# **Dynamic Zero Compression** for Cache Energy Reduction

Luis Villa Michael Zhang Krste Asanovic

{luisv|rzhang|krste}@lcs.mit.edu





#### **Existing Energy Reduction Techniques** 128 32 ばー Sub-banking gwl Hierarchical Bitlines lwi **■** Low-swing Bitlines SRAM □Only for reads, writes SRAM Cells Cells performed full swing. **■** Wordline Gating Offset addr offset offset I/O BUS

## **Asymmetry of Bits in Cache**



- >70% of the bits in D-cache accesses are "0"s
  - □ Measured from SPECint95 and MediaBench
  - □ Examples: *small values*, *data types*
- **■** Related work with single-ended bitlines
  - □ [Tseng and Asanovic '00] --- Used in register file design with single-ended bitlines.
  - □ [Chang et. al. '99] --- Used in ROM and small RAM with single-ended bitlines.
- Differential bitlines preferred in large *SRAM* designs.
  - **□** Better Noise Immunity
  - **□** Faster Sensing





## **Hardware Modifications**



- Zero Indicator Bit
- **■** Wordline Gating Circuitry
- **Sense Amplifier**
- **CPU Store Driver**
- Cache Output Driver









## **Delay Overhead**



- No delay overhead for writes
  - $\hfill\Box$  Zero check performed in parallel with tag check
- 2 F04 gate-delays for reads
  - $\hfill\Box$  A pessimistic 7% worst case delay







## **IWLG to Dynamic Zero Compression**



- Adopting IWLG technique for Dynamic Zero Compression
  - □ Small modification on instruction format
    - Use 8-8-8 instead of 16-7-9
  - □ Upper two byte are zero-detected
  - ☐ Lower two bytes are usage-detected
  - □ Able to eliminate bitline swings of zero-valued bytes in 2 upper bytes
    - Example: Opcode 000000
  - □ Slower than IWLG due to wordline gating in the critical path







#### **Conclusion**



- A novel hardware technique to reduce cache energy by eliminating the access of zero bytes.
  - □ Small area and delay overhead
    - Area: 9%, Delay: 2 F04 gate-delays
  - □ Average energy saving: D-Cache: 26%, I-Cache: 18%
    - Processor wide: ~10% for typical embedded processors
  - □ Completely orthogonal to existing energy reduction techniques
- Dynamic Zero Compression is applicable to
  - □ Second level caches
  - $\square$  **DRAM**
  - □ Datapath [Canal et. al. Micro-33]

## Thank You!

http://www.cag.lcs.mit.edu/scale/