The Vector-Thread Architecture

Ronny Krashinsky,
Chris Batten, Krste Asanovié

Computer Architecture Group

MIT Laboratory for Computer Science
ronny@nt. edu

www. cag.lcs. mt. edu/scal e

Boston Area Architecture Workshop (BARC)
January 30th, 2003



Introduction

o Architectures are all about exploiting the parallelism
Inherent to applications
e Performance
e Energy
 The Vector-Thread Architecture is a new approach
which can flexibly take advantage of many forms of
parallelism available in different applications
— Instruction, loop, data, thread
 The key goal of the vector-thread architecture is
efficiency — high performance with low power
consumption and small area
e A clean, compiler-friendly programming model is
key to realizing these goals



Instruction Parallelism

e Independent instructions can execute concurrently

e Super-scalar architectures dynamically schedule
Instructions in hardware to enable out-of-order and
parallel execution

o Software statically schedules parallel instructions on a
VLIW machine

Super-scalar

VLI

{1

track instr.
dependencies




Loop Parallelism

o Operations from disjoint iterations of a loop can
execute in parallel

e VLIW architectures use software pipelining to statically
schedule instructions from different loop iterations to
execute concurrently

loop:
load _ Iadd
v lter. 1 1 next
add load e —
software
pipeline




Data Parallelism

A single operation can be applied in parallel across a
set of data

e [n vector architectures, one instruction identifies a set
of independent operations which can execute in
parallel

e Control overhead can be amortized

Vector

ooo
> >




Thread Parallelism

e Separate threads of control can execute concurrently

 Multiprocessor architectures allow different threads to
execute at the same time on different processors

 Multithreaded architectures execute multiple threads at
the same time to better utilize a single set of processing

resources

Multiprocessor

v

il 4

-

-

MT

-
I~

Y




Vector-Thread Architecture
Overview

e Data parallelism — start with vector architecture
 Thread parallelism — give execution units local control

 Loop parallelism — allow fine-grain dataflow communication
between execution units

 Instruction parallelism — add wide issue

>




Vector Architecture

Programming Model

control

vector
instruction

VPO

VP1

thread

1

VP(N-1)

VPs contain registers and execution units

Using VPs for Vectorizable Loops

for (i=0; i<N: i++)

Cli] = A[i] + B

vector-execute:
vector-execute:
vector-execute:
vector-execute:

i];

load A

load B

add

store

VPs execute instructions under slave control

VPO VP1
1=0 =1
load A load A
\ loadB \ loadB
]
ad‘cﬁ add
v
store store

A control thread interacts with a set of virtual processors (VPS)

Each iteration in a vectorizable loop mapped to its own VP (w. stripmining)

VP(N-1)

1I=N-1

loadA

\IoadB

add

store




Vector Microarchitecture

Lane O

Lane 1

—
Q
>

e 2

—
Q
5
D
w

Microarchitecture

4
~
<
N~

U
|._;
N

)

"
~

<

)| S |

»
~

<

o

C

from control

processor
—»

%

4
~
<
N~

4
~
<
N~

E
(

D |[H

4
~
<
N~

4
~
<
N~

(

-4
-
S~

= O

»
N

»
.

<

<

<

»
N

»
N

»
.

a5 lslk)
[ ol

<

<

J| 0|70 |TU

N| O |- |k

< N

O 0|70 |TU

Q| NI |

» Lanes contain regfiles and execution units —
VPs map to lanes and share physical

resources

» Operations execute in parallel across lanes
and sequentially for each VP mapped to a lane
— control overhead amortized to save energy

vector-execute:
vector-execute:
vector-execute:
vector-execute:

load A

load B

add

store

Execution on Vector Processo

Lane O Lanel Lane?2 Lane3

loadA loadA loadA loadA
loadA loadA loadA loadA
loadA loadA loadA loadA
loadA loadA loadA loadA
loadB loadB loadB loadB
loadB loadB loadB loadB
loadB loadB loadB loadB
loadB loadB| [loadB| [loadB_
add add add add

add add add add

add add add add

add add add add

store store store store
store store store store
store store store store
sStore store store store




Vector-Thread Architecture

drogramming Model

VPO VP1
micro-threaded
control
slave control : —v

VP(N-1)

>

1

>

1

I'(I\
cross-VP communication

Vector of Virtual Processors (similar to traditional vector architecture)

VPs are decoupled — local instruction queues break the rigid

synchronization of vector architectures

Under slave control, the control thread sends instructions to all VPs

Under micro-threaded control, each VP fetches its own instructions

Cross-VP communication allows each VP to send data to its successor



Using VPs for Do-Across Loops

for (i=0; i<N: i++) {

VPO _ VP1 _ VP(N-1)
x = x + A[il; =0 i=1 I=(N-1)
Clil = x: 3 load load XY load
’ alrecy recv Alrecy]
i, : 7
vector exeg:ute. 2dd / 2dd / 2dd
load ;
E— send send (] /?gnd A
addd rAIB store store store
sen
store

* VPs execute atomic instruction blocks (AIB)

e Each iteration in a data dependent loop is mapped
to its own VP

e Cross-VP send and recv operations communicate
do-across results from one VP to the next VP
(next iteration in time)



Vector-Thread Microarchitecture

Aicroarchitecture
Lane O Lane 1 Lane 2

D| [

U
|._;
N

Ol oyl

axecute
irectiies

.(%

(

2
o <
=

>~
»

| ol
5| 510 [
N D= [

<

P

Dl &
<

H=

<

‘-
N <

»
<~.

»
<~.

str. ||
I

do-across network

—>[ ] N:g‘_ > ]
S

VPs striped across lanes as in traditional vector machine
Lanes have small instruction cache (e.g. 32 instr’'s), decoupled executio

Execute directives point to atomic instruction blocks and indicate whicl
VP(s) the AIB should be executed for — generated by control thread
vector-execute command, or VP fetch instruction

Do-across network includes dataflow handshake signals — receiver stall

1ntil data iec reaand\,



vector-execute:

load

recv

add

send

store

e Dataflow execution resolves do-
across dependencies dynamically

* Independent instructions execute
in parallel — performance adapts
to software critical path

 Instruction fetch overhead
amortized across loop iterations

Do-Across Execution

LaneO0 Lanel Lane?2 Lane3
load load load load
recv
add
send ¥ recv
store add

send recv
load store add
send recv
load store add
recv send
add load store
send ¥ recv
store add load
send recv
load store add
send recv
load store add
recv send
add load store
send ¥ recv
store add load
send =P recv
load store add




Micro-Threading VPs

VPO VP1 VP(N-1)

v

v

 VPs also have the ability to fetch their own instructions
enabling each VP to execute its own thread of control

e Control thread can send a vector fetch instruction to all VPs
(i.e. vector fork) — allows efficient thread startup

e Control thread can stall until micro-threads “finish” (stop
fetching instructions)

 Enables data-dependent control flow within a loop iteration
(alternative to predication)



Loop Parallelism and Architectures

Loops are ubiquitous and contain ample parallelism across
iterations

Super-scalar: must track dependencies between all instructions in
a loop body (and correctly predict branches) before executing
Instruction in the subsequent iteration... and do this repeatedly
for each loop iteration

VLIW: software pipelining exposes parallelism, but requires static
scheduling which is difficult and inadequate with dynamic
latencies and dependencies

Vector: efficient, but [imited to do-all loops, no do-across

Vector-thread: Software efficiently exposes parallelism, and
dynamic dataflow automatically adapts to critical path. Uses
simple in-order execution units, and amortizes instruction fetch
overhead across loop iterations




Control
Thread

Using the Vector-Thread
Architecture

Virtual Processors

DO-ALL Loop

“‘ DO-ACROSS Loop

25

Micro-
threading

Performance &

Energy Efficiency

Multi-paradigm Support

Vector

Loop

Threads

ILP

Vector-Threading

 The Vector-Thread Architecture seeks to efficiently exploit
the available parallelism in any given application

e Using the same set of resources, it can flexibly transition
from pure data parallel operation, to parallel loop execution
with do-across dependencies, to fine-grain multi-threading




SCALE-0 Overview

256b

Tlle Outstanding
Trans. Table
g Vector i
ctrl CMMU
» Thread
128b proc Unit Network
gL I{g
S.[ =i
x |
v

Interface | im—|———

Instruction Issue Unit

il
u
u
i

to tile memory

Clustered

Virtual Processor

-

Prev-VP

~

°
Cluster 3

.

z
Cluzsz'zter_2

Inter-Cluster Communication

{

NiAvt \/D







