of MIT’s Reconfigurable Architecture Work-
station (RAW) project is to provide the performance of re-
configurable computing in a software environment with the
traditional languages and development tools available on a
workstation. We have developed a suite of twelve general
purpose computing benchmarks, written in architecture-
independent Behavioral Verilog [8], with which to examine

issues of compiling to reconfigurable architectures. Using
raw computation structures (RawCS) we have synthesized,
partitioned and mapped these applications to a reconfig-
urable computing architecture.

The RAW system leverages previous multi-FPGA work,
virtual wires [3], in conjunction with behavioral compila-
tion technology, to view an array of FPGAs as a machine-
independent computing fabric. Given this viewpoint, we
have developed a new software system which generates
computation structures based on the data dependence graph
of an application. These structures, which we call RawCS,
are specific to each algorithm, yet are independent of any
underlying architectural details. This new software oper-
ates in a framework which allows these structures to be
automatically compiled onto a large array of FPGAs with-
out user intervention.

Since the higher levels of our system do not require de-
tails of the underlying hardware, our benchmark designs
mirror algorithm structure. Each design’s communication
structure reflects the data-dependence graph of the algo-
rithm. Most of the algorithms we examine produced highly
parallel structures, made of many copies of simple com-
puting elements. The computing elements are specified in
Behavioral Verilog and synthesized in just a few minutes.
The RawCS generator connects the elements based on the
application’s unrolled dependence graph.

Because the system abstracts away all the hardware de-
pendent design issues, we are able to automatically generate
large architecture-independent netlists for each benchmark.
For each of the twelve benchmarks, we have generated a
set of three different designs, small, medium and large that
range in final size between 14 and 379 FPGAs. The result-
ing speedups are dependent on the amount of parallelism in
the data dependence graph. We find that for these designs
we execute in the range of 2X to 1800X faster than a 2.82
SPECint95 SparcStation 20.

The rest of this paper is organized as follows: After pro-
viding background on configurable computing and virtual
wires technology in Section 2, Section 3 then describes Raw
Computation Structures within the context of a complete
reconfigurable compiler system. After Section 4 overviews
the benchmark applications, Section 5 describes the pro-
totype hardware system, and Section 6 then presents area
and timing results for each problem. Finally, Section 7 and
Section 8 describe related and future work in this area and
Section 9 makes concluding remarks.

2 Background

Configurable computers based on Field Programmable
Gate Arrays (FPGAs) are capable of accelerating suitable
applications by several orders of magnitude when compared
to traditional processor-based architectures (see Splash [12]
and PAM [5]). This performance is achieved by map-
ping a user application into a gate-level netlist that may
be downloaded onto programmable hardware. The pro-
gramming paradigm on these machines, however, prohibits
the development of automatically-compiled, architecture-
independent applications because the programmer must ex-
plicitly account for machine-level details such as FPGA
capacity and interconnect.

The development and commercial availability of virtual
wires compiler technology [3] enables the efficient com-
bining of multiple FPGAs for use as a single, giant sea
of gates by higher-level synthesis compilation steps. This
software takes as input a user supplied netlist, automatically
partitions and places the design, and then intelligently mul-
tiplexes each physical wire among multiple logical wires
and pipelines these connections at the maximum clocking
frequency of the FPGA. While this technology has primar-
ily been applied to in-circuit emulation and logic simulation
acceleration, it has also been applied effectively to recon-
figurable computing of hardware subroutines, where an
FPGA array implements a Verilog version of a subroutine
in a C program and connects to the software by remote calls
from a host workstation [4].

3 Raw Computation Structures

To support compilation of the RAW benchmark suite to
reconfigurable architectures, we have developed a common
framework based on raw computation structures (RawCS).
RawCS supports user-level hardware by dynamically mod-
ifying the underlying architecture as a function of each ap-
plication. In some cases, such as matrix multiply and sort-
ing, these modifications are a function of the algorithm’s

Behavioral Compiler

RTL Compiler

Virtual Wires Compiler

FPGA Bitstreams

FPGA Compiler

RawCS Generator

Component
 Library

 Input
 Parameters

Figure 1: Compiler Flow

problem size. In other cases, such as the transitive closure
benchmark, where these modifications are also a function
of some of the input data for the application, RawCS com-
pilation can be viewed as an extreme case of generation of
dynamic code [11], where new processor instructions are
dynamically generated based on the input data-set. Dy-
namic code generation is a software technique that allows
specialization and optimization of code based on program
input.

Software compiler optimizations like constant folding,
dead code elimination and removal of branches expose in-
struction level parallelism and enable the software code
generator to create significantly faster code. RawCS’s can
be additionally specialized beyond the instruction set ab-
straction by creating new operators, distributing memory
accesses, minimizing data widths, and reducing many com-
plex data structures to wire permutations. The resulting
structures are thus tailored to a specific application.

3.1 Software Tool Flow

Figure 1 shows the overall software tool flow used to
compile the RAW benchmarks suite. In comparison with
standard compilation technology for microprocessor com-
puting, the transformations are more complex. This system
begins with the RawCS generator, a benchmark-specific
program written in C, that takes input parameters for the

0 1

2 3

Graph Instance

Min

Min Min

0
� W

�

W
�

W
�

W
�

W
�

Distance Distance

Distance

Specialized Behavioral Verilog

node

edge
0
�

1

2
�

3
�

4
�

(Behavioral Verilog)

(Node)

(Edge)

+

MIN

weight
W=edge
�

RawCS Generator

 Shortest Path
 Components

Figure 2: RawCS Flowchart for Shortest Path

benchmark, along with the benchmark’s Behavioral Verilog
component library, and generates specialized Behavioral
Verilog code. This Verilog code describes a hardware in-
stance for the benchmark at a high-level, with no references
to any underlying technology. The next two tools consist of
a behavioral compiler and an RTL compiler which together
map the input Verilog into a single, gigantic netlist com-
posed of generic logic gates in a reference technology. The
virtual wires compiler then maps this netlist into multiple
FPGAs. More specifically, the virtual wires compiler treats
this netlist as a design to be emulated: partitioning, plac-
ing, and scheduling inter-FPGA connections to produce
individual netlists for each FPGA in the emulator. Each in-
dividual netlist is then processed by an FPGA compiler that
places and routes the netlist for the target FPGAs, produc-
ing FPGA bitstreams. These layers hide successive levels
of detail from the RawCS generator: the FPGA layer hides
the internal FPGA details; the virtual wires layers hides the
inter-FPGA topology and communications as well as the
FPGA gate and pin capacity; the RTL layer hides the ref-
erence technology libraries; and the behavioral layer hides
state machine and datapath details.

3.2 RAW Computation Structure Generation

Each application developed in the RawCS framework
entailed writing a computation structure generator in C and
a library of components in Behavioral Verilog. These are
described in more detail below.

Each benchmark includes an application-specific com-
putation structure generator in the form of a C program
written by the benchmark developer. The input to this
generate program includes parameters specifying problem
size, datapath width, and degree of parallelism. Given these
inputs, the program makes calls to a common Verilog gener-
ation library to instantiate wires and computation structure
components. Note that these components must currently
be specified in a separate Verilog library. The output is
then a single design in synthesizable Behavioral Verilog.
At this point the Verilog code is application-specific and
architecture-independent. It can be targeted to any multi-
FPGA system.

In addition to the static, data-independent parameters
such as problem size, several benchmarks also include dy-
namic computation structure generation in which the input
data is analyzed to determine the number and arrangement
of computation structures. Specifically, the generators for
the shortest path and transitive closure graph problems also
specialize an input graph topology. Dynamic computation
structures are described in more detail in [2].

While, in our current implementation, the generate pro-
grams are hand-coded by application of known compilation
techniques such as partial evaluation, loop unrolling, and
speculative parallelization, a high-level compiler can auto-
mate this task. That is, given an input description of the
application in a high level language such as C, a compiler
can partially evaluate expressions, unroll inner loops, and
flatten other types of control structures to generate computa-
tion structures without user intervention. We demonstrate
the viability of such a compiler by manually performing
these techniques for each of our benchmarks with the help
of a C program.

Figure 2 demonstrates an example of the operation of
the generate program for the shortest path application de-
scribed in Section 4. This particular generator takes as input
a topological description of a graph instance. Based on this
topology, the generator instantiates and interconnects com-
ponents from a library of generic descriptions (in Behav-
ioral Verilog) of node and edge computation structures. The
generic structures have parameters, including data widths
and the number of input edges per node, that are set when-
ever a particular node or edge is instantiated. The generator
then uses these structures to instantiate library components
with the proper bus widths and operations corresponding to
the input specification. In addition, the generator specifies
connections between these structures corresponding to the

Benchmark Description

bheap Binary Heap
bubble Bubble Sort
des DES Data Encryption
fft Integer Fast Fourier Transform
jacobi Jacobi Relaxation
life Conway’s Game of Life
matmult Integer Matrix Multiply
merge Merge Sort
nqueens Combinatorial N-Queens Problem
ssp Single Source Shortest Path
spm Multiplicative Shortest Path
tc Transitive Closure

Table 1: The RAW Benchmarks

edges in the input graph. The generator thus creates a de-
scription of a single circuit of higher level functions which
can be synthesized to gates, partitioned, and compiled to a
specific FPGA technology.

3.3 Common Host Interface

Many reconfigurable computing systems support a
memory-mapped interface for communication between a
program executing on the host CPU and the FPGA array
logic. The RAW benchmarks are implemented with a com-
mon host interface that facilitates porting to any reconfig-
urable computer. Each benchmark has the same top-level
module. The external I/O for this top-level module is a
synchronous address and data bus that supports a single
address space. Each reconfigurable architecture is then ex-
pected to implement a system-specific transport layer that
maps communication from this bus to the address space of
the host. For example, in our experiments with the IKOS
emulator, we used the SLIC EB-1 SBus card [9] and a de-
vice driver for the transport layer. Section 5 discusses our
IKOS host interface in more detail.

4 Benchmark Applications

The RAW benchmarks consist of twelve programs rep-
resentative of a variety of algorithms including sorting, ma-
trix operations, combinatorial search and graph problems.
These benchmarks are selected from among standard mi-
croprocessor and parallel computing benchmarks. In each
case the application is implemented with multiple copies of
a small computation element written in Behavioral Verilog.
These computation elements are then connected, using the
RawCS generator, to reflect the dependence structure of the
unrolled loops. We continue by discussing each algorithm
and its implementation under the RawCS system.

Binary Heap This benchmark implements the heapifying
operation to convert an arbitrary binary tree structure into
a binary heap in which the value at each node satisfies the
heap property – each node’s value is greater than the values
of both children nodes. Heapifying consists of comparing
the element at the current node with the elements of its
children, determining if the heap property is violated, and
swapping the appropriate elements if so. This algorithm
makes a number of swaps proportional to the number of
nodes in the tree,

�
. The hardware version converts the tree

to a heap in a number of clock cycles that is proportional to�
log
��� 2. Each node of the tree is implemented as a module

that can read the contents of its left and right children,
compare its own element to these two values, and update its
own as well as one of its children’s elements. The tree will
satisfy the heap property after log

�
passes. Parallelism

is exploited in allowing all nodes at one level to be active
simultaneously.

Bubble Sort Bubble sort, one of the simplest algorithms
for sorting an array, consists of repeatedly exchanging pairs
of adjacent array elements that are out of order until no
such pair remains. The serial software implementation of
bubble sort has a time complexity that is 	 ��
 2 � in the
number of elements – only one pair of numbers can be
examined at a time, and

passes must be taken through

the array, where

is the number of elements. In contrast,
by parallelizing exchanges, the RawCS parallel hardware
version sorts elements in a number of clock cycles that is
linear with

, and requires an amount of hardware on the

order of

.

DES The Data Encryption Standard [18] (DES) is a sys-
tem developed for the U.S. government for use by the gen-
eral public. The DES algorithm, a combination of substi-
tution and permutation, derives its strength from repeated
application of these two techniques, one on top of the other,
for a total of 16 cycles. The software algorithm used in this
benchmark was adopted from Eric Young’s fast encryp-
tion package. It performs rotation to align bits for simpler
permutation. As a result, this version of encryption re-
quires only 42 operations per substitution and permutation
cycle. In contrast, the RawCS implementation takes ad-
vantage of the independence between each DES encryption
and decryption operation. It performs

encryptions or

decryptions simultaneously, where

is the number of hard-

ware DES modules in the design. For each encryption, we
use a lookup table to bypass the shifting and substitution
operations. As a result, an individual hardware DES mod-
ule is expected to achieve performance similar to the best
software solution and thus achieve an 	 ��
 � speedup.

FFT The Fast Fourier Transform (FFT) over the field of
complex numbers[19] is a common signal processing ap-
plications with inherent parallelism. An FFT of size

�
can

be performed in hardware in a loop of length log
�

where
each iteration of the loop permits

��
2 computations to run

in parallel. Further, the loop of length log
�

can be un-
rolled into a butterfly network and pipelined by overlapping
the successive iterations. Our hardware version employs a
number theoretic version of the FFT which operates in the
ring of integers modulo 2 ��� 2 � 1. This differs from the
complex FFT since arithmetic operations take place in a
ring of integers. The basic FFT structure, including the
inherent parallelism of the algorithm, is the same for both
the complex and number theoretic cases. Note that the FFT
data width is

��
2 � 1 bits.

Jacobi Relaxation Jacobi relaxation is an iterative al-
gorithm which, given a set of boundary conditions, finds
discretized solutions to differential equations of the form� 2 ������� 0. Each step of the algorithm replaces each
node of a grid with the average of the values of its nearest
neighbors. We have implemented an integer version of Ja-
cobi relaxation. A computation element representing each
grid point simply produces an average of its four inputs. We
use the RawCS generator to generate connections between
each computation element and its four neighbors. The re-
sulting circuit has a simple regular grid structure, reflective
of the data dependence graph of the algorithm.

Game of Life Conway’s Game of Life program is repre-
sented on a two-dimensional array of cells, each cell being
alive or dead at any given time. The program begins with
an initial configuration for the cells, and henceforth obeys
the following set of rules: a living cell remains alive if
it has exactly two or three living neighbors, otherwise it
dies; a dead cell becomes alive if it has exactly three living
neighbors, otherwise it stays dead.

Matrix Multiply This version of Matrix Multiply multi-
plies two

�����
matrices in 	 � � log

���
time given 	 � � 2 �

hardware multipliers. This runtime is achieved by imple-
menting a vector-matrix multiplier, which stores an initial
matrix away, and repeatedly returns its product with an in-
put vector. The multiplication stage of the dot products is
in parallel while the additions are scheduled in a binary-tree
fashion, with log

�
levels.

Merge Sort The hardware structure that implements the
merge sort is a binary tree with the leaves of the tree each
containing a single element of the data set that is to be
sorted. Each node of the tree performs a comparison of its
two inputs from its subnodes, stores the higher value in a

register which is connected to the output of the node, and
then tells the subnode that had the higher value to load a
new value into its register. The subnode that gets the load
signal performs the same operation, and so on, until a leaf
node is hit. Once a leaf node gets a load signal, it loads its
register with a zero. As data is pulled off the top of the tree,
larger data values float to the top. The sort is completed in
	 � ��� time.

N-Queens The N-Queens benchmark solves the combi-
natorially hard chess problem of placing

�
queens on an�����

chessboard such that no queen can attack any other.
The typical software solution to this problem uses a recur-
sive search for a placement of the queens that meets the
correct conditions. In the RAW benchmark the program is
represented by

�
computation elements, each of which is

responsible for the position of one of the queens. A token
is passed back and forth between these computational el-
ements representing control flow, much as a stack pointer
would in the recursive software solution to the algorithm.
Each computational element monitors the positions of the
queens in other columns to determine a legal position for
its own queen. During a particular cycle, only the com-
putational element currently holding the token changes the
position of its queen.

Graph Problems The RAW benchmarks for single
source shortest path (ssp), multiplicative shortest path
(spm) and transitive closure (tc) specialize both the algo-
rithm and the topology of the input graph. In each case
we generate computation elements for each node of the
input graph and then use the RawCS generator to connect
these elements in the same topology as the problem in-
put graph. For the shortest path problems the computation
element is a circuit that finds the minimum of its inputs.
For the transitive closure problem the computation element
is an AND function across its inputs. With the exception
of ssp64-mesh, each of the graph benchmark cases is ran-
domly generated with a maximum node in-degree of eight,
and an average in-degree of four. See [2] for more details.

4.1 Limitations

Our current benchmark suite has several limitations.
First, the designs are not multiplexed and thus require gate
counts proportional to problem size. In addition, none
of the applications have significant memory requirements.
Also, all applications have very small code size. Finally, the
benchmarks are not designed to evaluate I/O performance.

 Host Workstation
(SparcStation 10/51)

 Sbus
Interface
 Card

External I/O
 Interface

32 data
�
24 addr Logic Emulator

(IKOS VirtuaLogic)

Figure 3: Prototype Reconfigurable Computing System

Tool Function Software time

RawCS Generator C Program seconds
Behavioral Compiler Synopsys minutes
RTL Compiler Synopsys ten minutes
Virtual Wires Compiler IKOS 2 hours / board
FPGA Compiler Xilinx 2 hours / board (10 hosts)

Table 2: Experimental Software System

5 Experimental System

5.1 Architecture

The RAW Benchmark Suite can be targeted to a va-
riety of reconfigurable computing systems. Initially, we
are targeting a prototype hardware system consisting of a
VirtuaLogic Emulator (VLE) from IKOS Systems coupled
with a Sun SparcStation 10/51 via a SLIC S-bus interface
card [9] (Figure 3). Not shown is a SCSI interface to the
emulator for downloading configurations and controlling
clock speed. We are currently using a production VLE
system consisting of five arrays of 64 Xilinx 4013 FPGAs
each. The FPGAs on each board are directly connected
in nearest-neighbor meshes augmented by longer connec-
tions to more distant FPGAs. Boards are coupled together
with multiplexed I/Os. Additionally, each board has sev-
eral hundred external I/Os, resulting in total external I/O
connections of a few thousand.

When used as a logic emulator, the external I/O interface
of the VLE is generally connected to the target system of
the design under emulation. For reconfigurable comput-
ing, we have instead connected a portion of the external
I/O to an Sbus interface card in the host SparcStation. This
card provides an asynchronous bus with 24 bits of address
and 32 bits of data which may be read and written directly
via memory-mapped I/O to the Sparc Sbus. We are suc-
cessfully operating this interface at conservative rates of
0.25MHz for reads and 0.5MHz for write operations given
a 1MHz emulation clock, providing 1-2 Mbytes/sec rates
for communication between the host CPU and the FPGAs

of the emulator. This limited I/O rate allows one 32 bit
read/write every 100/50 cycles of the 50MHZ host CPU.

5.2 Compiler

We have implemented a C library for building RawCS
generators for each benchmark and constructed an exper-
imental software system out of this generator library and
other commercial tools. Table 2 lists the software used for
each tool step and rough running times on SparcStation 20
class machines. By far the most computationally expensive
step is the last FPGA compile. However, FPGA compiles
may generally be parallelized over a network of worksta-
tions to provide reasonably effective compile times.

6 Results

We implemented a RawCS generator and a library of
computation elements for each benchmark. For each
benchmark we generated cases ranging in size from a few
FPGAs to hundreds of FPGAs. Table 3 summarizes our
results. The prefix of the problem specifies the benchmark
name as defined in Section 4, with the following number
identifying the number of computational elements. For
each benchmark we list the data path width, number of
computation elements, gate count and the total number of
Xilinx 4013 FPGAs required. We also list the effective
clock rate assuming a 25MHz internal virtual wires clock.
To calculate the solution speed, we divide the clock rate
by the number of clock cycles required to reach a solution.
Finally, we compute speedup by dividing the FPGA speed
by the best software speed on a 2.82 SPECint95 SparcSta-
tion 20. An additional metric we have added, speedup per
FPGA, is the speedup divided by the number of FPGAs
and measures the relative efficiency of solving the partic-
ular problem type on a reconfigurable architecture. Note
that the datapath width for each benchmark varies across
the suite. In some cases the width is particular to the ap-
plication domain, while in other cases the width is simply
a parameter chosen for this set of experiments.

|�
0 |�

200 |�
400 |�

600 |�
800 |�

1000 |�
1200!|"0

|"350

|"700

|"1050

|"1400

|"1750

 Problem Size (1000s of Gates)#

 S
p

ee
d

u
p

$

jacobi16x16
%

jacobi32x32
%

jacobi32x64
%

life32x6
&

life64x16
&

life96x16
&

life64x64

'
'

'

'

(

(

(

(

Figure 4: High Performance Scalability

|)
0* |)

30+ |)
60, |)

90- |)
120. |)

150/ |)
1800 |)

2101 |)
2402|30*

|330*
|360*

|390*

|3120*

|3150*

|3180*

|3210*

 Problem Size (1000s of Gates)4

 S
p

ee
d

u
p

5

fft4
6

fft16
6

fft32
6

matmult4x4

matmult8x87

matmult16x167

8

8
8

9
9

9

Figure 5: Medium Performance Scalability

We have successfully compiled most of the smaller de-
signs, all the way down to configuration bitstreams, and run
the designs on our prototype emulation system. The exe-
cution of these designs has been validated with I/O across
our memory-mapped Sbus interface.

For purposes of discussing the experimental results, we
group the benchmarks into high, medium, and low perfor-
mance categories as a function of the order of magnitude of
speedup achieved. In general we have discovered that the
level of speedup is proportional the ability of each bench-
mark implementation to capitalize on speedup potentials
from 1) massive parallelism, 2) local communication pat-
terns, 3) configured/specialized instructions, 4) and fine-
grain data width and operators.

6.1 High Performance (100-1000X)

The group of benchmarks that achieved two to three or-
ders of magnitude speedup includes Jacobi (jacobi), Life
(life), and Transitive Closure (tc). These cases benefit from
all speedup potentials, with massive parallelism, regular
communication, customized instructions that unroll the en-
tire inner loops in a single cycle, and small bit or byte-wide
data widths. These benchmarks exhibit nearly linear scal-
ing with problem size (Figure 4). In comparing Jacobi
to Life, Life achieves higher performance due to the bit
level operations while Jacobi operates on byte level data.
Thus many more Life computational elements fit per unit
of area than do Jacobi computation elements. A caveat to
the bit-level performance numbers is that we are not cur-
rently implementing known improvements to the software

|)
0* |)

100* |)
200* |)

300* |)
400* |)

500* |)
600* |)

700* |)
800* |)

900*|30*

|31

|32

|33+

|34

|35/

|36,

|37

 Problem Size (1000s of Gates)4

 S
p

ee
d

u
p

5

bheap15
: bheap63

:

bheap255

nqueens16

nqueens32;

nqueens64

< <
<

=
=

=

Figure 6: Low Performance Scalability

version to take advantage of the bit-level parallelism within
a microprocessor.

6.2 Medium Performance (10-100X)

The group of benchmarks that achieved one to two or-
ders of magnitude speedup includes Bubble Sort (bubble),
DES Encryption (des), Fast Fourier Transform (fft), Matrix
Multiply (matmul), Shortest Path (ssp), and Multiplicative

Benchmark Data number gate FPGA clock solution software speedup speedup
case width of count count rate rate rate vs per

(bits) elements (X4013) (MHz) (KHz) (Hz) software FPGA

bheap15 32 15 29k 20 2.08 130 103K 1.26 0.06
bheap63 32 63 167k 64 1.19 33.07 25K 1.34 0.02
bheap255 32 255 833k 320 0.78 12.21 6K 2.21 0.01
bubble64 32 64 142k 64 1.25 39.06 6K 7 0.11
bubble256 32 256 638k 261 0.83 6.51 370 18 0.07
bubble512 32 512 1394k 320 0.61 2.38 94 25 0.08
des4 64 4 47k 41 1.92 428 60K 7 0.17
des48 64 48 596k 219 1.32 3509 60K 58 0.27
des96 64 96 1305k 320 0.93 4938 60K 82 0.26
fft4 3 4 4k 17 2.27 568 67K 9 0.50
fft16 9 16 46k 44 2.08 347 8K 43 0.97
fft32 17 32 217k 64 1.32 188 3K 59 0.92
jacobi8x8 8 64 22k 33 2.78 43.40 833 52 1.58
jacobi16x16 8 256 106k 85 2.27 35.51 154 230 2.71
jacobi32x32 8 1024 590k 231 1.56 24.41 33 747 3.23
jacobi32x64 8 2048 1126k 379 1.56 24.41 16 1562 4.12
life32x6 1 192 42k 33 2.08 32.55 234 139 4.21
life64x16 1 1024 229k 108 1.92 30.05 50 597 5.53
life96x16 1 1536 351k 178 2.08 32.55 33 973 5.47
life64x64 1 4096 971k 354 1.47 22.98 13 1758 4.97
matmult4x4 16 16 10k 18 3.12 781 9K 90 4.99
matmult8x8 16 64 43k 42 2.78 347 3K 115 2.73
matmult16x16 16 256 176k 64 1.56 97.66 532 183 2.87
merge8 32 8 14k 24 3.12 312 120K 2.60 0.11
merge64 32 64 114k 59 1.79 25.88 13K 1.98 0.03
merge256 32 256 596k 201 1.19 4.53 3K 1.62 0.01
nqueens16 1 16 14k 17 3.57 1786 451K 3.96 0.23
nqueens32 1 32 73k 60 2.50 1250 256K 4.89 0.08
nqueens64 1 64 463k 215 1.79 893 128K 7 0.03
ssp16 16 16 44K 14 1.79 112 11K 10 0.71
ssp64 16 64 181K 56 1.14 18 658 27 0.48
ssp64-mesh 16 64 159K 46 1.56 24 758 32 0.70
ssp128 16 128 366K 118 0.78 6.1 149 41 0.35
ssp256 16 256 814K 261 0.34 1.3 25 52 0.20
spm16 16 16 156K 36 1.39 87 6.3K 14 0.39
spm32 16 32 310K 90 1.19 37 1.5K 25 0.28
tc512 1 512 187K 48 1.47 2.9 7.2 398 8.29

Table 3: Benchmark Results

Shortest Path (spm). Unlike the low performance cases,
speedup for these cases did scale up with increasing prob-
lem size (Figure 5), but not linearly. Increasing speedup
is reflective of the large amounts of instruction-level paral-
lelism available while the increasing global communication
overheads contribute to a slower hardware clock speed and
thus non-linear speedup. Note that both FFT and DES ben-
efit from customized datapath and custom operator widths.
For example, DES implements a 64 bit algorithm while the
software version must serialize 16 bit operations to perform
the correct permutations of the algorithm.

To pin-point the effects of increasing global commu-
nication overhead, we created ssp64-mesh, a design with
much greater locality compared to the randomly generated

graphs in the other shortest path problems. We found that
ssp64-mesh has a speedup of 0.70 per FPGA as opposed to
0.48 for Ssp64, nearly a 50 percent improvement.

6.3 Low Performance (1-10X)

The group of benchmarks that achieved one order of
magnitude or less of speedup includes Binary Heap (bheap),
Merge Sort (merge), and N Queens (nqueens). In addition
to low speedup, these benchmarks also did not scale with
increasing problem size (Figure 6), mainly due to a lack of
available parallelism. Note that bheap and nqueens exhibit
a log scale-up while merge does not scale at all. These
designs are achieving a small speedup from specialization
with nqueens also benefiting from bit level data width, but

Structure Combinational Sequential Total

Bheap-Node 374 gates 320 gates 694 gates
Bubble-Node 589 gates 352 gates 941 gates
DES-Node 3499 gates 1584 gates 5083 gates
FFT-Node 1404 gates 192 gates 1596 gates
Jacobi-Node 275 gates 160 gates 435 gates
Life-Node 221 gates 8 gates 229 gates
Merge-Node 544 gates 256 gates 800 gates
Matmult-Node 1620 gates 64 gates 1684 gates
N-Queens-Node 379 gates 480 gates 859 gates
Ssp-Node 1435 gates 684 gates 2119 gates
Spm-Node 6629 gates 673 gates 7302 gates
Tc-Node 269 gates 73 gates 342 gates

Table 4: Computation Granularity

they all lack the massive parallelism found in the higher
performance benchmarks. We think that a multiplexed
bheap design that re-used hardware resources might achieve
a more scalable speedup.

6.4 Computation Granularity

To conclude discussion of our results, we present the
structure area for our synthesized library elements (Ta-
ble 4). Each element is roughly one processing node in
the reconfigurable solution. The granularity of computa-
tion, a function of the operator width and the inner loop
complexity, translated directly into computation element
size. Besides decreasing gate requirements, the size of the
computation elements in each benchmark also influences
the final clock rate of the resulting design – with smaller
elements there is less inter-FPGA communication.

7 Related Work

A number of similar general purpose applications have
previously been examined for reconfigurable computing.
Iseli and Sanchez implemented the Life benchmark on the
Spyder architecture [14]. Sorting algorithms have been
investigated by Luk et al [17], Carrera et al [7], Amer-
son et al [1] and Hauser and Wawrzynek [13]. Priority
queues have been examined by Luk [16]. Lew and Halver-
son [15] have used data dependency information to specify
algorithms for the discrete cosine and dynamic program-
ming solutions for the shortest path problem. The discrete
cosine has also been investigated by Ebeling et al [10].
Bittner and Athanas [6] have implemented vector dot prod-
uct. Yeh, Feygin and Chow [21] implemented a Viterbi
decoder which has a similar structure to the Raw shortest
path benchmark. A 3D heat equation solver, with a struc-
ture similar to the Jacobi benchmark has been implemented
for the PAM architecture [5].

IMEM
>
REGS
?

RawTile
?

SWITCH
@

SMEM
@

PC
A
PC
A

DMEM
B

PC
A

CL
CALU
D

Raw Microprocessor Raw Tile

Figure 7: Tiled Raw Microprocessor

8 Future Work

Many of the gains in application performance found in
Section 6 were offset by the additional overhead of using an
exclusively fine grain medium (FPGAs) for computing. We
estimate that our applications could have achieved yet an-
other order of magnitude speed improvement if our system
could be run at the clock rates (e.g. 500MHz) of mod-
ern processors. Our future work involves the development
of an architecture and compiler for a Raw microproces-
sor (Raw E P) [20] which provides the benefits found in re-
configurable computing environments without the costs of
using only FPGA logic. As shown in Figure 7 the Raw Mi-
croprocessor is composed of a set of simple interconnected
tiles, each tile comprising instruction and data memory,
an ALU, registers, some configurable logic, and a pro-
grammable switch. Wide channels couple near-neighbor
tiles. The hardware architecture is fully exposed to the
compiler and the switch is programmable via a sequence of
compiler determined instructions.

This architecture would provide exactly those features
which permit reconfigurable applications to run faster than
they would on a typical microprocessor without sacrificing
speed for coarse-grain operations. Portions of the applica-
tion with independent control flow can run in parallel on
different tiles. The tightly coupled communication network
permits inexpensive communication and synchronization
between tiles. Finally, the configurable logic block on each
tile for can be used fine grain and specialized operations.

9 Summary

This paper has presented twelve general purpose com-
puting benchmarks for reconfigurable architectures. We
have introduced raw computation structures, a framework
for expressing the data communication patterns of an algo-

rithm. By leveraging commercial virtual wires technology
to hide the details of our underlying hardware, we have im-
plemented a set of architecture-independent benchmarks in
high-level Behavioral Verilog. We measured speeds on an
IKOS VirtuaLogic emulator from 2X to 1800X faster than
a 2.82 SPECint95 Sparc 20 for designs up to 379 FPGAs.
These results show that applications written at a relatively
high level can achieve the orders of magnitude speedups
typical of hand-crafted reconfigurable hardware.

Acknowledgments

The research report in this paper was funded in part
by ARPA contract # DABT63-96-C-0036 and by an NSF
Presidential Young Investigator Award to Prof. Agarwal.
Matthew Frank is in part supported by an NSF Graduate
Fellowship. The VirtuaLogic emulation system was do-
nated by Ikos Systems.

References

[1] R. Amerson, R. Carter, B. Culbertson, P. Kuekes, and
G. Snider. Teramac–configurable custom computing. In
D. A. Buell and K. L. Pocek, editors, Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines,
pages 32–38, Napa, CA, Apr. 1995.

[2] J. Babb, M. Frank, and A. Agarwal. Solving graph prob-
lems with dynamic computation structures. In SPIE Pho-
tonics East: Reconfigurable Technology for Rapid Product
Development & Computing, Boston, MA, Nov. 1996.

[3] J. Babb, R. Tessier, and A. Agarwal. Virtual Wires: Over-
coming pin limitations in FPGA-based logic emulators. In
Proceedings IEEE Workshop on FPGA-based Custom Com-
puting Machines, pages 142–151, Napa, CA, April 1993.
IEEE. Also as MIT/LCS TM-491, January 1993.

[4] T. Bauer. The Design of an Efficient Hardware Subroutine
Protocol for FPGAs. Master’s thesis, EECS Deptartment,
MIT, Department of Electrical Engineering and Computer
Science, May 1994.

[5] P. Betrin and H. Touati. Pam programming environments:
Practice and experience. Napa, pages 133–138, April 1994.

[6] R. A. Bittner, Jr. and P. M. Athanas. Computing Kernels
Implemented with a Wormhole RTR CCM. In Proceed-
ings of IEEE Workshop on FPGAs for Custom Computing
Machines, Apr. 1997.

[7] J. M. Carrera, E. J. Martinez, S. A. Fernandez, and J. M.
Chaus. Architecture of a FPGA-based coprocessor: The
PAR-1. In D. A. Buell and K. L. Pocek, editors, Proceed-
ings of IEEE Workshop on FPGAs for Custom Computing
Machines, pages 20–29, Napa, CA, Apr. 1995.

[8] D. Thomas and P. Moorby. The Verilog Hardware Descrip-
tion Language. Kluwer Academic Publishers, Boston, 1991.

[9] DAWN VME Products. SLIC Evaluation Board User’s
Guide for DAWN VME PRODUCTS SLIC EB-1 Version 1.0,
June 1993.

[10] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and
S. G. Berg. Mapping applications to the rapid configurable
architecture. In Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, Apr. 1997.

[11] D. R. Engler. VCODE: A retargetable, extensible, very fast
dynamic code generation system. In PLDI ’96, 1996.

[12] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich,
D. Sweeney, and D. Lopresti. Building and using a highly
parallel programmable logic array. Computer, 24(1), Jan.
1991.

[13] J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor
with a Reconfigurable Coprocessor. In Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines, Apr.
1997.

[14] C. Iseli and E. Sanchez. Spyder: A reconfigurable VLIW
processor using FPGAs. In D. A. Buell and K. L. Pocek, ed-
itors, Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, pages 17–24, Napa, CA, Apr. 1993.

[15] A. Lew and R. Halverson, Jr. A FCCM for Dataflow (Spread-
sheet) Programs. In Proceedings of IEEE Workshop on FP-
GAs for Custom Computing Machines, Apr. 1995.

[16] W. Luk. A declarative approach to incremental custom com-
puting. In D. A. Buell and K. L. Pocek, editors, Proceedings
of IEEE Workshop on FPGAs for Custom Computing Ma-
chines, pages 164–172, Napa, CA, Apr. 1995.

[17] W. Luk, V. Lok, and I. Page. Hardware acceleration of
divide-and-conquer paradigms: a case study. In D. A. Buell
and K. L. Pocek, editors, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pages 192–201,
Napa, CA, Apr. 1993.

[18] C. P. Pfleeger. Security in Computing. Prentice-Hall, Inc.,
New Jersey, 1989.

[19] W. Press et al. Fast Fourier Transform (FFT), pages 504–
510. Cambridge University Press, New York, 1995.

[20] E. Waingold, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, S. Devabhaktuni, R. Barua, J. Babb,
S. Amarasinghe, and A. Agarwal. Baring it all to Software:
The Raw Machine. Technical Report TR-709, MIT LCS,
Mar. 1997.

[21] D. Yeh, G. Geygin, and P. Chow. RACER: A Reconfig-
urable Constraint-Length 14 Viterbi Decoder. In Proceed-
ings of IEEE Workshop on FPGAs for Custom Computing
Machines, Apr. 1996.

