
ronny@mit.edu

www.cag.lcs.mit.edu/scale

Introduction

• Architectures are all about exploiting the parallelism
inherent to applications

• Performance
• Energy

• The Vector-Thread Architecture is a new approach
which can flexibly take advantage of many forms of
parallelism available in different applications

– instruction, loop, data, thread
• The key goal of the vector-thread architecture is

efficiency – high performance with low power
consumption and small area

• A clean, compiler-friendly programming model is
key to realizing these goals

Instruction Parallelism

Super-scalar VLIW

• Independent instructions can execute concurrently

• Super-scalar architectures dynamically schedule
instructions in hardware to enable out-of-order and
parallel execution

• Software statically schedules parallel instructions on a
VLIW machine

track instr.
dependencies

Loop Parallelism

VLIW

• Operations from disjoint iterations of a loop can
execute in parallel

• VLIW architectures use software pipelining to statically
schedule instructions from different loop iterations to
execute concurrently

load

add

store

load

add

store

load

add

store

iter. 0

iter. 1

iter. 2

software
pipeline

load

add

store

prev

next

loop:

load

add

store

iter. 3

load

add

store

iter. 4

Data Parallelism

Vector

• A single operation can be applied in parallel across a
set of data

• In vector architectures, one instruction identifies a set
of independent operations which can execute in
parallel

• Control overhead can be amortized

Thread Parallelism

Multiprocessor

• Separate threads of control can execute concurrently

• Multiprocessor architectures allow different threads to
execute at the same time on different processors

• Multithreaded architectures execute multiple threads at
the same time to better utilize a single set of processing
resources

SMT

Vector-Thread Architecture
Overview

• Data parallelism – start with vector architecture

• Thread parallelism – give execution units local control

• Loop parallelism – allow fine-grain dataflow communication
between execution units

• Instruction parallelism – add wide issue

Vector Architecture

VP0 VP1 VP(N-1)

vector
instruction

control
thread

Programming Model

• A control thread interacts with a set of virtual processors (VPs)

• VPs contain registers and execution units

• VPs execute instructions under slave control

• Each iteration in a vectorizable loop mapped to its own VP (w. stripmining)

loadA

loadB

add

store

i=0 i=1 i=N-1
for (i=0; i<N; i++)

C[i] = A[i] + B[i];

load A
load B
add
store

VP0 VP1 VP(N-1)

vector-execute:
vector-execute:
vector-execute:
vector-execute:

loadA

loadB

add

store

loadA

loadB

add

store

Using VPs for Vectorizable Loops

Vector Microarchitecture

loadA

add

store

loadA loadA loadA
loadA loadA loadA loadA
loadA loadA loadA loadA
loadA loadA loadA loadA
loadB loadB loadB loadB
loadB loadB loadB loadB
loadB loadB loadB loadB
loadB loadB loadB loadB

add add add
add add add add
add add add add
add add add add

store store store
store store store store
store store store store
store store store store

Lane 0 Lane 1 Lane 2 Lane 3
• Lanes contain regfiles and execution units –

VPs map to lanes and share physical
resources

• Operations execute in parallel across lanes
and sequentially for each VP mapped to a lane
– control overhead amortized to save energy

Execution on Vector Processor

from control
processor

VP0
VP4
VP8
VP12

VP1
VP5
VP9
VP13

VP2
VP6
VP10
VP14

VP3
VP7
VP11
VP15

Lane 0 Lane 1 Lane 2 Lane 3Microarchitecture

load A
load B
add
store

vector-execute:
vector-execute:
vector-execute:
vector-execute:

Vector-Thread Architecture

VP0 VP1 VP(N-1)

slave control

micro-threaded
control

Programming Model

cross-VP communication

• Vector of Virtual Processors (similar to traditional vector architecture)

• VPs are decoupled – local instruction queues break the rigid
synchronization of vector architectures

• Under slave control, the control thread sends instructions to all VPs

• Under micro-threaded control, each VP fetches its own instructions

• Cross-VP communication allows each VP to send data to its successor

Using VPs for Do-Across Loops

recv

load

add

send

i=0

for (i=0; i<N; i++) {

x = x + A[i];

C[i] = x; }

VP0

store

recv

load

add

send

i=1
VP1

store

recv

load

add

send

i=(N-1)
VP(N-1)

store

• VPs execute atomic instruction blocks (AIB)

• Each iteration in a data dependent loop is mapped
to its own VP

• Cross-VP send and recv operations communicate
do-across results from one VP to the next VP
(next iteration in time)

load

add

store

recv

send

vector-execute:

AIB

Vector-Thread Microarchitecture

VP0
VP4
VP8
VP12

VP1
VP5
VP9
VP13

VP2
VP6
VP10
VP14

VP3
VP7
VP11
VP15

Lane 0 Lane 1 Lane 2 Lane 3

Microarchitecture

execute
directives

Instr.
cache

Instr.
fill

do-across network

VPs striped across lanes as in traditional vector machine

Lanes have small instruction cache (e.g. 32 instr’s), decoupled execution

Execute directives point to atomic instruction blocks and indicate which
VP(s) the AIB should be executed for – generated by control thread
vector-execute command, or VP fetch instruction

Do-across network includes dataflow handshake signals – receiver stalls
until data is ready

Do-Across Execution

recv
load

add
send
store

recv

load

add
send
store

recv

load

add
send
store

recv

load

add
send
store

recv

load

add
send
store

recv

load

add
send
store

recv

load

add
send
store

recv

load

add
send
store

Lane 0 Lane 1 Lane 2 Lane 3

• Dataflow execution resolves do-
across dependencies dynamically

• Independent instructions execute
in parallel – performance adapts
to software critical path

• Instruction fetch overhead
amortized across loop iterations recv

load

add
send
store

recv

load

add
send
store

recv

load

add

load

load

load

add

store

recv

send

vector-execute:

Micro-Threading VPs

• VPs also have the ability to fetch their own instructions
enabling each VP to execute its own thread of control

• Control thread can send a vector fetch instruction to all VPs
(i.e. vector fork) – allows efficient thread startup

• Control thread can stall until micro-threads “ finish” (stop
fetching instructions)

• Enables data-dependent control flow within a loop iteration
(alternative to predication)

VP0 VP1 VP(N-1)

Loop Parallelism and Architectures

Loops are ubiquitous and contain ample parallelism across
iterations

Super-scalar: must track dependencies between all instructions in
a loop body (and correctly predict branches) before executing
instruction in the subsequent iteration… and do this repeatedly
for each loop iteration

VLIW: software pipelining exposes parallelism, but requires static
scheduling which is difficult and inadequate with dynamic
latencies and dependencies

Vector: efficient, but limited to do-all loops, no do-across

Vector-thread: Software efficiently exposes parallelism, and
dynamic dataflow automatically adapts to critical path. Uses
simple in-order execution units, and amortizes instruction fetch
overhead across loop iterations

Using the Vector-Thread
Architecture

Control
Thread

DO-ACROSS Loop

Micro-
threading

DO-ALL Loop

Virtual Processors

• The Vector-Thread Architecture seeks to efficiently exploit
the available parallelism in any given application

• Using the same set of resources, it can flexibly transition
from pure data parallel operation, to parallel loop execution
with do-across dependencies, to fine-grain multi-threading

Vector-Threading

ILP

Threads

Vector
Loop

P
er

fo
rm

an
ce

 &
E

n
er

g
y

E
ff

ic
ie

n
cy

Multi-paradigm Support

SCALE-0 Overview

ctrl
proc

Vector
Thread

Unit

32b 128b

4x
12

8b

128b
CMMU

Network
Interface

Outstanding
Trans. Table

128b

256b

32KB L1
Configurable I/D Cache

IA
L

U

Cluster 0 (Mem)

IA
L

U

Cluster 1

F
P

-A
D

D

Cluster 2

F
P

-M
U

LCluster 3

Local
Regfile

In
te

r-
C

lu
st

er
 C

om
m

un
ic

at
io

n

P
re

v-
V

P

N
ex

t-
V

P

Local
Regfile

Local
Regfile

Local
Regfile

Clustered
Virtual Processor

Tile

ALU

ALU

ALU

L/S

ALU

ALU

ALU

L/S

ALU

ALU

ALU

L/S

ALU

ALU

L/SIn
st

ru
ct

io
n

 Is
su

e
U

n
it

to tile memory

Lane

ALU

