
Sieve: An XML-Based Structural Verilog Rules

Check Tool

by

Tina Cheng

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

c© Tina Cheng, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .

Department of Electrical Engineering and Computer Science
August 22, 2003

Certified by. .
Krste Asanović

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

Sieve: An XML-Based Structural Verilog Rules Check Tool

by

Tina Cheng

Submitted to the Department of Electrical Engineering and Computer Science
on August 22, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The complexity of microprocessor chip designs continues to grow with every gener-
ation. At the same time, the amount of manpower needed for these projects also
continues to grow, creating the need for a better integration flow. Due to this trend,
many design conventions are set before the implementation of the chip commences to
aid in the integration. This thesis describes the development of a suite of tools which
check various design rules in accordance with predefined conventions, in particular
the SCALE-0 VLSI design conventions. The tool suite consists of units that check
naming conventions, units that check that the design is structural Verilog, and units
that check leaf signal rules. A flexible input format for describing the rules is also
developed so the tool can be easily adapted for new conventions and new chip designs.
The input to the tools is a Verilog design file. Icarus Verilog is modified to parse this
Verilog into an XML format. The tool then uses this format, along with the rules
that have been defined, as inputs and performs the checks that are specified.

Thesis Supervisor: Krste Asanović
Title: Associate Professor

3

4

Acknowledgments

First and foremost, I would like to thank Krste Asanović for all his help and guidance

through this long thesis process. The road to completion has been a long and windy

road for me, and I thank him for his encouragement and patience through the whole

journey. I would also like to thank the members of Assam for their help in any matters

in which I had questions. I would like to especially thank Chris Batten who answered

many of my questions and assisted me in various tasks.

None of this would have been possible without the words of encouragement from

my family and friends to continue pursuing this degree because god knows I reconsid-

ered it many times. A huge thanks for my wonderful husband, Philippe, who really

pushed me along, and provided aid from proofreading to helping me debug code.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Organization . 16

2 An Overview of Sieve 17

2.1 Top-Level View . 17

2.2 SCALE-0 Rules . 19

2.2.1 Cell Naming Conventions . 20

2.2.2 Signal Naming Conventions 21

3 Verilog Parser 23

3.1 Icarus Verilog . 23

3.2 Parser Overview . 25

3.2.1 Structural Verilog Checker . 25

3.2.2 Print Output . 28

3.2.3 Output File Format . 30

3.3 How to Run . 31

4 Input Format Specification 33

4.1 Sets . 34

4.2 Regular Expressions . 35

4.3 Rules . 36

4.3.1 Category Based Rule Definition 38

7

4.3.2 Non-Category Based Rule Defintion 40

4.4 Functions . 41

5 Checker Program 47

5.1 Library Overview . 47

5.1.1 Carp Expression Library . 47

5.1.2 LibXML2 . 49

5.2 Overview . 50

5.3 Parsing . 51

5.3.1 Parsing RuleCheck . 51

5.3.2 Parsing ModuleData . 55

5.3.3 Signals . 55

5.3.4 Pins . 57

5.3.5 Nexus . 57

5.4 Naming Conventions Check . 57

5.4.1 Checking Module Names . 57

5.4.2 Checking Wire Names . 61

5.5 Rules Check . 61

5.5.1 The Basic Idea . 61

5.5.2 How Regular Expressions are Determined 63

5.5.3 How to Determine if there is a Match 68

5.5.4 How to Determine if Rule is met 69

5.6 How to Run . 71

6 Program Validation 73

6.1 Unit Testing . 73

6.1.1 Parser Unit . 74

6.1.2 Rules Check Unit . 74

6.2 Integration Testing . 75

8

7 Conclusion 77

7.1 Future Improvements . 77

A Sample Rules.xml Input File 79

9

10

List of Figures

2-1 Software Flow Diagram . 18

2-2 SCALE 0 Tool Flow and Sieve . 19

3-1 Basic Overview of Verilog Parser Unit 26

3-2 Flow Diagram of Structural Check Tool 27

3-3 Data Structure for Modules in Verilog Parser 28

3-4 Flow Diagram of Creation of XML code 29

5-1 Overview of Checker Program . 50

5-2 Set Array Data Structure . 52

5-3 Regular Expression Array Data Structure 52

5-4 Rule Array Data Structure . 53

5-5 Function Linked List Data Structure 54

5-6 Module Linked List Data Structure 56

5-7 Name Check Flow Diagram . 58

5-8 Module Name Check Flow Diagram 59

5-9 Replace Categories Function Flow Diagram 60

5-10 Rule Checking Flow Diagram . 62

5-11 Get Regular Expression Flow Diagram 64

5-12 Expand Function Flow Diagram . 66

5-13 Wire Matching Flow Diagram . 70

11

12

List of Tables

2.1 Cell categories (first letter of prefix) 20

2.2 Leaf cell types . 20

2.3 Drive Suffix Samples . 21

2.4 Sample cell names . 21

2.5 Signal suffix types . 22

2.6 Relationship of signals to leaf cell types 22

3.1 Module Attribute Definitions . 30

3.2 Signal Attribute Definitions . 31

4.1 Mandatory Regular Expressions . 35

4.2 XML conversion for Relationship of Signals to Leaf Cell Types 38

4.3 XML conversion for Suffix Rule . 40

4.4 GLB in Table Format . 43

5.1 Carp Modifiers . 48

5.2 Carp Extended Items . 49

13

14

Chapter 1

Introduction

1.1 Motivation

With each new generation of microprocessors, chips continue to grow in scale and

complexity. Custom tools have played a larger and larger role in the design of these

chips. As the designs increase in size, designers have looked to hardware description

languages (HDLs), such as VHDL and Verilog, to abstract away some of the details

and make the design more manageable.

Another effect of this growth is the increase in man-power that is needed to make

the design work. Often, the various sections of the chip are developed separately

and must be integrated together for the final product. From this arises the need for

conventions and rules to be defined when implementing different parts of the chip

to ensure uniformity and readability in the design as a whole. For example, naming

conventions for cells are developed to help in the documentation of the design, to help

reduce name clashes, and to ensure that the static checks these tools provide can be

done easily.

These larger designs are usually accompanied by a complex tool flow that includes

merging tools from many various third parties and often calls for custom tools to be

written. These custom tools often have to interact with the Verilog/VHDL code.

Tools such as Vexworks [2] give designers an API that they can use to build their

own tools without having to delve into the HDL details.

15

This thesis describes the development and implementation of another set of custom

tools that can check the validity of the rules and conventions defined for a design. The

tool, known as Sieve, also includes a robust format for defining rules and conventions

so that it can be easily adaptable to future designs with different conventions.

Sieve is a tool that is designed primarily for use during the development of micro-

processor chips in the SCALE (Software-Controlled Architectures for Low Energy)

project, in particular the SCALE-0 chip [1]. The SCALE-0 chip will use TSMC’s

CLO18 technology and will be implemented in a hierarchical or structural design.

The implementation will consist of leaf cells and larger blocks which will be built up

from these leaf cells.

1.2 Organization

This thesis is organized as follows. Chapter 2 gives an overview of the Sieve on a

top level and gives background on the rules of the SCALE-0 VLSI design. Chapter

3 discusses in detail the framework the XML Verilog parser. Chapter 4 describes

the format of the input file which specifies the conventions and rules that the tool

suite will check. Chapter 5 describes the framework for the actual checker software.

Chapter 6 shows sample files and example rules that the software was tested on and

outlines the testing strategy used. Chapter 7 concludes with a summary and future

work.

16

Chapter 2

An Overview of Sieve

2.1 Top-Level View

Sieve is composed of two main units. The first unit takes in structural Verilog code,

parses it, and translates into an XML format. The second unit takes in this XML

format of the Verilog and an additional rules file and performs the actual checking of

the rules. The basic flow is shown in Figure 2-1.

The first unit is the Parser unit. This unit is written in C as a target module

to Icarus Verilog (IVerilog) [7]. IVerilog is a software tool that compiles Verilog

HDL into an internal representation as C objects. The Parser uses this internal

representation to do a preliminary check to ensure that the input is indeed structural

Verilog. It produces a XML output file (ModuleData.xml) which is an intermediate

representation describing the hierarchy of the input design along with module names

and signal names and connections.

The second unit is the Rule Checker unit. This is also written in C and uses

two outside libraries, libxml [6] and the Carp regular expression library [4]. The

inputs to this unit are two XML files. The first is the output from the first unit,

ModuleData.xml. The second is the rules file, Rules.xml. The unit first reads these

two files in and parses them into an internal C data structure. It then runs the name

check and rules check on these data structures, outputting any error messages. A

verbose description of what was checked in the design can be found in the output file,

17

Structural
Verilog Checker

Print Output

Parser
Unit

Verilog Input

Icarus
Verilog

Rules File
(XML)

Module Data File
(XML)

Parse Input Files into
Internal Data Structures

Name Checker

Rules Checker

Rule
Check
Unit

libxml
XML

Parser

Carp
Regular

Expression
Library

Results.out

Figure 2-1: Software Flow Diagram

18

Synthesis
Procedural
Generator

Hand
Coded

Structural Verilog

Sieve

Figure 2-2: SCALE 0 Tool Flow and Sieve

Results.out.

The rules file, which is an input into the second unit, is defined by the user and

specifies the rules that the names of the modules and wires must follow, as well as

requirements on how inputs and outputs are named within modules. This gives the

user flexibility in controlling exactly what will be checked and allows this tool suite

to be adaptable to future designs with different rules and conventions.

2.2 SCALE-0 Rules

Though the tool is designed to be flexible for different rule sets and conventions, the

examples that will used throughout the rest of this thesis will be from the SCALE-0

VLSI design document [1].

To understand where this tool fits into the design flow for SCALE-0, consider the

diagram shown in Figure 2-2.

The SCALE-0 design is translated into structural Verilog in three possible ways.

First, the Verilog may come from synthesis. This is most likely written in Verilog RTL

and synthesized with Cadence tools, in particular, Cadence Physically Knowledgable

Synthesis (PKS). The structural Verilog may also be an output from a procedural

tool, such as Spongepaint [5]. Lastly, some parts of the design may be hand coded

directly into structural Verilog. Sieve can be run on the derived structural Verilog to

check for any rule violations.

19

2.2.1 Cell Naming Conventions

These conventions are relevant for all standard cells, datapath cell, and pads. In a

structural Verilog design, a cell can either be a leaf cell or a collection of leaf and

non-leaf cells wired together. Non-leaf cells do not contain any logic or transistors.

The cell names are globally unique and adhere to the following naming convention.

The naming convention is designed to help with the design documentation, to reduce

naming clashes, and to support simple static correctness checks.

The first letter describes the general category of the cell. This letter indicates if a

cell should be a leaf cell or non-leaf cell. The acceptable first letters are summarized

in Table 2.1.

Descriptor Category of cell
s Row-based standard cells
d Datapath cells
e Datapath edge cells
a Array cells
m Non-leaf cells

Table 2.1: Cell categories (first letter of prefix)

Non-leaf cell names have the format m cellname. Leaf cell names have a further

two-letter prefix following the category which describes how the cell interacts with the

clock signal. After this prefix, the name of the actual cell is appended. The two-letter

prefix possibilities are shown in Table 2.2.

Type of leaf cell
cc Combinational circuit, no clock inputs
pf Outputs registered with pos-edge D-flip-flops
nf Outputs registered with neg-edge D-flip-flops
hl Outputs latched with transparent-high latch
ll Outputs latched with transparent-low latch
hv Outputs eval on clk high, invalid on clk low
lv Outputs eval on clk low, invalid on clk high
xx Unspecified — not allowed on standard cells

Table 2.2: Leaf cell types

20

The actual name of both leaf and non-leaf cells must contain only lowercase letter,

numbers, or the underscore () character. Leaf cells can also have an optional suffix.

This suffix is of the form pinj and it indicates that the gate has a drive equivalent

to an inverter with an i×0.1µm-wide p-FET and a j×0.1µm-wide n-FET. Standard

cells and datapath cells are required to have a drive strength suffix. Table 2.3 show

some possible suffixes and what their meanings are.

Suffix Equivalent Drive
p2n2 Minimum inverter
p3n2 1.5 p/n ratio inverter
p6p2 Equal rise-fall times
p8p2 Skewed towards pullup

Table 2.3: Drive Suffix Samples

Putting all this, some valid sample cell names are given in Table 2.4.

Cell Name Description
spf ff p6n2 Standard cell pos-edge flip-flop
scc inv p12n4 Standard cell inv, x2 drive
dcc imux4 p6n3 Dpath 4-input inverting-mux
dcc nand2 p3n2 Dpath 2-input skewed nand
dcc inv p2n2 Dpath min sized inverter
ecc cdrv p18n6 Dpath edge clock driver
axx srambit SRAM bit cell
alv sramsa Sense amp, eval on clk low
m cpudp CPU datapath module

Table 2.4: Sample cell names

2.2.2 Signal Naming Conventions

Signal naming conventions for SCALE-0 are based on timing and are used to perform

simple static checks on the clocking strategy. Wire names for leaf modules are made

of lower case letters, numbers, and the underscore character. Wire names for non-leaf

modules are further appended by a suffix, as shown in Table 2.5.

21

Suffix Meaning
pn The signal becomes valid before the positive edge and remains valid

until the negative edge
np The signal becomes valid before the negative edge and remains valid

until the positive edge
p The signal becomes valid before and until the positive edge
n The signal becomes valid before and until the negative edge
pulse The signal is not necessarily valid across any clock edges

Table 2.5: Signal suffix types

Furthermore, there are some rules that determine what types of output signals

may be produced given input signal types and a leaf cell type. Table 2.6 presents

these legal combinations.

Allowable Input Signals Leaf Cell Type Output Signal
any cc GLB(inputs)
np, pn, p pf np

pn, np, n nf pn

pn, np, n hl np

np, pn, p ll pn

pn hv n

np lv p

pulse xx anything

Table 2.6: Relationship of signals to leaf cell types

In Table 2.6, GLB is the Greatest Lower Bound function. The ordering for com-

parison is defined as follows:

{pulse} < {p, n} < {pn, np} (2.1)

22

Chapter 3

Verilog Parser

The parser is a written in C as a target module to Icarus Verilog (IVerilog). The

parser outputs an XML format of the structural Verilog input.

3.1 Icarus Verilog

Before delving into the design and implementation details of the actual parser unit,

this section gives some background on Icarus Verilog (IVerilog) and how it ties into

the design.

IVerilog is the software that Sieve was originally to be built on top of [7]. IVerilog

is a tool that compiles Verilog HDL into an internal representation as C objects. Back

end modules can then be written to use this representation to do a variety of custom

functions. These modules are called targets.

At the start of the project, Sieve was designed to be a target itself and to use

directly this internal representation of the Verilog code provided by IVerilog. As

the development went underway, it was discovered that other outside libraries were

needed. A restriction with Icarus Verilog is that it does not allow outside libraries

to be utilized within a target module, so the design was changed accordingly. Icarus

Verilog now plays the role of parsing the design, checking that the design is structural

Verilog, and outputting the XML structural Verilog format.

The part of IVerilog that is still utilized is the parser, which reads in the Verilog

23

files and generates an internal netlist. The steps that the parser takes are outlined

below.

Step 1: Processing This step utilizes a program called ivlpp. It takes

out the ’include and ’define directives and instead inlines them. For

’include directives, the contents of the included file are substituted

in place of the line with the directive. For the ’define directives, the

actual definition is placed in all references to the define in the code.

Step 2: Parse This step parses the Verilog into a rough PFORM. This is

not a complete translation yet as it may still have dangling references

and does not yet know who the root module is. The PFORM can be

read with a -P option in IVerilog.

Step 3: Elaboration The PFORM is taken and all references are re-

solved and all instantiations are expanded. The result is a netlist

which contains behavioral descriptions, gates, and wires. It does this

is two steps: scope and netlist elaboration. In scope elaboration,

a tree of NetScope objects is built from scopes and parameters. In

netlist elaboration, the PFORM is traversed to generate the actual

netlist.

Step 4: Optimization Here, optimizations on the netlist, such as elim-

inating null circuitry and combinatorial reduction, are performed.

After these steps are taken, the netlist is used to drive the code generator. This

code generator is the target tool to be written. To write a new target, the target

source C file is placed into a tgt name directory. In the source file, the function that

is invoked when IVerilog looks for the code generator is

int target design (ivl design t des) {}

24

The parameter that this file takes is the top level structure that contains the whole

design. From this structure, the root module can be accessed and the whole design

can be traversed, in a recursive manner.

Once the target has been written and compiled, in order for IVerilog to be aware

that there is a new target module, it must be installed into the correct directory

(/lib/ivl) and the file iverilog.conf must be modified to include the new target.

For example, a target called null will be added by using the following line:

[-tnull] <ivl>%B/ivl %[v-v] -C%C %g %W %s %[M-M%M] %[N-N%N] %[T-T%T] -tdll
-fDLL=%B/null.tgt -- -

3.2 Parser Overview

The parser itself has two main goals. The first is to check the Verilog input to ensure

that is in structural Verilog format. This needs to be done before the code is actually

translated into the structural XML representation. The second is to parse the Verilog

and output the necessary parts of the design to an XML file. Figure 3-1 shows the

basic overview of this unit.

The output of the program includes the display of any error messages and two

output files, ModuleData.xml and Results.out. ModuleData.xml is the XML file that

will hold the parsed design. The format of this file will further be discussed in Section

3.2.3. Results.out is an output file that prints out verbose information on what the

program sees as it runs.

3.2.1 Structural Verilog Checker

This section checks that the input Verilog modules follow a structural Verilog style.

This check must be completed at the initial stage because Sieve assumes that the

input is structural Verilog.

The structural Verilog style dictates that all logic should be contained in leaf cells.

The non-leaf cells should contain no logic and should only instantiate modules and

define how they are connected.

25

Structural
Verilog Checker

Print Output

Parser
Unit

Verilog Input

Icarus
Verilog

Module Data File
(XML)

Results.out

Figure 3-1: Basic Overview of Verilog Parser Unit

26

Module

Return OK and
identify as a
Leaf Module

NO

Is there any
logic in the

module?

Does module
instantiate
more modules?

YES

NO

Return OK and
identify as a

Non-Leaf
ModuleYES

Return NOT OK
and Output

Error Message

Next Module

Figure 3-2: Flow Diagram of Structural Check Tool

The basic logic is shown in this flow diagram (Figure 3-2 below). All the modules

in the design are iterated through.

From this unit, error messages report whether there is a violation or not. If there

is, information about the module where the violation occurred is printed along with

a list of the actual violation(s).

During the recursion through all the modules during this check, information about

leaf/non-leaf status of each module is recorded to be used when printing the output.

The information is kept in a linked list as shown in Figure 3-3.

The linked list is made up of module structs. Each struct has two fields. The

27

name

isLeaf

Module Struct

Module
Struct

Module
Struct

Module
Struct

Figure 3-3: Data Structure for Modules in Verilog Parser

name field identifies the name of the module. The isLeaf field is 1 if the module is a

leaf and 0 if it is not.

3.2.2 Print Output

The next section creates the ModuleData XML file that will become the input to

the rest of the checker program. XML was selected as the output format for the

structural Verilog because it is a versatile format that is widely available, supported,

and understood. It can be easily read and parsed by libraries directly by another

program, in this case, the checker unit of Sieve.

The print section basically iterates through the modules and prints out pertinent

information to the XML file. Figure 3-4 shows the basic flow.

For each module, Sieve prints out some information, including various names of

the module, whether it is a leaf or non-leaf, and information about the signals it

has. Since many modules have more than one signal, the signals are also looped

through. Basic information about a signal, such as if it is local and if it is an input

or output, are recorded. Each signal also has a number of pins associated with it.

These pins are iterated through next. Each pin is connected to a nexus. The nexus is

a connection point which contains a list of all the signals that are connected to that

point, and therefore, each other. The nexus is traversed and the signal name of each

connected signal and the module to which the signal belongs to is also recorded to

the ModuleData file.

28

Module

Print Module
Information

Have
Signals?

Next Module

Print Signal
Information

YES

Print Pin
Information

Print Nexus
Signal

Information

More Pins?

More Nexus
Signals?

YES
{Next Nexus
Signal)

NO

NO

More
Signals?

YES
 (Next Signal)

YES
(Next Pin)

NO

Figure 3-4: Flow Diagram of Creation of XML code

29

3.2.3 Output File Format

In this section, the basic format of the output ModuleData.xml file is described. The

schema of the XML looks as follows:

<moduleData>
<module fullName = "str"

baseName = "str"
tName = "str"
isLeaf = "str" >
<signal name = "str"

baseName = "str"
numBits = "str"
input = "str" >
<pin number = "str" >

<nexusSignal>
<name>str</name>
<module>str</module>
<pinNum>str</pinNum>

</nexusSignal>
</pin>

</signal>
</module>

</moduleData>

The tag <moduleData> indicates the start of the file. Each module is delimited

by the <module> tag. Each module has a few attributes which are described in

Table 3.1

Attribute Meaning
fullName Full Hierarchical Name
baseName Local Name
tName Instance Name
isLeaf 1 if Leaf; 0 if not

Table 3.1: Module Attribute Definitions

For example, if a module is instantiated like so inside another module called m main:

module m_main (...) {
m_beta beta(...);

}

30

Then, attribute fullName would be m main.beta, baseName would be beta, and

tName would be m beta.

Beyond these attributes, each module contains elements tagged by <Signal>,

representing the signals that are present in the module. Each signal has a few at-

tributes also (Table 3.2).

Attribute Meaning
name Full Hierarchical Name
baseName Local Name
numBits Number of Bits in Signal
input Direction of Signal: input, output, inout

Table 3.2: Signal Attribute Definitions

For each bit that a signal has, there is an element inside the signal tagged with

<Pin> representing that bit of the signal. Each pin has a attribute called number

which keeps track of which bit in the signal the pin represents. Each pin also contains

<nexusSignal> elements. All the <nexusSignals> in a pin make up a nexus

where all the <nexusSignals> are connected. Each <nexusSignal> contains 3

elements. The first is <name> which is the local base name of the signal. The second

is <module> which indicates which module the signal belongs to. The <module>

is the full hierarchical name. The third element is the <pinNum> which is the pin

number of the signal on the other module which is connected to the nexus.

3.3 How to Run

In order to run the Verilog Parser module on a system where both IVerilog and the

target have been installed, go to the directory where the Verilog source input is and

invoke the program with the following command:

%iverilog -tparser sourcefile.v

This will run Icarus Verilog on the source file with the parser module as the target.

The two output files, Results.out and ModuleData.xml will be created in the directory

that the source file is in.

31

If neither the parser nor IVerilog are installed, first, install IVerilog. In the direc-

tory of Icarus Verilog where all the source files are located, create a new target and

install the parser there.

The last thing that needs to be done before the target can be used is for it to

be added to the configure file. In the install directory’s lib folder, there should be

a folder called ivl. This folder should contain a copy of parser.tgt. There should

also be a file called iverilog.conf. In this file, this line should be added:

[-tparser] <ivl>%B/ivl %[v-v] -C%C %g %W %s %[M-M%M] %[N-N%N] %[T-T%T]

-tdll -fDLL=%B/parser.tgt -- -

32

Chapter 4

Input Format Specification

A rule convention file must be defined and provided as the input to the rule check

tool. This file provides flexibility for the program to be used in other designs besides

SCALE-0. The file is to be written by the tester and also needs to be easily understood

and easy to write.

As for the structural Verilog output described in Section 3.2.2, XML was also

selected to be the format for this file for reasons of versatilility. The input format has

four main elements: Sets, Regex, Rules, and Functions. Each of these elements is

associated with a tag. The tag might contain attributes describing the element. They

also contain more elements.

The basic outline for the document is:

<CheckRules>
<Sets>
...
</Sets>

<Regex>
...
</Regex>

<Rules>
...
</Rules>

<Functions>
...
</Functions>

</CheckRules>

33

There should only be one occurrence of each of these four elements. The order

that they are written in does not matter. The labels are case sensitive.

4.1 Sets

The section for Sets is devoted to the definition of categories. Categories can be used

in the regular expressions that are to be defined later in the file. Categories are also

used in the definition of rules.

Categories are represented by the <category> tag and the syntax is as follows:

<category name=’’CategoryName’’>
<item>a</item>
...
<item>x<item>

</category>

Each <category> has an attribute called name. The categories contain elements

called item which represent the members of the category. For example, for SCALE-0,

there is a category called SignalSuffix (see Table 2.5) and could take on the values

np, pn, n, p, and pulse. In this file, it would look as follows:

<category name=’’SignalSuffix’’>
<item>np</item>
<item>pn</item>
<item>n</item>
<item>p</item>
<item>pulse</item>

</category>

Some rules that the Sets section must follow are:

• all Category name attributes must be unique and cannot be empty

• all Categories must contain at least one item

• items cannot be empty

• all items must be unique

34

4.2 Regular Expressions

Regular expressions are where the naming structures of the modules and wires are

defined. Table 4.1 shows the four regular expressions that must be defined.

Regex expression Meaning
LeafModuleName Name of leaf modules
NonLeafModuleName Name of non-leaf modules
LeafWire Name of wires into leaf modules
NonLeafWire Name of wires into non-leaf modules

Table 4.1: Mandatory Regular Expressions

Regular expressions are defined by <regex> tags and the syntax is as follows:

<Regex>
<Expression name=’’regexName’’>...</Expression>
...
<Expression name=’’regexName2’’>...</Expression>

</Regex>

The . . . between the expression tags are where the actual regular expression

definition goes. The regular expressions are parsed by the Carp Expression Library

(see 5.1.1) and should follow the industry standard regular expression format. In

addition to the syntax provided by Carp, this tool defines a couple more variations.

The first variation is that if there are no restrictions on how the naming of a

component goes, the regular expression can be defined as an asterisk (*) to show that

it can match anything. This can also be expressed using regular expression syntax as

.+.

The second is that category names are allowed to be part of the regular expression.

To use a category name, it should be enclosed between two forward slashes (/. . . /).

The category name should also be one that has been defined in the Sets section of

the file.

As an example, SCALE-0 defines a leaf module to have a couple of pre-defined pre-

fixes and possibly a suffix. For a leaf module, the name definition regular expression

would appear like:

35

<Expression name=’’LeafModuleName’’>
/LeafCellCategory//LeafCellType/_([0-9]|[a-z]|_)+(_p[0-9]+n[0-9]+)?

</Expression>

The first reference is to a category, LeafCellCategory, which can be either s, d,

e, or a. The second reference is to another category, LeafCellType, which can be

cc, pf, nf, hl, ll, hv, lv, or xx. This is followed by string of length one or more of a

mix of numbers, lower-case letters, or the underscore character. Finally, this can be

appended by an optional suffix of p, followed by numbers, n, followed by numbers.

There are also a few rules that regular expression definitions should follow:

• all Expression name attributes must be unique and cannot be empty

• all Expressions from Table 4.1 must be defined

• all Expressions must be valid regular expressions as defined above and cannot

be empty strings.

4.3 Rules

The section for Rules is where the rules are defined. Rules are defined in table format.

They define how the categories, defined in Sets, will interact with each other.

The basic format for a Rule is as follows:

<Rules>
<Rule category=’’CategoryName’’>

<ColumnDefinitions>
<Column>...</Column>
...
<Column>...</Column>

</ColumnDefinition>

<Data>
<Row>

<Column>...</Column>
...
<Column>...</Column>

</Row>
...
<Row>

<Column>...</Column>

36

...
<Column>...</Column>

</Row>
</Data>

</Rule>
...

</Rules>

The <Rules> tag defines the beginning of this section. Each rule is represented

with a <Rule> tag. A rule must have a category attribute. This category attribute is

either “Leaf” or “NonLeaf”. The way the tool works is that it traverses the hierarchy

tree of the Verilog design. For each module, it determines if a rule should apply to this

module based on if the rules applies to a leaf module or not and if the module is a leaf

module or not. The rule itself then has two main elements, <Column Definitions>

and <Data>.

As fore-mentioned, rules are represented in a table format. Each rule has x

columns and y rows. The <Column Definition> element is where the headings

for the columns are defined. These are used to interpret the data that is presented in

the table. The <Column Definition> contains items called <Columns>:

<ColumnDefinition>
<Column type=’’NonLeafWire’’ inout=’’input’’>SignalSuffix</Column>
...

</ColumnDefintion>

Each column header has up to two attributes: type and inout. Type identifies

which regular expression (see 4.2) this column applies to. This value should be

LeafModuleName, NonLeafModuleName, LeafWire, or NonLeafWire. If the value is

LeafWire or NonLeafWire, the inout attribute must also be defined. The inout value

can be equal to input, output, or inout. This value defines if this column is relevant

for input wire, output wires, or both, respectively.

There are two ways to define rules in this section. The two ways differ in what

the data items defined for the rule mean.

37

4.3.1 Category Based Rule Definition

In the first way, between the <Column> start and end tags, the content should be

category and should be the name of a Set category that was defined in Section 4.1

and the <category> should be a part of the regular expression definition for type.

Putting this all together, each column is defined by a regular expression, an optional

in/out value, and a category. In the example above, the column definition indicates

that data from that column corresponds to NonLeafWire names which are inputs and

the part of the regular expression that is of interest is the category SignalSuffix.

The second element of the rule is the <Data>. The <Data> is made up of

<columns> and <rows>. The meaning of each column of data is determined by

the <Column Definition> that was just described. The items that go under a

certain column must be members of the category that was defined as part of the

<Column Definition>. The only exceptions to this are if the item is an asterisk (*)

or a function name. An asterisk indicates that that item can be anything from the

category. A function name is defined by a percent sign (%), followed by the function

name. The function should be one that is defined in the next section, 4.4. If the

item can take on multiple values from the category, this can be represented by comma

separated values.

As an example, consider the rule from SCALE-0 shown in Table 2.6. This table

is turned into the following Table 4.2.

LeafModuleName NonLeafWire NonLeafWire

LeafCellType SignalSuffix SignalSuffix

input output

cc * %GLB

pf np,pn,p np

nf np,pn,n pn

hl pn,np,n np

ll np,pn,p pn

hv pn n

lv np p

xx pulse *

Table 4.2: XML conversion for Relationship of Signals to Leaf Cell Types

38

Function GLB will be defined in the next section.

Given this translated Table 4.2, the actual XML code will look like:

<Rule category=’’Leaf’’>
<ColumnDefinitions>

<Column type=’’LeafModuleName’’>LeafCellType</Column>
<Column type=’’NonLeafWire’’ inout=’’input’’>

SignalSuffixes
</Column>
<Column type=’’NonLeafWire’’inout=’’output’’>

SignalSuffixes
</Column>

</ColumnDefinitions>
<Data>

<Row>
<Column>cc</Column>
<Column>*</Column>
<Column>%GLB</Column>

</Row>
<Row>

<Column>pf</Column>
<Column>np,pn,p</Column>
<Column>np</Column>

</Row>
<Row>

<Column>nf</Column>
<Column>np,pn,n</Column>
<Column>pn</Column>

</Row>
<Row>

<Column>hl</Column>
<Column>pn,np,n</Column>
<Column>np</Column>

</Row>
<Row>

<Column>ll</Column>
<Column>np,pn,p</Column>
<Column>pn</Column>

</Row>
<Row>

<Column>hv</Column>
<Column>pn</Column>
<Column>n</Column>

</Row>
<Row>

<Column>lv</Column>
<Column>np</Column>
<Column>p</Column>

</Row>
<Row>

<Column>xx</Column>
<Column>pulse</Column>
<Column>*</Column>

39

</Row>
</Data>

</Rule>

4.3.2 Non-Category Based Rule Defintion

In the second way to define a rule, there is no category specified between the <Column>

start and end tags. The <Column Definition> looks as follows:

<ColumnDefinition>
<Column type=’’LeafWire’’ inout=’’input’’></Column>
...

</ColumnDefintion>

The type and inout attributes still have the same meanings as described in Section

4.3.1. However, now, there is no category defined.

The data still has the same format as described, but each item in the data table

has a different meaning now. The items in the data tables should now be regular

expressions defined by the rules in Section 4.2.

As an example of when this rule can be used, consider the SCALE-0 convention

of when the suffix pinj is mandatory. According to the SCALE-0 design document,

standard cells and datapath cells are required to have this drive strength suffix. It is

optional in all other types of cells. This can be translated into the following Table 4.3

LeafModuleName LeafModuleName

LeafCellCategory null

s s/LeafCellType/ ([0-9]|[a-z]|)+ p[0-9]+n[0-9]+

d d/LeafCellType/ ([0-9]|[a-z]|)+ p[0-9]+n[0-9]+

e e/LeafCellType/ ([0-9]|[a-z]|)+ p[0-9]+n[0-9]+

Table 4.3: XML conversion for Suffix Rule

This then translates into actual XML the same way that the category based rules

do in the previous section.

There are also a few rules that rule definitions should follow:

• <Rule> must have a <ColumnDefinition> and <Data> items

40

• <Rule> category must be defined to be Leaf or NonLeaf

• <Column> must have a type (LeafModuleName, NonLeafModuleName, LeafWire,

or NonLeafWire)

• <Column> must have an inout defined IF they are LeafWire or NonLeafWire

type (input, output, inout)

• If a <Column> has non-empty content, this Set specification should occur in

the regular expression defined by the type

• The number of columns under <ColumnDefinitions> should be equal to how

many columns each row has under <Data>

4.4 Functions

The last section that can be included is the Functions section. A function can be

used in the Rules definition in the previous section. Because a function is tied to a

rule, the function inputs must derived from the Rule table where it was called from.

Given these inputs, the function determines what the appropriate outputs should be.

To define a function, the syntax is as follows:

<Functions>
<Function name=’’GLB’’ Category=’’SignalSuffix’’>

<Input>...</Input>
<ColumnDefinitions>

<Column>...</Column>
...
<Column>...</Column>

</ColumnDefinition>

<Data>
<Row>

<Column>...</Column>
...
<Column>...</Column>

</Row>
...
<Row>

<Column>...</Column>
...
<Column>...</Column>

41

</Row>
</Data>

</Function>
...

</Functions>

The Functions tag defines the beginning of this section. Each function is repre-

sented with a Function tag. A function has two attributes. The first is a name for

the function which defines how it should be referred to in the Rules Section. The

second is a category which defines the set from which the outputs should be from. In

the example above, the function name is GLB and the category is SignalSuffix. The

outputs should therefore be a subset of {n, p, np, pn, pulse} (See Table 2.5).

The first element is the <Input> section. This section defines where the input

to the function is. Since functions are called from rules, this is defined with similar

attributes that define a <Rule column>, namely, a type, a inout, and a category.

<Input type=’’NonLeafWire’’ inout=’’input’’ category=’’SignalSuffix />

Function are also represented in a tabular format. This option was weighed against

other possibilities (simple If statement definitions, allowing the user to write a piece

of custom code, etc) and was decided on as the option that was versatile and less

complicated than the others, while still being able to do everything it needed to do.

Each <Function> has x columns and y rows. The <Column Definition> ele-

ment is where the headings for the columns are defined. The headings are pulled from

the members of the Set defined by the category attribute of the <Input> element. In

this case, the columns should be labeled n, p, pn, np, and pulse. Not all the members

have to have their own column and the order of the columns does not matter as long

as the data columns correspond.

The next element of the function is the <Data> section. This section is composed

of <Row> elements, and within those, <Column> elements. Each item can take on

the values of 1, 0, or asterisk (*). If an item is a 1 in a certain column, it means that

the category (defined in <Input> definition) in regular expression for the module

currently being evaluated must match the column header for the column. If an item

42

is 0, it must not match. If it is *, it does not matter if it matches or not. The exception

is for the last <Column> for each <Row>. This column is the output column. This

is the output the function returns if that row is the right row for the inputs. The

values in this column should be members from the Set determined by the category

attribute of the <Function>.

To see how a function is put into a table format, consider the GLB (Greatest Lower

Bound) function. From Table 2.6, the ordering was defined as:

{pulse} < {p, n} < {pn, np} (4.1)

Intuitively, this says that if any of the inputs are of type pulse, then the lowest bound

must be pulse. Otherwise, if they have a p or n but no pulse, the lowest bound is

p or n. Lastly, if they have no pulse, n, or p, but only pn or np, the lowest bound is

pn or np. This is represented in a table as:

pulse p n np pn Output
1 * * * * pulse

0 1 * * * n,p
0 0 1 * * n,p
0 0 0 1 * np,pn
0 0 0 0 1 np,pn

Table 4.4: GLB in Table Format

This is translated in the XML format as:

<ColumnDefinitions>
<Column>pulse</Column>
<Column>p</Column>
<Column>n</Column>
<Column>np</Column>
<Column>pn</Column>

</ColumnDefinitions>
<Data>

<Row>
<Column>1</Column>
<Column>*</Column>
<Column>*</Column>

43

<Column>*</Column>
<Column>*</Column>
<Column>pulse</Column>

</Row>
<Row>

<Column>0</Column>
<Column>1</Column>
<Column>*</Column>
<Column>*</Column>
<Column>*</Column>
<Column>n,p</Column>

</Row>
<Row>

<Column>0</Column>
<Column>0</Column>
<Column>1</Column>
<Column>*</Column>
<Column>*</Column>
<Column>n,p</Column>

</Row>
<Row>

<Column>0</Column>
<Column>0</Column>
<Column>0</Column>
<Column>1</Column>
<Column>*</Column>
<Column>np,pn</Column>

</Row>
<Row>

<Column>0</Column>
<Column>0</Column>
<Column>0</Column>
<Column>0</Column>
<Column>1</Column>
<Column>np,pn</Column>

</Row>
</Data>

There are also a few rules that regular expression definitions should follow:

• the name attribute for the function must not be empty

• <Input> must have declared type (LeafModuleName, NonLeafModuleName, LeafWire,

or NonLeafWire)

• If <Input> type is LeafWire or NonLeafWire, the inout must be defined (input,

output, inout)

44

• If <Input> category is defined, it must be a this set specification should occur

in the regular expression defined by the type

• In <ColumnDefinition>, the values for the columns must come form the set

defined by <Input> category.

• If <Input> category not defined, the values for the columns must be a valid

regular expression

• The number of columns per row in <Data> must be one greater than the

number of columns in <ColumnDefinition> (for output)

• The output values must come from the set defined by <Function> category.

• If <Function> category not defined, the output values must be a valid regular

expression

45

46

Chapter 5

Checker Program

The Checker unit of Sieve is where the crux of the rule checks are conducted. By

the time this unit is reached, the Verilog has already been checked to be structural

Verilog and an XML format of the code has been created. It takes this Verilog XML

file and another file with an XML representation of the rules to be checked as input.

The first step is for Sieve to parse these two input files. In order to do this, it

relies on the help of the libxml (see Section 5.1.2). Once the input files are parsed into

internal data formats, the actual rule checking is done. This part relies heavily on

the use of regular expressions for matching module and wire names to the pre-defined

expressions. Both these libraries are discussed in detail in the next section.

5.1 Library Overview

5.1.1 Carp Expression Library

The Carp Expression Library provides the support for defining regular expressions

and returning information on how a string matches the regular expression [4]. Regular

expressions are used in defining the naming conventions of both signal and cell names

(see Section 2.2.1 and 2.2.2).

The following describes some of the most commonly used syntax rules for regular

expressions. For a complete collection of all the legal syntax that Carp allows, see

47

the Carp Regular Expression Library documentation [4].

Special Characters

The special characters for Carp are *, +, ?, {, }, [,], (,), \, <, >, ^, $, |, ., carriage

return, linefeed, and tab. Special characters have special meaning when present in a

regular expression. All other characters will match to their literal selves. In order to

write a regular expression that matches one of the special characters, the character

must be preceded by a \ in the expression. This is an escape sequence and can

also include the following three: \num for octal characters, \xnum for hexadecimal

characaters, and \cchar for control characters.

Modifiers

Table 5.1 illustrates the different modifiers that can be used and their meanings.

Modifiers apply to the item immediately preceding them in the regular expression.

Modifier Meaning
* Item must be matched 0 or more times
+ Item must be matched 1 or more times
? Item must be matched 0 or 1 times
num Item must be matched num times
min, Item must be matched at least min or more times
min, max Item must be matched between min and max times

Table 5.1: Carp Modifiers

Extended Items

Extended items are pre-defined items or groups that have a special meaning. Table 5.2

lists what the items are. Extended items are enclosed between < and >.

Anchors

Anchors determine a bound on where a match must happen. This bound can be

either be on a line or a word boundary. ^ matches the beginning of a line and $

48

Extended Item Meaning
<digit> Matches any digit
<lower> Matches any lower case letter
<upper> Matches any upper case letter
<alpha> Matches any letter
<tab> Matches a tab
<newline>, <nl> Matches a newline character
<spacechar> Matches one character with space syntax
<wordchar> Matches one character with word syntax

Table 5.2: Carp Extended Items

matches the end of a line. <beginningofword> matches at the beginning of a word

and <endofword> matches at the end of the word.

Groups

The following special characters include character classes and groupings. To group

items together, add a preceding (and append a) to the end of the items. Character

classes are defined between [and]. For example, [0-9] defines all numbers between 0

and 9. [^ begins a negated character class. Custom classes may be declared using the

alternation symbol, |. If placed between two items, it matches if it matches either of

the two items.

5.1.2 LibXML2

LibXML2 is a C language library which implements functions for reading, creating,

and manipulating XML data [6]. It is used in this project to read in and parse a XML

rule definition file and a XML module and signal hierarchy file. XML is based on

the concept of a document composed of a series of entities. Each entity can contain

one or more logical elements. Each of these elements can have certain attributes or

properties. XML provides a formal syntax for describing the relationships between

the entities, elements, and attributes that make up the document. LibXML2 provides

many methods and functions that allow for easy parsing of XML documents from

inside of a C program. Though it has more capabilities, it is used here for parsing the

49

Rules File
(XML)

Module Data File
(XML)

Name Checker

Rules Checker Rule
Check
Unit

libxml
XML

Parser

Carp
Regular

Expression
Library

Results.out

Parse Rules to
Internal Data
Structure

Parse Verilog
Module Data to
Internal Data
Structure

Figure 5-1: Overview of Checker Program

XML, retrieving values for attributes, and retrieving values for text inside an element

in this project.

5.2 Overview

The checker program currently does two checks, a name check and a rules check. The

basic code flow is indicated in Figure 5-1.

By default, ModuleData.xml contains the parsed Verilog from Section 3.2.3. Rules.xml

contains the rules to check and follows the format defined in Section 4. Both these

defaults can be overwritten at the command line prompt when Sieve is invoked.

The first step the program takes is to parse both the input files. It relies on the

libxml library functions to perform this step. The files are read in recursively and

50

comparison of tag values determine what data is being read in. The data is then

recorded into internal data structures which are discussed in Section 5.3.

Once the internal data structures have been filled by the input file data, a name

check is performed. The name check traverses the entire design and makes sure that

each module and each signal follows the naming conventions defined in Rules.xml.

Afterwards, all the rules are checked for each module. Any subsequent errors are

reported.

5.3 Parsing

It was decided that both the input files would be parsed once at the beginning of the

program. The information from the files is stored into internal data structures which

can be easily referred to. Most of the data structures are C structs containing strings,

arraylists, and linked lists.

5.3.1 Parsing RuleCheck

When parsing Rules.xml, the document is traversed four times. The first time gath-

ering all Set data, the second time gathering all Regex data, then Rules data, and

finally all Functions Data. The traversal always happens in this order so the order

that these tags occur in the input file does not matter.

Parse Sets

Parsing the sets is a relatively straight-forward process of simply filling out the fol-

lowing data structure (Figure 5-2).

Sets are stored in an array of set structs. Each struct has three fields. The first

field, name, is the name of the category. Value is a pointer to an array of strings

that holds the actual values that are in the category. ValueCount keeps track of the

number of values.

51

Set Struct
[0]

Set Struct
[1]

...
Set Struct

[n]

name

value

valueCount

Set Struct

Set Array

Str
[0]

Str
[1]

...
Str
[n]

Figure 5-2: Set Array Data Structure

Regex
Struct
[0]

Regex
Struct
[1]

...
Regex
Struct
[n]

name

value

Regex Struct

Regex Array

Figure 5-3: Regular Expression Array Data Structure

Parse Regex

Parsing the regular expression is completed in a similar way to parsing the sets. The

data structure holding the information is shown in Figure 5-3.

Regular expressions are stored in an array of regex structs. Each struct has two

fields. The name field stores the name of the expression and the value field holds the

actual expression.

Parse Rules

The rules are parsed and stored into a table format much in the same manner they are

represented in the input file. This data structure in Figure 5-4 holds the information

52

Rule Struct
[0]

Rule Struct
[1]

...
Rule Struct

[n]

moduleType

columnHeader

rowSize

Rule Struct

Rules Array

columnSize

data

Column
Struct
[0]

Column
Struct
[1]

...
Column
Struct
[n]

regexType

category

inout

Column Struct

LL
[0,0]

LL
[0,1]

...
LL

[0,n]

LL
[1,0]

LL
[1,1]

...
LL

[1,n]

...

LL
[n,0]

LL
[n,1]

...
LL

[n,n]

Str ... Str

LL

Figure 5-4: Rule Array Data Structure

about the rules.

The rules are again stored in an array of rule structs. Each struct has five fields.

The moduleType field contains the type of module this rule affects (leaf or non-leaf).

The columnSize and rowSize fields respectively define how many columns and rows

there are in the rule array. The columnHeaders field holds the information about the

column headers for the rule array. It is another array of structs, column structs, which

contain 3 additional fields. The regexType field contains the regular expression name

that the column refers to. The category field contains the set category the column

refers too. The inout field determines if the column should be applied to inputs,

outputs, or both. The final field in the rules struct is a two-dimensional array called

data. This array is composed of linked lists of strings.

53

Function Linked List

name

category

inputDesciption

Function Struct

columnSize

rowSize

regexType

category

inout

int
[0,0]

int
[0,1]

...
int
[0,n]

int
[1,0]

int
[1,1]

...
int
[1,n]

...

int
[n,0]

int
[n,1]

...
int
[n,n]

Function
Struct

Function
Struct

Function
Struct

columnDefinition

input

output

Str ... Str

Str ... Str

LL

LL
[0]

LL
[1]

...

LL
[n]

Figure 5-5: Function Linked List Data Structure

Parse Functions

The functions are parsed and stored into a table format like they are formulated in

the input file. The data structure for the functions is as follows in Figure 5-5.

The functions are stored in a linked list of function structs. A linked link was

chosen over an array as in the previous structures since it is easier to maintain and

there was no need in this case to access by index into the data structure as there was

in the other cases. The structs have eight fields total. The name field holds the name

of the function. The category field holds the output set category. The rowSize and

54

columnSize fields respectively hold the number of rows and columns in the function

table. The inputDesciption field is a struct of 3 fields, regexType, category, and

inout. This field defines where the inputs to the function are derived from. These

fields have the same meanings as defined in Section 5.3.1. The columnDefinitions

field holds the definitions of the columns of the function table. It is a ist of character

strings. The input field is a two dimensional array of integers. The output field is an

array of lists. A linked list at index i of the array corresponds to the output for row

i in the function table. The format is a list of strings since the function can return

multiple acceptable values given a specific input.

5.3.2 Parsing ModuleData

When parsing ModuleData.xml, the program loops through all the modules and indi-

vidually parses each module. Each module is parsed into the following data structure

shown in Figure 5-6.

Module

The modules are stored in a linked list of module structs. Each of the module structs

are made up of five fields. The fullName field stores the full hierarchical name of the

module, while the baseName field stores the local name and the tName field stores the

instance name. The isLeaf field is an in integer that is 1 is the module is a leaf and

a 0 if it is not. The final field is a signals field which is a pointer to a linked list of

signal structs.

5.3.3 Signals

Each signal is represented by a signal struct, which has five fields. The name field

stores the full hierarchical name of the signal and the baseName field stores the local

name. The input field is a value equal to 0 if the signal is an output, 1 if the signal is

an input, and -1 if the signal is an inout. The numBits field is an integer that defines

how many bits are in the signal. The final field, pins, is a pointer to a linked list of

55

Module Linked List

fullName

baseName

tName

Module Struct

isLeaf

signals

Module
Struct

Module
Struct

Module
Struct

Signal
Struct

Signal
Struct

Signal
Struct

Signal Linked List

name

baseName

input

numBits

pins

Signal Struct

Pin
Struct

Pin
Struct

Pin
Struct

Pin Linked List

Pin Struct

bitNumber

nexusSignal

Nexus
Struct

Nexus
Struct

Nexus
Struct

Nexus Signal Linked List

Nexus Struct

name

moduleName

pinNum

Figure 5-6: Module Linked List Data Structure

56

pin structs.

5.3.4 Pins

Each pin in a signal is represented by a pin struct. A pin struct has two fields. The

first field, bitNumber, indicates which bit this pin represents in the signal and the

second field, nexusSignals, is a linked list to nexus structs. This represents a list of

all other signals that are connected to the same nexus point as this pin of this signal.

5.3.5 Nexus

Each signal that is connected to a nexus is represented by a nexus struct with three

fields. The name field indicates the local name of the nexus signal. The moduleName

field indicates the hierarchical name of the module this nexus signal belongs to. The

final field, pinNum, indicates the pin number to nexus connects to for the signal.

5.4 Naming Conventions Check

The first check that is performed is a check whether the names in the design (both

module names and signal names) follow the naming conventions specified in the rules.

The basic flow of this check is shown in Figure 5-7.

For each module, different functions are called if the module is a leaf or non-leaf.

The two paths are identical besides which regular expression it matches for.

5.4.1 Checking Module Names

Both the leaf and non-leaf module name check functions work the same way. The

basic skeleton is outlined in Figure 5-8.

First, the correct regular expression is found (either LeafModuleName or NonLeafModuleName).

Once the expression is found, the expression is sent to a procedure, ReplaceCat-

egories. Because the program’s definition allows some special semantics for regular

57

Module

Is module a
Leaf?

Next Module

Check Leaf
Name

Check Non-
Leaf Name

Check Leaf
Wires

Check Non-
Leaf Wires

NOYES

Figure 5-7: Name Check Flow Diagram

58

Loop through
Regex Array
until Regex

found

Replace
Categories

Return OK
for Module

Carp
Match?

Return Error
Message

(Name does
not follow
Convention

NOYES

Figure 5-8: Module Name Check Flow Diagram

expression (namely the use of * and allowing categories to be included between for-

ward slashes), the regular expressions need to be cleaned up before they are sent to

the Carp expression matcher. Figure 5-9 shows how the function works.

ReplaceCategories first checks if the string input is a *. If it is, it is replaced

with the Carp equivalent of .+ and the function returns. If not, regular expression

is traversed and each categories are found (done by searching for /. . . /). When a

category is found, the name is retrieved from the expression and is looked up in the

Sets Array (5.3.1). If it cannot be found, an error is returned. Otherwise, all the

members of the sets are substituted into the expression and the category reference

is removed. The function returns when there is no more categories to be found. For

example, if the module name regular expression is:

/LeafCellCategory//LeafCellType/ ([0-9]|[a-z]|)+(p[0-9]+n[0-9]+)?

The returned string from ReplaceCategories is:

59

Find a Category?
(Search for //)

NO DONE

Category in
RegexArray?

YES

ERROR

Expand
Category

Replace
Category in
Regular

Expression

Regular Expression String

Figure 5-9: Replace Categories Function Flow Diagram

60

(s|d|e|a)(cc|pf|nf|hl|ll|hv|lv|xx) ([0-9]|[a-z]|)+(p[0-9]+n[0-9]+)?

After the regular expression is cleaned up by ReplaceCategories, the Carp library

is used to try to match the name. A new Carp match is defined and a forward match

is completed and returns whether the match was successful or not.

5.4.2 Checking Wire Names

Checking wire names on leaf and non-leaf modules is very similar to checking module

names. For each module, a regular expression is found and sent to ReplaceCategories

to be cleaned up. An additional loop is completed to iterate through all the signals

in the modules, and each signal is examined and matched to the regular expression.

5.5 Rules Check

The next check that is performed is checking that the rules defined in the rules file

are being followed. The overview of how the rule checking works is presented in

Figure 5-10.

All the modules are first iterated through. For each module, every rule is examined

and determined if the rule applies to that particular module based on if the module

is a leaf module or not and whether the rule applies to leaf modules or not. If the

rule does not apply, the next rule is examined.

5.5.1 The Basic Idea

If the rule does apply, the rule table for the rule is traversed. The idea is to try to

find one row of the rule array where all the columns “fit”. Each node into the array

is defined to be a list of strings. What does it mean for a node to “fit”? The meaning

of each string in the list at a node is given meaning based on the column header for

the node. If the node is in column i, refer to the column header in the column header

array at index i. At that column header node, a regexType, category, and inout

value should be defined (though not all of these have to have actual values). Based

61

Loop
through

Rule Array

Module Leaf
Status == Rule
Module Status?

NO
(Next Rule)

YES

Loop through
Each Column
of Rule Array

(i)

Loop through
Each Column of
Rule Array (j)

Rule
Column[j]
refers to

...?

Module

Carp Match
module name
and Regex?

Any more
Columns?

Any More
Rows?

YES
(Next Row)

NO

Output
Rule did
not match
for Module

Next Rule

NO Match

Rule did
match for
Module

Next Rule

Match

YES
(Next Column)

Get Regex

NO

Wire

Match Wires?

NO Match

Match

MODULE

Figure 5-10: Rule Checking Flow Diagram

62

on this information, a regular expression for that column can be formed. Also, based

on the regexType, it can be determined if the name(s) to match to should be the

module name or the wire names. Once the names are determined, they are compared

via Carp regular expression matching. If there is a match for all the names that need

to be examined to the derived regular expression, the node is determined to “fit”. If

all nodes (columns) in a row fit, the rule has been satisfied for the module. If there

is no row where all columns fit, the rule is not satisfied.

In order to execute this idea in code, first loop through all rows of the rule array.

For each row, loop through all the columns.

5.5.2 How Regular Expressions are Determined

For each column, a regular expression is determined. In order to do this, the process

Get Regex in Figure 5-10 is expanded to the following diagram (Figure 5-11).

For the rule node that is currently being examined, if the category is NULL, the

values in the node should represent an actual Carp regular expression. If the value

in the node is a function (defined to be preceded by a %), the regular expression

returned is the concatentation of all values that the function returns. If there is no

function, the regular expression is simply set to the concatenation of all values in the

list at the node.

If the category is not NULL, the values in the node represent values that need

to be set for that defined category. If the node is a function, the function needs

to be evaluated and the values that are returned by the function become the new

values for that node. These returned values are sent to a function that replaces the

defined category in the regular expression (regexType for the node) by these values.

If the node is not a function, the values for the node replace the defined category

in the regular expression directly. The replacement is completed via the function

ReplaceCategoriesRestrained. The end result of this unit is the definition of a final

regular expression.

63

Rule
Category ==

NULL?

Rule
Array[i,j]
has function

value?

Rule
Array[i,j]
has function

value?

NOYES

Regex =
Expand
Function

Regex =
RuleArray[i,j]

Regex =
Replace
Category
Restrained

YES NO

Expand
Function

YES

Rule Array, i, j

NO

RETURN REGEX

Figure 5-11: Get Regular Expression Flow Diagram

64

How Functions are Expanded

If a rule array node is a function definition, before the regular expression can be

produced, the function must be evaluated for the given rule and module. A function

called ExpandFunction performs this task. The flow diagram for this function is

shown in Figure 5-12.

First, the function list is traversed to find the matching function struct for the

function of interest. Next, based on the function struct’s input field’s regexType,

a matching column is found for the rule where this function was instantiated from.

Based on the rule, the column that was just found, and the module, a list of inputs

are generated by the function GetValues. The purpose of GetValues is to exam-

ine the module and determine what should be the correct inputs to the function.

What determines this is the column header for the rule and column that are sent

in as inputs. GetValues first finds the regexArray index that matches the regular

expression of interest (the regexType of the column previously determined). Given

this regular expression, it calls another variant of ReplaceCategories called Replace-

CategoriesCapture. The difference between this variant is an additional input of a

category. When ReplaceCategoriesCapture traverses through the regular expression

and finds a category, this category is first compared to the input category. If they

are equal, the regular expression is modified to capture what this category matches

to when Carp is run on the expression at a later time. Specifically, after expanding

the category, it adds the string ‘‘{capture,temp}’’ immediately after. This is Carp

syntax to store into a variable called temp the value that matched the element right

before the capture statement. The regular expression is set to the returned expres-

sion from ReplaceCategoriesCapture. It is then determined if the column header deals

with module names or wire names. If it deals with module names, the regular expres-

sion is matched to the module name and temp gets set to the value of the category

from module name. This is put into a linked list and returned from GetValues. If

the header deals with wire names, all the signals are traversed. For each signal, each

pin is traversed and for each pin, each nexus signal is traversed. If the leaf status of

65

Find
function
name in
function

linked list

function name,
rule array index

module

Find
correct
column of
rule array

Values
List =

GetValues

Loop
through
function
array rows

Loop through
function
array
columns

Function
Array[i,j]
value?

Don't Care

More Rows?

-1
0

1

Is column
header value
is in Values

List

Is column
header value
is in Values

List

NO

NO

YES

More
Columns?

YES

RETURN Output
from Function
Array at this

columnYES

RETURN NULL

Figure 5-12: Expand Function Flow Diagram

66

the module which the nexus signal belongs to matches the leaf status of the column

header, the signal name is matched against the regular expression using Carp and

the value of the category is captured. If this category is not already present in the

linked list (initialized to NULL), it is added. Once all signals have been traversed,

the linked list is returned.

Take for example a case where the column header for the rule where this function

was called from has a regexType of NonLeafWire, a category of SignalSuffix, and

a inout value of input. Furthermore, the module that was sent into GetValues has

four input signals: clk pulse, a np, b p, and c p. ReplaceCategories would replace

the regexType to reflect that the category to capture is SignalSuffix and the new

regular expression would be:

([0-9]|[a-z]|)+ /SignalSuffix/

This would be replaced with the following:

([0-9]|[a-z]|)+ (np|pn|p|n|pulse){capture,temp}

The values captured from the inputs would be pulse, np, p, and p. The linked

list returned would have three elements in it: pulse, np, p.

Once the inputs to the function have been generated, the function array can be

traversed. The rows are looped through. For each row, the columns in that row are

then traversed. The function array is an array of integers and can contain the values

1, 0 and -1. For the current node, it is determined if the column header for the column

of the node is in the input list returned from GetValues. If it is in the input list and

the value of the node is a 1, this is considered a match for the node. Likewise, if the

column header is not in the input list and the value of the node is a 0, this is also a

match. If a match is found, the next column of that row is examined. If there are

no columns left, the correct row has been found. The function output for that row is

returned as the value of the function expansion. However, if the column header is not

in the input list and the node value is 1 or if the column header is in the input list and

the node value is 0, a match has not been found. The rest of the row is skipped and

67

the next row is examined. If there are no rows left, the function failed to match the

inputs. This should not happen since it would signify a bad input function definition

which is not defined for all inputs. If the value is a -1, this is a don’t care indication

and the next row is examined. If there are no rows left, the correct column has been

found and the output for that column is returned.

How Categories are Replaced with Restraints

ReplaceCategoriesRestrained works very much like ReplaceCategories. ReplaceCat-

egoriesRestrained takes two additional inputs: a category to be restrained and the

values it should be restrained to. The function still replaces an * with the Carp equiv-

alent of .+. Regular expression are still traversed and categories are found. However,

when a category is found, the name first compared against the name of the category

that is being constrained. If there is a match, the category is replaced with only the

values that it should be restrained to. Otherwise, if there is no match, the category

is looked up in the Sets Array (5.3.1) and all the members of the sets are returned

as usual.

For example, the module name regular expression is:

/LeafCellCategory//LeafCellType/ ([0-9]|[a-z]|)+(p[0-9]+n[0-9]+)?

A rule may restraint the category LeafCellType to be cc. The returned string

from ReplaceCategoriesRestrained is:

(s|d|e|a)(cc) ([0-9]|[a-z]|)+(p[0-9]+n[0-9]+)?

5.5.3 How to Determine if there is a Match

After the correct regular expression has been resolved, the names to match against

must be determined. The column header of the current rule array node is referenced

to see whether the column deals with modules or wires.

68

Dealing with Module Names

If the column deals with modules names, the only name that must be matched is for

that module. If the module name matches the regular expression, a match is made.

If not, a match is not made.

Dealing with Wire Names

If the column deals with wire names, all the signals must be traversed and matched

against the regular expression in order for a match to be made. For each signal, the

actual names that are compared are not the signal names, but the nexus signal names

for each pin. All nexus signal names need to be checked because a nexus represents a

physical connection of actual wires. If a naming convention is to be followed, it must

be consistent for all the wires at a connection. The overview for how this section is

shown in Figure 5-13.

For each signal, all the pins are looped through. For each pin, all the nexus signals

are looped through. If the nexus signal’s inout status is equal to the inout status of

the rule array node’s column, then this signal name needs to be matched. If a match

is not made, a non-match is returned as the result. If a match is made, the next

nexus signal is checked. If there are no more nexus signals, the next pin is checked. If

there are no pins, the next signal is checked. At the end, if there are no signals (and

a non-match has not yet been returned), a match found is returned since all signals

have been found to have matched.

5.5.4 How to Determine if Rule is met

Now it is known if this node of the rule array returns a match or not. If it does

not produce a match, this row cannot be the right row and the rest of the row can

be skipped to go onto the next column. If there are no additional columns, the rule

has failed to match, an error message is written, and the next rule is examined. If

this node did produce a match, the rest of the row must be checked. If there are

no remaining columns, a match has been found for the rule. The next rule is then

69

Loop
through
all

Signals

Loop
through all

Pins

Loop
through all

Nexus
Signals

Wire Inout
== Rule
Column[j]
Inout?

Carp Match
Wire name and

Regex?

YES

More Nexus
Signals?

More
Pins?

NO

More
Signals?

NO

YES
(Next Signal)

NO

YES
(Next Nexus Signal)

Yes
(Next Pin)

YES

RETURN NO
MATCH

Module,
Regex

RETURN
MATCH

Figure 5-13: Wire Matching Flow Diagram

70

examined.

5.6 How to Run

The rule check unit is run from the command line as follows:

%rulescheck rulefile.xml moduledata.xml

The first input is the file name for the rule definition file. The second input is

the file name for the module data information file. Error messages are output to the

screen and verbose results are appended to Results.out.

71

72

Chapter 6

Program Validation

Extensive testing and validation was completed on the all parts of this program

to ensure functionality. Most of the testing was done with sample files that were

created to simulate the desired conditions. Rules that were used were derived from

the SCALE-0 document.

Before starting on testing on the actual code written for this thesis, tests were

first conducted with the two outside libraries, Carp and libxml. This was done to

ensure that their behavior to inputs similar to ones that they would be invoked with

in the actual code was correct and followed expectations.

6.1 Unit Testing

For both the Parser unit and the Rules Check unit, individual unit testing was

conducted for all the functions in those two modules.

Black box testing was first done to ensure that the functions behaved as they

should based on their specifications. All outcome possibilities were tested and all

possible errors that could be generated were invoked by at least one test. Some glass

box testing was also done when the functions had deeply nested looping or wide

ranching. Different paths were invoked to ensure path completeness and high code

coverage.

73

6.1.1 Parser Unit

The structural checker part of this unit was tested with sample Verilog code. It was

tested with a Verilog design that followed structural Verilog style and one that did

not. The error messages produced by the latter were checked for accuracy.

During the structural check, the module linked list which stores leaf/non-leaf

information about all the modules traversed is populated. This data structure was

validated via unit testing and debug step-through to ensure integrity.

The print output unit was also tested with sample Verilog code. It was tested with

Verilog designs with multiple modules, each of which had many inputs and outputs.

Validation of this function was completed by manually reading the XML file output

and checking it for correctness against what should have been produced by the Verilog

code. Signal and wire names were checked and nexus connection diagrams were drawn

to check the nexus connections were all correct.

6.1.2 Rules Check Unit

The first task this unit performs is to parse both XML input documents. Both

documents are parsed into internal data structures. All data structures were examined

to ensure that they were being populated correctly. Since ModuleData.xml is produced

by the Parser unit, it is assumed to be in the correct format. However, Rules.xml

is checked for any violations in formatting. These violations are outlined in Section

4, at the end of element’s individual section. All possible errors were simulated to

ensure that the program indeed does catch them when they are made.

All the helper functions in this unit were then tested. This includes functions in

the ReplaceCategories series and functions that manipulate data structures. In order

to test these, wrapper functions were written around them with simulated inputs. All

loops in these functions were tested with inputs which induced varying loop lengths.

All possible errors in these functions were run to make sure they were caught.

The two functions that were the crux of this unit were the actual rule check func-

tion and the expansion of functions function. The rule check function was simulated

74

with many various rules, with some where a type was defined for the columns and

some where there was not a type defined. The Expand Functions procedure was also

tested with a variety of sample functions.

6.2 Integration Testing

Upon satisfactory completion of all unit tests integration testing began using a sample

Verilog design for a MIPS processor. The naming conventions for the module names

and wire names in this design follow the SCALE-0 conventions. The rules that are

checked are also from the SCALE-0 design document. The Rules.xml file that was

used can be found in Appendix A.

75

76

Chapter 7

Conclusion

This thesis presented the design and implemention of a Verilog rules check tool suite.

The tool suite was designed to be used during the design of microprocessor chips in

order to ensure that rules and conventions that were set early on in the design phase

were actually being followed during the implementation phase. The rule check tool

suite was implemented in C as two separate units. Though the base of this thesis was

the SCALE-0 design, one of the main goals for this design was to have flexibility in

allowing more rules and conventions to be added or changed to accommodate other

designs in the future. The input file specification helps to achieve this goal by defining

a way to describe new rules and conventions. Using this input file, as many rules as

needed can be defined using the framework set up by the input file format. All the

rules and conventions in the SCALE-0 design can be successfully represented and can

be tested on any input Verilog files.

7.1 Future Improvements

The tool suite represents a framework that can be expanded in many ways in the

future. While it was designed to be flexible, it was still designed with SCALE-0

design rules in mind and only considers rules that follow the same basic style. For

example, it only handles structural Verilog designs. Therefore, the regular expressions

that must be defined for module names and wires are based on if they are leaf or non-

77

leaf entities. This will not work for Verilog designs that follow some other structure.

Many other types of rules that may come up in other design documents can be added

to this basic framework.

Besides adding more rule formats, other built-in checks can also be added in the

future as needed. The current tool only performs static checks on naming conventions

and rules. It could be expanded to cover non-static checks. An example of such a

check might be checking that a signal, which should become valid before the positive

edge of a clock and remain valid until the negative edge, actually follows this timing

restraint.

78

Appendix A

Sample Rules.xml Input File

<CheckRules>

<Sets>
<category name=’’LeafCellType’’>

<item>cc</item>
<item>pf</item>
<item>nf</item>
<item>hl</item>
<item>ll</item>
<item>hv</item>
<item>lv</item>
<item>xx</item>

</category>
<category name=’’LeafCellCategory’’>

<item>s</item>
<item>d</item>
<item>e</item>
<item>a</item>

</category>
<category name=’’SignalSuffix’’>

<item>pn</item>
<item>np</item>
<item>p</item>
<item>n</item>
<item>pulse</item>

</category>
<category name=’’NonLeafCellCategory’’>

<item>m</item>
</category>

</Sets>

<Regex>
<Expression name=’’LeafModuleName’’>

/LeafCellCategory//LeafCellType/_([0-9]|[a-z]|_)+(_p[0-9]+n[0-9]+)?
</Expression>

79

<Expression name=’’NonLeafModuleName’’>
/NonLeafCellCategory/_([0-9]|[a-z]|_)+

</Expression>
<Expression name=’’NonLeafWire’’>

([0-9]|[a-z]|_)+_/SignalSuffix/
</Expression>
<Expression name=’’LeafWire’’>

*
</Expression>

</Regex>

<Rules>
<Rule category=’’Leaf’’>

<ColumnDefinitions>
<Column type=’’LeafModuleName’’>

LeafCellType
</Column>
<Column type=’’NonLeafWire’’ inout=’’input’’>

SignalSuffixes
</Column>
<Column type=’’NonLeafWire’’ inout=’’output’’>

SignalSuffixes
</Column>

</ColumnDefinitions>
<Data>

<Row>
<Column>cc</Column>
<Column>*</Column>
<Column>%GLB</Column>

</Row>
<Row>

<Column>pf</Column>
<Column>np,pn,p</Column>
<Column>np</Column>

</Row>
<Row>

<Column>nf</Column>
<Column>np,pn,n</Column>
<Column>pn</Column>

</Row>
<Row>

<Column>hl</Column>
<Column>pn,np,n</Column>
<Column>np</Column>

</Row>
<Row>

<Column>ll</Column>
<Column>np,pn,p</Column>
<Column>pn</Column>

</Row>
<Row>

<Column>hv</Column>
<Column>pn</Column>
<Column>n</Column>

80

</Row>
<Row>

<Column>lv</Column>
<Column>np</Column>
<Column>p</Column>

</Row>
<Row>

<Column>xx</Column>
<Column>pulse</Column>
<Column>*</Column>

</Row>
</Data>

</Rule>
<Rule category=’’Leaf’’>

<ColumnDefinitions>
<Column type=’’LeafModuleName’’>LeafCellCategory</Column>
<Column type=’’LeafModuleName’’></Column>

</ColumnDefinitions>
</
<Data>

<Row>
<Column>s</Column>
<Column>
s/LeafCellType/_([0-9]|[a-z]|_)+(_p[0-9]+n[0-9]+)
</Column>

</Row>
<Row>

<Column>d</Column>
<Column>
d/LeafCellType/_([0-9]|[a-z]|_)+(_p[0-9]+n[0-9]+)
</Column>

</Row>
<Row>

<Column>e</Column>
<Column>
e/LeafCellType/_([0-9]|[a-z]|_)+(_p[0-9]+n[0-9]+)
</Column>

</Row>
</Data>

</Rule>
</Rules>

<Functions>
<Function name=’’GLB’’ category=’’SignalSuffixes’’>

<Input type=’’LeafWire’’ inout=’’input’’ category=’’SignalSuffix’’ />
<ColumnDefinitions>

<Column>pulse</Column>
<Column>p</Column>
<Column>n</Column>
<Column>np</Column>
<Column>pn</Column>

</ColumnDefinitions>
<Data>

<Row>

81

<Column>1</Column>
<Column>*</Column>
<Column>*</Column>
<Column>*</Column>
<Column>*</Column>
<Column>pulse</Column>

</Row>
<Row>

<Column>0</Column>
<Column>1</Column>
<Column>*</Column>
<Column>*</Column>
<Column>*</Column>
<Column>n,p</Column>

</Row>
<Row>

<Column>0</Column>
<Column>0</Column>
<Column>1</Column>
<Column>*</Column>
<Column>*</Column>
<Column>n,p</Column>

</Row>
<Row>

<Column>0</Column>
<Column>0</Column>
<Column>0</Column>
<Column>1</Column>
<Column>*</Column>
<Column>np,pn</Column>

</Row>
<Row>

<Column>0</Column>
<Column>0</Column>
<Column>0</Column>
<Column>0</Column>
<Column>1</Column>
<Column>np,pn</Column>

</Row>
</Data>

</Function>
</Functions>

</CheckRules>

82

Bibliography

[1] K. Asanovic, C. Batten, S. Laval, and A. Ma. Scale-0 vlsi design. Design docu-

ment.

[2] J.P. Bergmann and M.A. Horowitz. Vex - a cad toolbox. In Proceedings for the

Design Automation Conference, 1999.

[3] IEEE Standard Verilog Hardware Description Language.

[4] Michael K Montague. web: http://tintware.sourceforge.net/.

[5] Gong Ke Shen. A procedural layout library in java. Master’s thesis, Massachusetts

Institute of Technology, 2000.

[6] Daniel Veillard. web: http://xmlsoft.org/. The XML C parser and toolkit of

Gnome.

[7] Steven Williams. web: http://www.icarus.com/eda/verilog/. Icarus Verilog De-

velopment Documents.

83

