
SCALE:
Software-Controlled Architectures

for Low Energy

Krste Asanovic
MIT Laboratory for Computer Science

3/8/1999 SCALE 2

Improve Energy-Efficiency of
Programmable Processors

by Re-Examining
Hardware-Software Interface

Energy-
Conscious
Compilers

Energy-Energy-
ExposedExposed

ArchitecturesArchitectures

SCALE Project Goal

3/8/1999 SCALE 3

Motivation
• Power dissipation limits many system designs

– battery weight and life for portable devices
– packaging and cooling costs for tethered systems
– case temperature for wearable computers (user comfort)

• Custom circuits (ASICs) use least energy
– only for small, regular kernels
– only feasible for high volume applications
– cannot adapt to changing requirements

• Programmable processors are most flexible
– single design reusable in many systems
– can change application code after fabrication
– but up to 100-1000x more energy dissipation than ASIC

3/8/1999 SCALE 4

Run-Time/O.S.

Instruction Set

Source Code

Compiler

Algorithm

Microarchitecture

Circuit Design

Application

Fabrication Technology

SCALE Focus Areas

Can Optimize Energy Efficiency at
all Levels in System

3/8/1999 SCALE 5

Improving Energy-Efficiency at
Compiler and Architecture Levels

• Increase performance
(voltage scaling trades excess performance for lower energy)

– highly parallel machine architectures
– aggressive compiler optimizations
– hardware support for common compute paradigms

• Reduce unnecessary switching activity
– power down unneeded units
– reduce datapath widths to avoid excess precision
– localize computations to minimize data communication
– configure control to minimize control overhead

3/8/1999 SCALE 6

SCALE Processor Overview
• 32 processing tiles
• Separate control/data networks
• 128x32b FLOP/cycle total
• 4096x8b OP/cycle total
• 128MB on-chip DRAM
• External DRAM interface
• Chip-chip interconnect channels
• 20x20mm2 in 0.1µm CMOS

I/O

Tile

Embedded DRAM

Embedded DRAM

Off-chip
DRAM

Addr.
Unit

Data
Unit

Cntl.
Unit

SRAM/cache

Control Net

Data Net

3/8/1999 SCALE 7

 SCALE Processor Supports All
Forms of Parallelism

• Multithreaded/Chip-scale multiprocessor
– Run separate threads on different tiles

• Vector
– Hardware control for vector arithmetic and vector memory

operations

• VLIW/Reconfigurable
– Distributed wide instruction cache/configuration buffer allows

software to drive exposed datapath control lines

Control net can lock multiple tiles together for greater
single thread performance in vector or VLIW mode

3/8/1999 SCALE 8

SCALE Processor Tile Details

C Regs
16x32b

CALU

Inst. Fetch
&Decode

B Regs
8x32b

BALU

PC

Control
Net

ARegs
16x32b

AALU0

Memory
Management

AALU1

Tag
Store

FP Adder

FP Multiplier

DReg3 64x64b
DALU3

DReg2 64x64b
DALU2

DReg1 64x64b
DALU1

DReg0 64x64b
DALU0

Address/Data Interconnect

32KB SRAM
 (16 banks x 256 words x 64 bits)

VLIW
and

Config.
Cache Inst. Buffer

Data
 Net

Data Unit Address Unit Control Unit

3/8/1999 SCALE 9

Software Power Control
SCALE processor has extensive software-

controlled power down capability
• Turn off unused register banks and ALUs in each unit
• Reduce datapath width

– set width separately for each unit in tile (e.g., 32b in control
unit, 16b in address unit, 64b in data unit)

• Turn off individual local memory banks
• Turn off idle tiles and idle inter-tile network segments
• Turn off refresh to unused DRAM banks

3/8/1999 SCALE 10

SCALE Exposes Locality at
Multiple Levels

• 2D Tile and DRAM layout
– software maps computation to minimize network hops

• Local SRAM within tile
– software split between instruction/data/unified storage
– software scratchpad RAMs or hardware-managed caches

• Distributed cached control state within tile
– control unit: instruction buffer
– data/address unit: vector instructions or VLIW/configuration

cache

• Distributed regfile and ALU clusters within tile
– Control Unit: scalar (C) registers versus branch (B) registers
– Address Unit: address (A) registers
– Data Unit: Four clusters of data registers (D0-D4)
– Accumulators and sneak paths to bypass register files

3/8/1999 SCALE 11

Backup Slides

3/8/1999 SCALE 12

SCALE Tile Resources
• Control Unit

– instruction fetch/decode, branch & loop execution
– scalar integer compute
– control flow synchronization with other tiles over control net

• Address Unit
– address generation and address mapping
– local memory and cache management
– global memory accesses over data net

• Data Unit
– floating-point and fixed-point computation
– 64-bit datapath configurable as 2x32-bit, 4x16-bit, 8x8-bit
– large register file (256x64-bit elements)

• Local Memory
– 16 banks x 2KBytes/bank (total 32KBytes SRAM)
– 128 Bytes/cycle peak bandwidth
– configurable as scratchpad RAM or cache

3/8/1999 SCALE 13

 SCALE Supports All Forms of Parallelism

Addr.
Unit

Data
Unit

Cntl.
Unit

Vector ControlVector
Instructions

Vector
– most streaming applications highly vectorizable
– vectors reduce instruction fetch/decode energy
up to 20-60x (depends on vector length)
– mature programming and compilation model

⇒SCALE supports vectors in hardware
– address and data units optimized for vectors
– hardware vector control logic

VLIW/Reconfigurable
– exploit instruction-level parallelism for non-
vectorizable applications
– superscalar ILP expensive in hardware

⇒SCALE supports VLIW-style ILP
– reuse address and data unit datapath resources
– expose datapath control lines
– single wide instruction = configuration
– provide control/configuration cache distributed
along datapaths

Addr.
Unit

Data
Unit

Cntl.
Unit

VLIW Cache
VLIW

Program
Counter

Multithreading/Chip-scale Multiprocessor
– run separate threads on different tiles
– any mix of vector or VLIW across tiles

Thread 1Thread 2

Thread 3Thread 4

3/8/1999 SCALE 14

 Tile Locking

Lock slave tiles to master tile over control network
• increase single thread performance for vector and/or VLIW tiles
• amortize instruction fetch/decode energy over more datapaths
• amortize instruction storage over more tiles
• avoid overhead of software tile synchronization

Addr.
Unit

Data
Unit

Cntl.
Unit

Vector Control

Addr.
Unit

Data
Unit

Cntl.
Unit

Vector Control

Addr.
Unit

Data
Unit

Cntl.
Unit

Vector Control

Addr.
Unit

Data
Unit

Cntl.
Unit

Vector Control

Master

Slave 1

Slave 2

Slave 3

3/8/1999 SCALE 15

SCALE Tile Array

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

SRAM

D A C

SRAM

DAC

3/8/1999 SCALE 16

SCALE Data Unit Structure

CFU1 CFU0
64x64b
DRegs

DALU

8x64b
FRegs

FFU

64x64b
DRegs

DALU

8x64b
FRegs

FFU

64x64b
DRegs

DALU

8x64b
FRegs

FFU

64x64b
DRegs

DALU

8x64b
FRegs

FFU

Flag Interconnect

To Memory System/Tile Interconnect

Data Interconnect

3/8/1999 SCALE 17

Conventional Instruction Sets
Hide Energy Consumption

from Software
• RISC/VLIW instruction set architectures (ISAs)

designed for high performance and simplicity
⇒ ISA only provides alternative mechanisms when

there is a potential performance gain

Implicit assumption:

 software only interested in performance

3/8/1999 SCALE 18

SCALE Philosophy

Reward compile-time knowledge with
run-time energy savings

– hardware must provide alternative mechanisms
which reduce energy (performance unchanged)

– software must be able to map computations to use
lowest-energy hardware mechanisms

⇒ Co-develop energy-exposed architectures
and energy-conscious compilers

3/8/1999 SCALE 19

Example 1: Addressing Modes

Conventional RISC,
only base+offset
ld r1,0(r2)

Alternate address mode,
pure register indirect

ld r1,(r2)

Sign ext

16

32

Address

r1
Instruction

Address

r1

No immediate fetch, sign extension, or
adder energy but extra multiplexor

3/8/1999 SCALE 20

Example 2: Branch Address

Conventional RISC

loop: ld r1,0(r2)

 add r2, #1

 bnez r1, loop

• Branch target address
recalculated every time
around loop

Explicit branch target register

 la btr, loop

loop: ld r1,(r2)

 add r2, #1

 bnez r1, (btr)

• Branch target address
calculation moved out of loop
(no immediate fetch or add)

3/8/1999 SCALE 21

Example 3: Tag-Unchecked Loads

Allow software to avoid cache tag check when
successive memory accesses are to same cache line
ld r1,(r2)

ld.nochk r3,4(r2) ⇐ Must be to same cache line

Energy reductions:
– no tag RAM read
– no tag compare
– only low order address bits need to be computed
– no TLB lookup

⇒ Reduces cache access energy to just RAM read

3/8/1999 SCALE 22

SCALE Demonstration System

H21: A 21st Century Universal Handheld for Oxygen

Position Sensor/
Accelerometer

Stereo Video

Stereo Audio I/O
SCALE

Processor +
RAM

Display +
Touchscreen

Universal
Wireless

Flash
Storage

Other
Sensors/Effectors

3/8/1999 SCALE 23

Importance of
General-Purpose Processing

• Not all code suitable for mapping to custom circuitry
– Most ASICs include a GPP to handle complex code

• Amdahl’s law applied to energy consumption:
– If 99% of an application moved to ASIC with 1000x energy

reduction, remaining GPP will consume >90% final energy!

⇒ Must focus on complete applications

