Latency Reduction Techniques
in Chip Multiprocessor Cache Systems
by
Michael Zhang

Bachelor of Science in Electrical Engineering and Computer Science
Massachusetts Institute of Technology, May 1999

Master of Engineering in Electrical Engineering and Computer Science
Massachusetts Institute of Technology, May 1999

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 2006

(© Massachusetts Institute of Technology 2006. All rights reserved.

Department of Electrical Engineering and Computer Science
January 20, 2006

Certified Dy
Krste Asanovié

Associate Professor

Thesis Supervisor

Accepted Dy . ..o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Latency Reduction Techniques
in Chip Multiprocessor Cache Systems
by
Michael Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on January 20, 2006, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Single-chip multiprocessors (CMPs) solve several bottlenecks facing chip designers today.
Compared to traditional superscalars, CMPs deliver higher performance at lower power for
thread-parallel workloads.

In this thesis, we consider tiled CMPs, a class of CMPs where each tile contains a slice
of the total on-chip .2 cache storage, and tiles are connected by an on-chip network. Two
basic schemes are currently used to manage L2 slices. First, each slice can be used as a
private L2 for the tile. Private L2 caches provide the lowest hit latency but reduce the
total effective cache capacity because each tile creates a local copy of any block it touches.
Second, all slices are aggregated to form a single large L2 shared by all tiles. A shared L2
cache increases the effective cache capacity for shared data, but incurs longer hit latencies
when L2 data is on a remote tile. In practice, either private or shared works better for a
given workload.

We present two new policies, victim replication and victim migration, both of which
combine the advantages of private and shared designs. They are variants of the shared
scheme which attempt to keep copies of local L1 cache victims within the local L2 cache
slice. Hits to these replicated copies reduce the effective latency of the shared L2 cache,
while retaining the benefits of a higher effective capacity for shared data. We evaluate
the various schemes using full-system simulation of single-threaded, multi-threaded, and
multi-programmed workloads running on an eight-processor tiled CMP. We show that both
techniques achieve significant performance improvement over baseline private and shared
schemes for these workloads.

Thesis Supervisor: Krste Asanovié¢
Title: Associate Professor

Acknowledgments

I feel extremely fortunate to have Professor Krste Asanovi¢ as my Ph.D. adviser. His wealth
of knowledge, sheer brilliance, and dedication to his students are far beyond any graduate
student could ever ask for. This thesis would not have been possible without his constant
support and encouragement. Thank you for mentoring me all these years, Krste.

I want to thank my thesis readers, Professor Srini Devadas and Professor Larry Rudolph,
for all their feedback on this thesis. I also want to thank Professor Anant Agarwal, Professor
Charles Leiserson, and Professor Arvind for all their help and advice.

Fundings for my graduate work came from DARPA HPCA /PERCS project W0133890,
CMI project 093-P-IRFT, NSF CAREER Award CCR-0093354, DARPA Award F30602-
00-2-0562, and donations from Intel Corporation and Infineon Technologies.

Many thanks to members of the SCALE group, Elizabeth Basha, Chris Batten, Jae Lee,
Rose Liu, and Emmett Witchel. Special thanks to all my co-authors, Ronny Krashinsky,
Seongmoo Heo, Albert Ma, Luis Villa, Ken Barr, and Heidi Pan. I learned a lot from you
guys. Special thanks to my former and current officemates, Mark Hampton, Jessica Tseng,
Seongmoo Heo, Steve Gerding, and Eric Brittain. It’s been a pleasure.

Many thanks to all the good friends I made in school, Mark Hampton, Daihyun Lim,
Ed Suh, Charlie O’Donnell, Ian Bratt, and Jason Kim.

To the original gang of Team Five (and its various later forms that I shall not name),
Mike Gordon, Sam Larsen, Mark Stephenson, Ronny Krashinsky, and Steve Gerding. I
want to thank you for all the awesome times that we had together. You made the past
seven years that much more enjoyable for me. I also thank you for the many heated yet fun
debates on just about every topic a rational person could care for and then some.

To Mary McDavitt, whom I bother on a daily basis but has always managed to put up
with me. Thank you for all your help and the many Redsox vs. Yankees discussions.

To Min Shao and Claire Chen, whom I vented on consistently during my thesis writing
days. Thank you for all you patience, advice, and hospitality, especially in the last few
months of my Ph.D.

To Heidi Pan, you are the source of my happiness and I am grateful I met you.

To my Mom Xiaonan and my Dad Jiawei, without you, I wouldn’t be where I am today.

Your unconditional love for me is beyond any words can describe. Thank you.

Contents

1 Introduction

1.1 Why CMPs? Why Now? it
1.2 Software Implications o e
1.3 Hardware Implications Lo oo o
1.4 CMP Design Trends o it
1.5 Non-Uniform Access Latency
1.6 Thesis Focus: CMP Data Access Latency

1.6.1 Thesis Problem Statement
1.7 Thesis Outline e
1.8 Glossary o o e e e

Multiprocessing Background

2.1 Multi-Chip Multiprocessor Systemso
2.1.1 Multiprocessor Memory Hierarchy Layout
2.1.2 Message Passing L o oL
2.1.3 Distributed Shared Memory

2.2 CMP Systems versus DSM Systems

2.3 Cache Coherence Protocols
2.3.1 Bus-based Protocols o oL
2.3.2 Directory-Based Protocols L.

2.4 Latency Reduction Techniques for DSM
2.4.1 Prefetching
2.4.2 Multi-threadingo
2.4.3 NUMA with Remote Cache
2.4.4 Cache-Only Memory Architectures
245 Summary e e e e e e e e e e e

Memory Hierarchy Architecture and Implementation

3.1 Tiled Single-Chip Multiprocessors.o
3.2 Basic Assumptionso
3.3 Private Design

3.3.1 Duplicated-Tag Directory Implementation
3.4 Shared Design. e e
3.5 Cache Coherence e
3.6 Summary e e e e e e e e

19
21
22
22
23
23
25
25
25
27

29
29
29
31
31
32
32
34
34
36
37
37
37
37
39

4 CMP Latency Reduction Techniques 53

4.1 Hybrid Designs e e e 53
4.2 Overall Design Approach L o oL 54
4.2.1 Improving the Bottomlines 54
4.2.2 Design Criteria L oo 55

4.3 Victim Replication Lo 56
4.3.1 Mechanisms oL e e 56
4.3.2 Management Policies Lo oo 58
4.3.3 Implementation Overhead 59

4.4 Victim Migration Lo 59
441 Mechanismso e 60
4.4.2 Management Policies Lo oL 60
4.4.3 Implementation Overhead 63

4.5 Related Work e 63
5 Experimental Methodology 67
5.1 Simulation Infrastructure L0000 67
5.1.1 Simulator Setup 67
5.1.2 Interfacing Bochs to Detailed Cache Simulator 69
5.1.3 Simulation Parameters 0oL 70

5.2 Workloads e e e 70
5.2.1 Single-Threaded Workloads 75
5.2.2 Multi-Threaded Workloads 75
5.2.3 Multi-Programmed Workloads 75

5.3 Fastforwarding Multiprocessor Simulation 75
5.3.1 System Variability 0oL, 7

6 Experimental Results 79
6.1 Multi-Threaded Workloads 79
6.1.1 Performance Analysis 83
6.1.2 Victim Replication versus Victim Migration 84
6.1.3 Other Configurations, 84
6.1.4 Adaptive Replication Policy 85

6.2 Single-Threaded Workloads 91
6.2.1 Performance Analysis 91
6.2.2 Three-Level Caching 91

6.3 Multi-Programmed Workloads 92
6.3.1 Performance Analysis 92

6.4 Reducing VM Tag Array Area Overhead 96
6.5 Area Comparison of Designs 96
6.6 Coherence Traffic Reduction 97
6.7 SUmMmary e e e e e e e e e e e e 99
7 Conclusions and Future Work 101
7.1 Thesis Summary and Contributions. 101
7.2 Simulation Infrastructure Limitations 103
7.3 Future Work L 103
7.3.1 Using Hierarchy 104

7.3.2 Leveraging Software 104

7.3.3 Future CMP Topology 108

A Cache Coherence Protocol Implementation 109
A.1 Coherence States e e e e e e e e 109
A.1.1 Memory Block States o L. 109

A.1.2 L1 CacheBlock States 110

A.1.3 L2 CacheBlock States 110

A.2 Coherence MesSsages o ittt e e 110
A.3 Coherence Actions e e e 113
A3.1 Examples Lo 113

10

List of Figures

1-1

1-2

1-3

2-1

2-2

2-3

2-4

(a) Intel’s products have closely followed Moore’s Law. Clock frequencies have in-
creased over 100X and on-chip transistor counts have increased over 10,000X in the
last 25 years. (b) Intel processor technology road map for the next ten years. The

number of processor cores is expected to reach into the hundreds by early next decade. 20

Each block represents an optimally sized cache slice for power consumption and
access latency. (a) Uniform cache access (UCA) used by most current cache designs.
(b) The non-uniform cache access (NUCA) anticipated in the future cache designs.

The two baseline L2 cache designs. (a) The private design evenly partitions all of the
on-chip L2 cache capacity such that each processor is assigned its closest partition
as its private L2 cache. (b) The shared design aggregates all the L2 cache capacity
to form a single L2 cache shared by all the cores.

Distribution schemes for multi-chip multiprocessors. (a) Physically centralized mem-
ory: Used in smaller systems where the centralized memory can be shared by all
nodes and provide a reasonable latency and bandwidth. (b) Physically distributed
shared memory system: Used in larger systems and memory is physically (evenly)
distributed to reduce fetch latency and improve memory bandwidth. For case (a)
and (b), a coherence protocol is required to keep cached data coherent. (c) Phys-
tcally distributed message passing system: Each memory module is private to its
co-located processor. Software generates explicit messages to transport shared data
among different nodes. Lo Lo L

Current CMPs resemble tightly-integrated versions of multi-chip multiprocessor sys-
tem of the 1980s. Processor cores are tightly coupled with the L1 caches, and con-
nected by a centralized high-bandwidth, on-chip communication network to large
outer-level caches. L L oL e

Tllustration of a snoopy bus-based protocol. When a coherence transaction message
is placed on the bus, all of the caches and DRAM modules snoop the message, but
only the relevant parties take the appropriate actions.

Tlustration of a directory-based protocol. When a cache miss initiates a coherence
transaction, the request message is sent to its home node (generally determined
statically by the requesting address). The home node holds the directory entry with
all of the relevant sharing information of the requested block.

Tllustration of hierarchical and flat COMAs.

11

24

26

30

33

34

35
38

3-3

3-4

3-5

4-2

4-3

4-4

4-5

Tiled CMPs are a subset of CMPs where each tile contains a processor with L1
caches, a slice of the L2 cache, and a connection to the on-chip network. This
structure resembles shrunken versions of a conventional mesh-connected multi-chip
multiprocessor system. A 2D mesh routing network is used to connect all the tiles
in the system. Cache coherence is maintained through a scalable directory-based
protocol. . . . oL L L e e e e e e e e e
The access path of the non-blocking two-level cache hierarchy used in this thesis.
Each cache miss, writeback request, or explicit drop request is kept in a miss buffer
to allow future accesses to proceed. Misses to the same address are merged into a
single entry in the miss buffer when appropriate. Future misses to different addresses
are not blocked as long as there is an available entry in the miss buffer.
A two-dimensional mesh router with two physical channels per direction and two
virtual channels per physical channel.
In a private design, each processor core treats its local L2 slice as a private L2 cache.
Shared data must be copied to the private L2 caches of all the sharers. Thus, data
coherence must be maintained among all L2 caches.
(a) A naive implementation that places the directory in off-chip DRAM can suffer
significant performance degradation as each coherence transaction involves at least
one off-chip access, even if the actual data is on chip. (b) Using a directory cache
can significantly reduce the access latencies to the directory entries stored in off-chip
DRAM by keeping the directories of the most recently used blocks.
Example of using duplicated L2 cache tags to implement an cache coherence direc-
tory. Each L2 tag is duplicated and stored at its home node, determined statically
by address. Directory information is deduced from the collection of the L2 tags.

Examples of the duplicated-tag directory for the private design.
In a shared L2 design, all of the on-chip L2 slices are aggregated to form a single
large logical L2 cache. Each L1 cache miss must travel to the home node of requested
block to access the data. Data coherence is maintained for all the L1 sharers. . . .

The trade-offs between two conflicting goals in designing a hybrid on-chip cache
architecture: off-chip miss rate and on-chip fetch latency.
Tllustration of the hybrid design approach. Three different types of blocks can be
present in a hybrid design: private blocks, global shared blocks, and replicated
shared blocks. L L L e
Victim replication is a simple hybrid design that combines the large capacity of the
shared design with the low hit latency of private design. Victim replication is based
on the shared design, but in addition tries to capture evictions from the local L1
cache in the local L2 slice, such as the L2 copy of block 4 captured by Tile 2. Each
retained victim is a local L2 replica of a block that already exists in the L2 of the
remote home tile. oL oL
The tag width in victim replication is wider than the shared design by lg(N) bits,
where N is the number of tiles in the system. The extra bits are used to distinguish
the actual home tile of the address.
Victim migration is based on victim replication but more flexible. By using the VM
tag array, victim migration removes the unnecessary duplication of data at the home
tile, freeing up space to hold more replicas or other global blocks. If a hit is found in
the VM tag array, the request is satisfied through three-way cache-to-cache transfers
using reply-forwarding. Lo Lo e

42

44

44

45

46

46
47

49

54

55

o7

60

61

4-6

9-2

6-2

6-3

6-5

6-6

6-8

6-9

Examples of data migration. Each rectangle represents a cache slice, with the darker
squares representing rectangles slices that are accessed more frequently. Figure(a)
shows D-NUCA [KBKO02], a scheme that dynamically moves the more frequently
used data to the closer slices to the processor core. Figure(b) shows a data migration
study conducted in [BW04] on a CMP. The study shows that data migration might
not work well as shared data tend to migrate to locations equidistant to all sharers.
In the configuration shown here, all shared data moves to the center of the chip.

The overall simulation infrastructure. A detailed cache and memory simulator is
developed to experiment with the cache designs. The Bochs full-system emulator is
used as the processor model and drives the detailed cache and memory simulator to
form an execution-driven system simulator.
Tllustration of the execution-driven model combining the Bochs emulator with the
detailed memory system. The data and instruction access streams in each instruction
are buffered in a data access buffer and fed to the memory simulator. The access
results are fed back to the simulator to control the progress of execution.
(a) Statistics gathering in a single sample at the beginning of the execution. (b)
Statistics gathering in a single sample in the middle of the execution after initial
fastforwarding. (c) Statistics gathering is preceded by fastforwarding and detailed
warming. (d) A representative sample determined by profiling is used over a ran-
dom sample. (e) Repetitive statistical sampling with multiple sample points. (f)
Functional warming is used to minimize the detailed warming phase.

Configuration 1: 8KB+8KB/256KB/16FO4. Average access latencies of multi-
threaded workloads. oL
Configuration 2: 16KB+16KB/256KB/24F04. Average access latencies of multi-
threaded workloads. L. Lo
Configuration 3: 16KB+16KB/512KB/24F04. Average access latencies of multi-
threaded workloads. Lo
Configuration 4: 16KB+16KB/1MB/24F04. Average access latencies of multi-
threaded workloads. Lo
Memory access breakdown of multi-threaded workloads. Moving from left to right,
the four bars for each workload are for the private design, the shared design, victim
replication, and victim migration, respectively. Hits are categorized into (from bot-
tom to top): (1) L1 hits; (2) L2 local hits; (3) replica hits; (4) L2 remote hits; (5)
cache-to-cache hits; (6) off-chip accesses.
Categorization of the behaviors of the different applications according to the relative
ratio of the application’s working set and the size of the per-slice and overall L2
cache capacity. The behavior of each of the management policies loosely belong
to one of the categories shown. As an example, we categorized the multi-threaded
workloads for configurations 1 (the smallest cache configuration) and configuration
4 (the largest cache configuration). L0
Time-varying graph showing the percentage of the L2 allocated to replicas in multi-
threaded programs. Average of all eight caches is shown.
Configuration 1: 8KB+8KB/256KB/16FO4. Average access latencies of single-
threaded workloads. Lo Lo
Configuration 2: 16KB+16KB/256KB/24F04. Average access latencies of single-
threaded workloads. Lo

64

68

71

76

80

80

80

80

82

85

86

87

87

6-10

6-11

6-12

6-13

6-14

6-15

6-16

6-17

6-18

6-19

6-20

6-21

6-22

7-1

7-2

7-3

7-4

Configuration 3: 16KB+16KB/512KB/24F04. Average access latencies of single-
threaded workloads. Lo
Configuration 4: 16KB+16KB/1MB/24F04. Average access latencies of single-
threaded workloads. Lo
Memory access breakdown of single-threaded workloads. Moving from left to right,
the four bars for each workload are for the private design, the shared design, victim
replication, and victim migration, respectively. Hits are categorized into (from bot-
tom to top): (1) L1 hits; (2) L2 local hits; (3) replica hits; (4) L2 remote hits; (5)
cache-to-cache hits; (6) off-chip accesses.
Time-varying graph showing the percentage of the L2 allocated to replicas in single-
threaded programs. The percentage of replicas in each individual cache is shown. .
Configuration 1: 8KB+8KB/256KB/16F04. Average access latencies of multi-
programmed workloads. Lo oL oo
Configuration 2: 16KB+16KB/256KB/24F04. Average access latencies of multi-
programmed workloads. oL L oL
Configuration 3: 16KB+16KB/512KB/24F04. Average access latencies of multi-
programmed workloads. 0oL o Lo
Configuration 4: 16KB+16KB/1MB/24F04. Average access latencies of multi-
programmed workloads. oo 0oL oL
Memory access breakdown of multi-programmed workloads. Moving from left to
right, the four bars for each workload are for the private design, the shared design,
victim replication, and victim migration, respectively. Hits are categorized into
(from bottom to top): (1) L1 hits; (2) L2 local hits; (3) replica hits; (4) L2 remote
hits; (5) cache-to-cache hits; (6) off-chip accesses.
The reduction of victim migration over victim replication for three different VM tag
sizes. There is little performance degradation by halving the fully-duplicated VM
tag array. However, increasing the VM tag array associativity does not provide any
performance gain. L L. Ll Lo e e e
On-chip coherence traffic for single-threaded workloads. Traffic is measured in num-
ber of messagesper hop. oL Lo
On-chip coherence traffic for multi-threaded workloads. Traffic is measured in num-
ber of messagesper hop. Lo
On-chip coherence traffic for multi-programmed workloads. Traffic is measured in
number of messages perhop. oL oL

Tllustration of hierarchical cache coherence for CMPs. In this example, each 2 by
2 square forms its own coherence region and the cache storage located within the
region is shared by all processor cores within the region. However, when two regions,
e.g., regions 1 and 2 share data, there is a directory entry on the home node that
keeps track of all the data for each region.
Tllustration of using the operating system to allocate a collection of physical tiles
for each independent program running on the CMP. The operating system is fully
responsible for maintain cache coherence within different regions.
Tllustration of using multiple moderate-sized tiled CMPs to form a massive many-
core CMP system. The integration between neighboring chips is tight.

Tllustration of forming a multi-chip CMP system in three-dimensional fashion.

14

87

87

89

90

93

93

93

93

95

96

98

98

98

105

106

A-1

A-2

Implementing a perfect directory for all cached data on-chip removes the need to
have directories in the off-chip DRAM. The on-chip directory cache is guaranteed
to have all the necessary sharing information of any cached block.
Examples of reply-forwarding used in the coherence protocol. Figure (a) shows the
action sequence of an exclusively held block in response to a shared read request.
Figure (b) shows the action sequence of a shared block in response to a exclusive
request. Figure (¢) shows the action sequence of a shared block in response to a
shared request. L L Lo e

15

110

16

List of Tables

1.1

4.1

4.2

5.1

9.2

5.3

5.4

6.1

6.2

6.3

6.4
6.5

Comparisons of several leading industry CMPs. These CMPs show the trends of
higher processor core counts, increased outer-level cache capacities, and moderate
clock frequencies. L. L L L Lo e e e e

Cache management policies for victim replication. Blocks are chosen in descending
order according to their priority and blocks with the same priorities are chosen at
random. L L e
Cache management policies for victim migration. Blocks are chosen in descending
order according to their priority and blocks with the same priorities are chosen at
random. L L e

Simulation parameters. The numbers for each configuration represent the cache sizes
and cycle times. For example, 8K+8K /256K /16F04 indicates 8KB L1 instruction
cache, 8KB L1 data cache, 256KB L2 cache, with a 16 FO4-delay cycle time. . . .
Single-threaded workloads in this thesis are taken from the SpecINT2000
benchmark suite [Cor00].
Multi-threaded workloads include the NAS parallel scientific benchmark suite,
two system workloads, and one AI application [Gro01, BBBT94].
Multi-programmed workloads are created by mixing single-threaded bench-
marks. Eight benchmarks are randomly chosen for each multi-programmed
workload. L

Average access latency reduction of multi-threaded workloads achieved by victim
replication and victim migration over the shared and private baseline designs. The
five numbers for each workload indicate the percentage reduction of VR to shared,
VR to private, VM to shared, VM to private, and VM to VR.

Average access latency reduction of single-threaded workloads achieved by victim
replication and victim migration over the shared and private baseline designs. The
five numbers for each workload indicate the percentage reduction of VR to shared,
VR to private, VM to shared, VM to private,and VM to VR.

Average access latency reduction of multi-programmed workloads achieved by victim
replication and victim migration over the shared and private baseline designs. The
five numbers for each workload indicate the percentage reduction of VR to shared,
VR to private, VM to shared, VM to private, and VM to VR.
Cache area overhead of different designs.

Average latency reduction achieved by victim replication and victim migration over

the baseline private and shared designs for all three different classes of applications.

17

21

58

62

72

73

74

74

81

88

94
97

99

Al

A2

A3

A4

A5

Coherent states of the L1 cache blocks include four stable MESI states and one
transient state. o L L L Lo Lo e e e e e
Coherent states of the L2 cache blocks include four stable MESI states and two
transient states.o L L L Lo Lo e e e e e
The types of coherence messages used in this protocol. The first two letters of the
prefix signifies whether the message is from the sharing cache to the home tile (ch),
home tile to the sharing cache (hc), or cache-to-cache transfers (cc). The third
letter of the prefix indicates whether the message is a request message (g) or a reply
message (p). Messages that end in D carry a payload.
L1 cache controller actions to processor requests and incoming coherence
messages. A (’) indicates that one of the multiple states listed will be entered
depending on the original request (shared or exclusive). A asterisk (*) means
that the state is only entered upon described conditions.
L2 cache controller actions to L1 requests and DRAM replies.

18

111

111

112

Chapter 1

Introduction

Over the past two decades, VLSI technology advances have closely followed Moore’s Law.
From the mid 1980’s, microprocessor clock frequencies have increased by over 100X and
on-chip capacities have increased by over 10,000X, as shown in Figure 1-1(a). These two
technological improvements have led to a period of rapid performance growth for general-
purpose microprocessor systems. During this time, highly sophisticated microprocessors
such as the Intel Pentium4 [HSUT01] and Alpha 21264 [Kes99] have been built, featuring
clock frequencies reaching several gigahertz, deep pipelines, large caches, and numerous
performance-enhancing microarchitectural features.

Despite the success of wide superscalars, we are in the midst of a drastic architectural
design paradigm shift. The ten-year industry outlook in Figure 1-1(b) shows that the design
focus has shifted to single-chip multiprocessors, which place multiple replicated uniprocessor
cores onto the same die, instead of more aggressive optimizations of uniprocessors [Kre04a,
KST04, KMACO03, CR05, KAO05, Raz05, Cav05]. Table 1.1 summarizes the main features
of some current CMPs.

This thesis investigates various design alternatives to improve the performance and
reduce the power consumption of the on-chip cache system in these CMP architectures.
Compared to previous uniprocessor cache systems, CMP caches have two distinct features
that present new challenges. First, the size of the on-chip cache will continue to grow,
creating the phenomenon of non-uniform access latency (NUCA). A NUCA architecture
allows various parts of the cache to be accessed with different latencies, depending on the
physical location. Therefore, a strategic (distance-aware) physical placement of cached data
can significantly improve performance. Second, the on-chip cache system must be able to
provide low access latencies to multiple on-chip cores simultaneously.

The main contributions of this thesis are two innovative CMP cache management poli-
cies: wictim replication and wvictim migration. These two techniques achieve significant
reductions on cache fetch latency and communication power over the baseline private and
shared designs. They are simple to implement and provide robust performance over a wide

range of applications.

19

transistors

MOORE'S LAW Intei tanium® 2 Processor, el

Intel® taniume Processor

Intel® Pentium® 4 Procoss 100,000,000
Intel® Pentium® il Procossor

Intel® Pontivm® il Processor

Irteln Pantium® Procossor .
Intel4846™ Frocessor //
Intelase™ Processor /

s

8086 ~6MHz

10,000,000
11,000,000

| 100,000

B8
BODB
4004 £47
_ . . : 1,000
1970 1975 1980 1985 1990 1995 2000 2005
(a)
Many-core Era
Massively parallel
applications
100
Multi-core Era
Scalar and
Parallel applications
10
Increasing
Hyper-Threading Hardware
Threads
Per Socket

2003 2005 2007 2009 2011 2013
Source: www.intel.convtechnol ogy/silicon/power/multicore.htm

(b)

Figure 1-1: (a) Intel’s products have closely followed Moore’s Law. Clock frequencies have increased
over 100X and on-chip transistor counts have increased over 10,000X in the last 25 years. (b) Intel
processor technology road map for the next ten years. The number of processor cores is expected to
reach into the hundreds by early next decade.

20

Year Cores Tech. (nm)/ Inter- L2 Cache L2 Cache

(Hardware | Transistor #/ | connect | Configuration Sharing

Threads Freq. (GHz) size/assoc/ Pattern

per Core) latency
Server Processors
IBM Powers | 2003 2(2) 130/276M/1.9 | Bus 1.OMB/10/13 | Shared
AMD Opteron | 2004 2(1) 90/233M/2.2 Bus 1MB/16/12 Private
Intel Montecito | 2005 2(2) 90/1.7B/1.8 Bus 24MB/12/14 Private
Sun Niagara 2005 8(4) 90/N.A./N.A. Bus 3MB/8/N.A. Shared
Embedded Processors

RMI XLR 2005 | 8(4) 90/N.AJ15 | Ring | 2MB/8/N.A. | Shared
Cavium Octeon | 2005 | 16(1) 90/N.A.J0.6 | Bus | IMB/N.A./N.A. | Shared
SiByte BCMI4xx | 2005 | 4(1) 90/NA /12 | N.A. | IMB/NA/N.A. | Shared

Table 1.1: Comparisons of several leading industry CMPs. These CMPs show the trends of higher
processor core counts, increased outer-level cache capacities, and moderate clock frequencies.

1.1 Why CMPs? Why Now?

Ready or not, we are living in the dawn of single-chip multiprocessors (CMP). The continued
performance improvement brought by technological advances, however, have slowed down
dramatically in the past four to five years. This slowdown can be attributed to three key

factors.

First, more complex microarchitectural designs can only bring marginal performance
gain at the expense of significantly higher design efforts and longer design cycles. The
traditional channels to improving performance by widening the issue widths and using
better speculation mechanisms are fundamentally limited by the amount of instruction-
level parallelism (ILP) inherent in the workloads. These methods have already reached

diminishing returns.

Second, higher clock frequencies can no longer be directly translated into better per-
formance because global wire delay does not scale with the silicon feature size. For each
subsequent technology generation, less on-chip area can be reached within one clock cycle,
leading to longer cross-chip latencies [HMHO01, AHKBO00]. Thus, even though individual
chip components continue to become faster, the communication latency among different

components cannot, limiting the performance of the overall system.

Third, power consumption has become a key design constraint that limits achievable
processor performance. In traditional desktop and server systems, power usages exceeding
the hundred-watt range require exotic cooling systems. Elevated power density causes
transistor reliability and stability problems, and higher die temperature leads to leakier and
slower transistors. In the mobile computing arena, power dissipation is directly correlated
to battery life, thus the usability of the mobile device itself. The increasing power usage is
the primary factor that finally forced chip designers to deviate, at least temporarily, from

evolving traditional superscalar uniprocessors [Kre04a].

21

1.2 Software Implications

Traditional superscalars and VLIWSs exploit instruction-level parallelism (ILP), relying on
speculative execution to gain performance. Because the instruction-level parallelism that
exists in sequential programs is limited, even the most elaborate systems today can only
achieve a marginal performance gain with better prediction and speculation mechanisms.
CMPs exploit a much coarser form of parallelism at the thread level, which we refer to
as thread-level parallelism (TLP). For applications with significant TLP, CMPs can de-
liver higher throughput and consume less energy per operation than a wider-issue super-
scalar [ONH"96]. Several important classes of applications have abundant thread-level

parallelism and can take advantage of CMPs.

1. Server Workloads: Large transaction-based server workloads, such as web or database
servers, are inherently thread-parallel because each transaction is an independent task.
Today, server workloads are executed on large multi-chip multiprocessor systems to

obtain high throughput. CMPs will work very well for these workloads.

2. Parallel Scientific Workloads: Classic algorithms, such as Fourier transform or LU de-
composition, are the centerpieces of many critical scientific workloads. Large compute-
intensive programs such as weather forecasting demand extremely high performance
that uniprocessors are unable to deliver. Because of their importance, they are well
studied and heavily parallelized at the thread level to take advantage of large multi-
chip systems. These scientific workloads will work even better on CMPs because they
have tighter integration that reduces communication latencies among different cores

and memory.

3. Multi- Programmed Workloads: Most commercial modern operating systems support
multitasking and can run a large number of different programs in parallel. In fact,
desktop machines today run hundreds of programs concurrently using time-sharing.
Thus, we anticipate multi-programmed workloads to be the most common ones for
a desktop processor. Multi-programmed workloads are naturally thread parallel as

different programs rarely share data, thus fully utilizing the features of a CMP.

1.3 Hardware Implications

From a hardware point of view, CMPs address three key bottlenecks of unicore processors:

(1) power budget, (2) global wire delay, (3) design complexity.

1. Power Budget: CMPs achieve high performance by running different threads in par-

allel, putting less pressure on individual thread performance. Thus, CMPs can use

22

relatively less aggressive cores and scale back clock frequency. This approach sacri-
fices some single-thread performance, but allows many power-inefficient features to be

removed from the processor, thereby dramatically reducing energy per operation.

2. Global Wire Delay: The physical structure of a CMP naturally constricts the major-
ity of the data movement to be localized within each processor core. Global wires
in a CMP will mainly be responsible for transporting shared data between different
threads. While increasing global wire delay will remain a problem, such global com-
munication happens much less frequently compared to, for example, accesses to the
register file in a wide superscalar. In addition, this abstraction gives more control
over the wire delay problem to the software. For example, the operating system can
place multiple threads that have a high degree of data sharing in adjacent cores to

minimize the cost of global communication.

3. Design Complezity: The CMP approach dramatically reduces design complexity by
allowing the chip makers to reuse previous core designs with minor modifications to
suit future products. The focus of the redesign effort is the interconnection network re-
sponsible for communication among cores, caches, physical memory, and I/O devices.
Thus CMPs can have a much shorter design cycle and time to market compared to

superscalars.

1.4 CMP Design Trends

The are two trends in future CMP designs. First, CMPs will have more cores. For example,
the Niagara [KAOO05] and the XLR [Raz05] chips have 8 cores and the Cavium Octeon
CN38xx chip [Cav05] has 16 cores. Each core is likely to be relatively simple, especially in
the embedded chip space. Second, CMPs will have more total cache capacity. For example,
the newest Intel Montecito chip, based on the Itanium, has two cores, each with its own
12MB L3 cache, forming a total on-chip capacity of over 24MB [CRO05].

1.5 Non-Uniform Access Latency

Most current cache designs divide large caches into small slices to reduce both access latency
and energy consumption. The cache access latency is primarily dominated by the access
time of each individual cache slice, thus the access latencies to various slices are fixed. We
refer to this type of cache as a uniform cache access (UCA) cache, as shown in Figure 1-2(a).

In the larger caches anticipated in future CMPs, wire delay will cause cross-chip commu-
nications to reach tens of cycles [HMHO01, AHKBO0O0]. Cache fetch latencies will be dominated
by the wire delay to reach each individual cache slice rather than the time spent accessing
the slice itself. The access latencies to various slices will become significantly different de-

pending on their locations with respect to the load/store unit of the processor. UCA design

23

99000000

|' Cross-chip wire delay I | |‘ Cross-chip wire delay .l
~1to2cycles > 10 cycles

(a) UCA: Short cross-chip latency, data (b) NUCA: Long cross-chip latency,
array access time dominates overall wire delay dominates overall cache
cache accesstime accesstime

Figure 1-2: Each block represents an optimally sized cache slice for power consumption and access
latency. (a) Uniform cache access (UCA) used by most current cache designs. (b) The non-uniform
cache access (NUCA) anticipated in the future cache designs.

is no longer suitable for these wire-dominated caches because using the worst-case latency
will result in unacceptable hit times. Thus, we must allow different slices of the cache to be
accessed at their fastest possible latencies. The resulting cache design is what we refer to
as a non-uniform cache access (NUCA) cache [KBKO02]. Figure 1-2(b) illustrates this idea.

A NUCA architecture can be either static or dynamic. A static NUCA (S-NUCA)
simply relaxes a UCA design and allows different cache slices to be accessed with different

latencies. It is static because each cache block is still statically mapped to a specific bank.

The more flexible dynamic NUCA (D-NUCA) cache exposes the physical location of
each cache block to the designer, allowing more optimal placement than the statically
address-mapped approach of SSNUCA. An intelligent placement maps data to physical cache
locations such that the working set of the workload stays in the cache slices physically closest
to the core. Such a placement minimizes the cross-chip communication latency incurred by
cache accesses. However, the process of locating a cache block in a D-NUCA can cost

significantly more time and energy than in a S-NUCA.

24

1.6 Thesis Focus: CMP Data Access Latency

1.6.1 Thesis Problem Statement

For any computer system, its overall performance is often directly correlated to the per-
formance of its memory hierarchy. In future CMPs, off-chip misses will remain expensive,
but increases in clock frequency, together with worsening global wire delays, will also in-
crease latencies for cross-chip communication. Effective use of on-chip caches must therefore
consider both the cost of off-chip misses and the cost of cross-chip communications. Two
baseline outer-level cache designs, private and shared, illustrate the trade-offs between these
two components of effective data access latency. For simplicity, we assume in the rest of
the thesis that the second-level cache (L2) is the outer-most level of on-chip cache. A pri-
vate design evenly partitions all of the on-chip L2 cache slices such that each processor is
assigned its closest partition as its private L2 cache. The shared design aggregates all the
L2 cache slices to form a single L2 cache shared by all the cores.

The private design has a low L2 hit latency, as the private L2 cache is physically co-
located with the processor core and has a much smaller area than a shared cache. This
layout provides good performance if the working set fits within the local L2 slice. The
disadvantage of the private L2 design is that effective on-chip cache capacity is reduced for
shared data, as each core must retain its own copy of any shared data block. The shared
design reduces the off-chip miss rate for large shared working sets because only a single
on-chip L2 cache copy is required for any shared data. However, large shared L2 caches
have a worse access latency than a small private L2 cache.

With multiple cores, this placement task becomes particularly challenging because many
cores may contend for the same shared data simultaneously. The optimal placement of the
shared data may not be close to any of the requesting cores, thus making them unable to
provide fast access time to most of the sharers.

In this thesis, we will investigate various cache management policies of cache hierarchies
in CMPs. We study the private and shared cache designs described above and explore novel
cache management schemes with optimal trade-offs between the off-chip miss rate and the

cross-chip latency to achieve lower data access latencies for future CMPs.

1.7 Thesis Outline

Even though CMPs are a relatively new architectural design target, they are closely related
to earlier multi-chip multiprocessor systems. Chapter 2 provides the necessary background
on these earlier systems, and draws parallels between distributed shared memory systems
(DSMs) and CMPs. Cache coherence protocols are briefly introduced. We also discuss
various pertinent latency-hiding techniques used in DSM systems.

Chapter 3 describes our take on future CMPs trends, which we believe will naturally

25

Core

Core

Core

Core

v 3

I

v 3

v 3

L1U$ |[L1D$

L1$||L1D$

L1$|(L1D$

L1US$ |[L1D$

:
:

L2$ |L2% L2$ |L2%
Data |Tag Data |Tag
f Router] f Router]
Memory Memory Memory Memory
Channel Channel Channel Channel
(a) Private design for L2 caches
Core Core Core Core
LU$|[L1D$ LU$|[L1D$ L1U$|[L1D$ LU$||L1D$
Shared L2 caches [Router) [Router) Router } Router
backing up all of the i i i i
L 1 caches on-chip
~ L2$ |L2$) 2 L2$ |L2$|2d L2$ [L23$) 29 L2$ L2$L23J
[l | Data|Tag|Dir Data|Tag|Dir Data|Tag|Dir Data|Tag|Dir
Memory Memory Memory Memory
Channel Channel Channel Channel

(b) Shared design for L2 caches

Private L 2 caches
backingup theL1
cache on thelocal tile

Figure 1-3: The two baseline L2 cache designs. (a) The private design evenly partitions all of the
on-chip L2 cache capacity such that each processor is assigned its closest partition as its private L2
cache. (b) The shared design aggregates all the L2 cache capacity to form a single L2 cache shared

by all the cores.

26

evolve toward arrays of replicated tiles connected over a switched network. We call this
architecture a tiled CMP and use it as the basis for the thesis. We then present the imple-
mentation of the private design and the shared design on a tiled CMP, and discuss various
design issues and overhead.

Chapter 4 describes two novel approaches, victim replication [ZA05b] and victim migra-
tion [ZA05a], which combine the advantage of private and shared designs to reduce both
the off-chip miss rate and the cross-chip access latency. We present the implementation of
these two techniques as well as associated cache replacement policies to manage these two
architectures.

Chapter 5 describes the experimental methodology used in this thesis. We describe the
processor and cache simulator used, as well as their integration. The workloads chosen to
evaluate the designs are presented. The effects of fastforwarding and system variability are
also discussed. The experimental results are presented in Chapter 6. They show that the
latency reduction techniques proposed by our research are robust, performing well for a
wide range of workloads.

Chapter 7 summarizes this thesis and highlights our contributions. In addition, we
point out some of the limitations this thesis had in evaluating the effectiveness of the cache
designs, ending with a discussion on designing cache and memory systems for the massive
CMPs anticipated in the future. Finally, in Appendix A, we give an overview of the cache

coherence protocol used in this thesis.

1.8 Glossary

To facilitate the discussion in the rest of this thesis, we use the following abbreviated terms

to describe the various architectures or systems presented in this thesis.

1. Unicore Architecture: A microprocessor architecture with only one core on chip. Most

existing microprocessors belong to this category.
2. Uniprocessors: Synonymous with unicore architecture.

3. Multicore Architecture: A microprocessor with a moderate number (more than one)

of cores. All of today’s CMP architectures belong to this category.

4. Manycore Architecture: A microprocessor architecture with a large number of cores

on-chip. We anticipate to see these architectures in the future.

5. CMP: Single-chip multiprocessors. Synonymous to multicore or manycore architec-
tures. In this thesis we only consider symmetric CMPs, i.e., all cores are functionally

identical.

6. Multi-chip Multiprocessor systems: A system that consists of multiple uniprocessors.

Earlier multiprocessor systems all belong to this category.

27

7. Multi-chip CMP systems: A system that consists of multiple CMPs, such as the AMD

Opteron system.

8. Wide Superscalars: We collectively call advanced unicore microprocessors with wide
issue width, deep pipeline and sophisticated microarchitectural features “wide super-
scalars”. Examples include the Intel Pentium 4 and the Alpha 21264.

28

Chapter 2
Multiprocessing Background

Chip multiprocessors are closely related to earlier multi-chip multiprocessor systems. In
this chapter, we discuss the similarities and differences between these two systems by re-
viewing some basics of the multi-chip multiprocessor systems, including cache coherence,
an important and necessary component in both systems. Moreover, we discuss non-uniform
memory accesses and present related work in latency-reduction for memory data accesses
in multi-chip systems [Bur92, HLH92, ACJ*99, LLGT92, KOH94, GW94, Cor91a, Inc93,
Cor93, Cor91b, CYS*93]. While these earlier techniques target multi-chip system memory
accesses, future CMPs will present similar problems due to their NUCA memory systems.
Thus, understanding these techniques can help us to devise appropriate latency-reduction
techniques for CMP NUCA caches.

2.1 Multi-Chip Multiprocessor Systems

Traditionally, multiprocessor systems have been primarily used to run server and scientific
workloads. They are constructed by interconnecting multiple uniprocessors and DRAM
modules. Compared to uniprocessors, a multi-chip system is capable of delivering comput-
ing power that is several magnitudes higher. However, these workloads must be carefully
written and tuned to contain a high degree of thread-level parallelism that can be efficiently

exploited by a multiprocessor.

2.1.1 Multiprocessor Memory Hierarchy Layout

The design and performance of the memory system directly affects the overall system.
Figure 2-1 shows three alternatives, differing in the way they each store and access data.
Figure 2-1(a) shows a physically centralized memory shared by all of the processors, inter-
connected through a shared bus. While this approach is simple, it can only be applied when
the number of processors in the system is small. Larger multi-chip systems generally have

hundreds of processors and the bandwidth of a physically centralized memory system does

29

Core Core Core Core
o 00
Cache Cache Cache Cache

I nter connection Networ k
|

DRAM

r
"

(a) Physically Centralized Memory

Core Core Core
[I N |
Cache Cache Cache

| nter connection Networ

k |
DRAM(| @ ® ® [IDRAM ‘DRAM

(b) Physically Distributed Shared Memory

| nter connection Networ k
(c) Physically Distributed M essage Passing

Figure 2-1: Distribution schemes for multi-chip multiprocessors. (a) Physically centralized memory:
Used in smaller systems where the centralized memory can be shared by all nodes and provide a
reasonable latency and bandwidth. (b) Physically distributed shared memory system: Used in larger
systems and memory is physically (evenly) distributed to reduce fetch latency and improve memory
bandwidth. For case (a) and (b), a coherence protocol is required to keep cached data coherent.
(c) Physically distributed message passing system: Each memory module is private to its co-located
processor. Software generates explicit messages to transport shared data among different nodes.

30

not scale with the processor count. In these large multi-chip systems, physical memory is
typically distributed across the system, with a portion of the memory co-located with each
processor. A communication protocol is used to manage the exchange of shared data be-
tween different processors. This approach is illustrated in Figure 2-1(b) and Figure 2-1(c).
Traditionally, designers have taken two approaches to implementing a physically distributed

memory system: message passing and distributed shared memory, described below.

2.1.2 Message Passing

From a hardware standpoint, a message passing system is equivalent to a multi-computer
system with many independent computers tightly integrated through a high-bandwidth
interconnect. Each node in the system has its own processor, local cache, and associated
memory module. Each memory module is private to the local node and has its own address
space that cannot be seen by any remote nodes. In order to share data in a message passing
system, the operating system must provide a set of user-level communication primitives
or protocols with send and receive commands. Software must explicitly specify the data
communication among the various processors. Because software handles the complexity of
data sharing in a message-passing system, the underlying hardware becomes straightforward
to build.

The memory-fetch latency in a message passing system is short because the memory is
local to the processor. However, since each send or receive message is handled in software,
the inter-node communication latency is very high. Therefore, message passing systems
work very well for workloads that has little data sharing among threads, because they
require minimal amounts of communication among various nodes. Some early message-
passing systems include the Intel Paragon XP/S [Cor9la] and the CM-5 [Cor91b] from
Thinking Machines. Common message-passing systems today are generally cluster systems

often with custom high-performance interconnect, such as the IBM SP2 clusters.

2.1.3 Distributed Shared Memory

An alternative to message passing is the distributed shared memory (DSM) approach. In
a DSM system, all of the physically distributed memory modules are combined to form a
logically unified address space shared by all nodes. A data block is stored in the memory
module of its home node, which is usually statically determined by its address. Data sharing
among different processors is implicit as each processor simply issues loads and stores to
the unique address of the shared data. Compared to message passing, the shared memory
model removes the need for programmers to explicitly direct the shared data movement in
the system. In addition, multi-threaded programs written for sequential machines can also
be easily ported over to a DSM machine.

Traditionally, DSM systems are often referred to as non-uniform memory access NUMA)

machines, because the latency of a memory access is dependent on the relative locations

31

of the requesting processor and the memory module hosting the requested data. If they
happen to be on the same node, then we refer to the access as a local access. On the other
hand, if they are located on different nodes, we refer to the access as a global access or a
remote access. Global accesses generally take much longer and the exact latency depends
on a number of other factors such as the network latencies and congestion.

Because memory is shared by all nodes in a DSM and each node may choose to cache
shared data locally, care must be taken to ensure that all nodes have a consistent view
of the memory content. Specifically, each load to a memory location must see the value
committed by the last store to the same location. This property is referred to as cache
coherence [CF78]. In the presence of caches, this property can be easily violated because
each processor can store a locally cached copy of the data that may be newer than the
copy stored in memory. DSM systems typically use hardware protocols to ensure cache
coherence, giving the programmer a simple and coherent view of memory from all threads.
Cache coherence is a well-studied field, and we briefly review basic protocols in Section 2.3.
Some early DSM machines include the SGI Challenge [GW94], the Cray T3D [Inc93], and
the KSR-1 [Bur92] from Kendall Square Research.

2.2 CMP Systems versus DSM Systems

The first CMPs closely resemble a tight integration of earlier multi-chip multiprocessor
systems. Figure 2-2 shows a generic physical layout of an eight-node CMP. A centralized
on-chip network ties together eight cores with their small private L1s, and a large shared
outer-level (L2) cache. This type of layout, which we refer to as the “dance-hall” layout, is
quite common among current commercial CMPs, such as the Niagara processor from Sun
Microsystems [KAOO05] and the XLR processor from Raza Electronics [Raz05].

The main difference between an earlier DSM system and a modern CMP system lies in
the communication network. Communication delay between two nodes in a generic DSM
system can take hundreds of cycles because messages travel through an inter-chip network.
Off-chip operations generally are clocked at a fraction of the chip frequency, and are limited
by on-chip pin bandwidth. In a CMP, however, communication between processor cores
travels through an on-chip network, which can deliver much higher bandwidth at lower

latencies, significantly lowering the cost of inter-node communication compared to DSMs.

2.3 Cache Coherence Protocols

Cache coherence makes sure all of the processors in shared-memory systems have consistent
views of the memory, a necessary and important component for program correctness and
performance. A coherence mechanism typically has two components: (1) storage holding

data sharing information; (2) a set of protocols that maintains data coherence using the

32

Corell|Coref Coref| Corell| Corelfff Cor e[ff Cor €| Corel

L1$H L1$ L1$H L1$H L1$ H L1$ L1$H L1$

| | | | | | | |
()

Intra-chip Network

1 1 1 1 1 1 1 1
L2$ || L2$|[L2B || L2B || L2B || L2B || L2% || L2%
Slice|| Slice|| Slice|| Slice|| Slice|| Slice|| Slice|| Slice

L2$||L2S|[L25 || L2B || L2B || L2B || L2F || L2%
Slice|| Slicel[Slice|| Slice|| Slice|| Slice|| Slice|| Slice

L2$ || L2$|[L25 || L2B || L2B || L2B || L2% || L2%
Slice|| Slicel[Slice|| Slice|| Slice|| Slice|| Slice|| Slice

L2$ || L28|[L2% || L2B || L2B || L2B || L2% || L2%
Slice|| Slice|| Slice|| Slice|| Slice|| Slice|| Slice|| Slice

1

DRAM

Figure 2-2: Current CMPs resemble tightly-integrated versions of multi-chip multiprocessor system
of the 1980s. Processor cores are tightly coupled with the L1 caches, and connected by a centralized
high-bandwidth, on-chip communication network to large outer-level caches.

sharing information. Therefore, when a processor accesses a data block, the protocol per-
forms two essential tasks. First, it determines the location and the status of all the cached
copies of the requested block. Second, it updates the status and/or data of these copies
accordingly.

The status of the cached copies of any block is usually kept by attaching state to each
cache data block. The simplest cache coherence protocol categorizes a cache block into one
of three states: (1) the invalid, or the I state, means that the cache block is not holding valid
data. (2) the shared, or the S state, means that the block is shared by one or more processor
caches in the system. Shared blocks can only be read from, but not written to, and the value
held in the block is identical to the copy held in memory. (3) the modified, or the M state,
means that the block is uniquely held. We call this node the owner of the block, and it has
the right to modify. Because the owner may hold newer data than memory, it must write
any evicted cache blocks back to memory. This protocol is commonly referred to as the
three-state MSI protocol. More sophisticated protocols employ additional states to reduce
coherence traffic as well as fetch latency. Two popular protocols are MESI [PP86, AB86]
and MOESI [SS86].

33

Core Core Core Core
e 06 0O

Cache Cache Cache Cache

Snoopy
TAction [Bus Action
v v M)
—

transaction I

j Ii Action I I ’

DRAM DRAM| ©® @ @ |DRAM DRAM

Figure 2-3: Tllustration of a snoopy bus-based protocol. When a coherence transaction message is
placed on the bus, all of the caches and DRAM modules snoop the message, but only the relevant
parties take the appropriate actions.

2.3.1 Bus-based Protocols

Now that we know how to succinctly keep coherence information, we must be able to
retrieve it and take appropriate action. The bus-based approach, a simple technique first
proposed by James Goodman in 1983 [Goo83], uses a snoopy bus shared by all the nodes
in the system. Each node has a cache controller and a memory controller that monitors,
or snoops, the transactions on the bus. The relevant parties involved in a transaction take
appropriate action, as shown in Figure 2-3. This protocol is simple to implement and can be

applied to all multi-chip systems that use a shared bus to connect the nodes in the system.

During a cache load miss, the requesting cache places a load request onto the bus. All
caches and memory modules snoop the request to determine whether they should take any
action. If the requested block is held in a shared state by the memory module at the
home node, the data is placed onto the bus and snooped by the requestor, completing the
transaction. If data is held in a modified state, the owner cache downgrades to a shared
state, and places the modified data onto the bus, which is snooped by both the requestor
and the home node, completing the transaction. Store miss works similarly, except that all

the cached copies of the requested block must be invalidated and written back if dirty.

2.3.2 Directory-Based Protocols

While elegant and simple to implement, the applicability of bus-based protocols is limited
by the system’s ability to provide a fast shared bus. Since the sharing information is kept

at each cache and memory module in a decentralized fashion, all nodes must snoop every

34

Requestor Owner

Core Core Core Core
® 06 0o
Cache Cache Cache Cache
= Scalable =
J I Interconnect I_
(3) Intervention reply
(1) Load request (2) Intervention request
_ J
I U1 I I
e o x x
= — ® 0 0 | — =
a DRAM a DRAM a DRAM a DRAM
. Home
% Node
L »| Modified | 1,0,0,..... |
State Presence vector
(M,S,1) (full-map)

Figure 2-4: Illustration of a directory-based protocol. When a cache miss initiates a coherence
transaction, the request message is sent to its home node (generally determined statically by the
requesting address). The home node holds the directory entry with all of the relevant sharing
information of the requested block.

bus transaction, even when only a small percentage of the nodes in the system are involved
in a particular coherence transaction. Thus, the effectiveness of the coherence protocol
is dictated by the bandwidth and latency of the bus broadcast operation. As the node
count scales up, the broadcast operation will no longer be able to reach all nodes within a

reasonable time.

Directory-based protocols are designed to combat the bandwidth limitation of the bus-
based protocol, by breaking an expensive broadcast into a sequence of point-to-point mes-
sages that only involve the relevant parties in any transaction. Therefore, the protocol no
longer requires all nodes to share a common bus and snoop the transaction, but rather
calls for an interconnection network that can efficiently transport messages among different
nodes. In order to quickly identify the relevant parties in the transaction, the directory-
based approach logically centralizes sharing information into a directory, as shown in Fig-
ure 2-4. The directory is usually co-located with the data block in memory, with one
directory entry corresponding to one memory block. Each directory entry keeps two pieces
of essential information about the block, its state and presence vector. Together they track

the block’s current sharers and their read and write privileges. The simplest presence vector

35

uses one bit for each node in the system, which is commonly referred to as a full-map vector.

Figure 2-4 shows an example of how the directory works. A load request initiated by the
requestor is sent to the home node. Each address is mapped to a home node statically, and
the home node has the directory with the state and the presence vector of the requested
address. In this example, the block is exclusively held by an owner node, thus the home
node sends an intervention message to the owner and request a cache-to-cache transfer. The
owner honors that request by sending the most up-to-date data to the requestor, completing
the transaction.

In the directory-based approach, only the relevant nodes participate in any coherence
transaction, dramatically reducing the on-chip coherence traffic. It can also use fast point-

to-point networks in place of a slower monolithic shared bus.

Managing Directory Size

One challenge in designing a directory-based cache coherence protocol is how to manage
the directory size in systems with high node counts because the area overhead caused by a
full-map directory (one bit per node) can be prohibitively expensive.

The limited directory protocol was proposed by [ASHH88], in which each directory entry
only holds up to a fixed number of sharers. When the actual number of sharers exceeds
the maximum, current sharers are evicted in favor of new sharers. This technique is based
on the observation that on average, only a small fraction of the overall nodes are involved
in any coherence transaction. The limited directory scheme can be extended to allow the
software to emulate a full-map directory protocol [CKA91, ACJ*99].

A chained directory protocol uses a linked list to track all of the sharers [Gus92, JLGS90].
Each sharer points to the next node that has a cached copy of the data, with the directory
entry keeping the head of the list. Such an approach does not incur software emulation
overhead, but has poor invalidation latency because the entire linked list is traversed linearly.

The coarse vectors approach [AGGDO01, LL97, MH94] uses each bit in the presence vector
to point to a set of nodes instead of a single node, even though not all nodes in the set are
necessarily sharers. Compared to the full-map approach, coarse vectors have less precision
and can generate false sharing traffic, but can have much smaller directory size. Readers can

find extensive summaries of various cache coherence schemes in [Ste90, CSG97, SBD197].

2.4 Latency Reduction Techniques for DSM

The performance of DSM systems depends heavily on the memory access latency of the un-
derlying hardware. In this section, we study various latency reduction techniques previously
proposed for DSMs, including prefetching, multi-threading, remote caching, and cache-only
memory architectures (COMA).

36

2.4.1 Prefetching

Prefetching is a mechanism that loads data into the cache or local memory before it is
actually used, anticipating that it will be used in the near future [CKP91, MG91, BC91,
Lee87]. When applied to a DSM, proper prefetching could avoid the long stalls created by
fetching data from far-away memory modules. Software prefetching mechanisms [CKP91,
MG91] are directed by the compiler, using static analysis to strategically embed explicit non-
blocking prefetch instructions in the code sequence. To be effective, the prefetch instructions
must precede far ahead of the data fetch, improving the chance that the data will be in the
cache when it is needed, and reduce cache pollution. Simple hardware prefetching [Smi82]
sequentially fetches the next cache block according to address. More sophisticated hardware
mechanisms try to detect simple address patterns, such as constant strides, and prefetch
accordingly [BC91, Lee87]. Since hardware prefetching guesses which data will be used,

increased remote traffic could become a concern.

2.4.2 Multi-threading

Multi-threading [ALKK90, LGH94] hides long memory access latency by switching among
multiple hardware threads active on each processor. Its success hinges on two important
factors. First, the underlying hardware must support low-overhead multi-threading capa-
bilities with a fast context switch. Second, the workload itself must have favorable data
access patterns among the threads sharing the same cache, so that the context switch does
not thrash the cache content on each node. If there are enough threads waiting, multi-
threading can hide the latency well and yield high throughput. However, multi-threading
cannot reduce the latency each individual thread experiences, and cannot reduce remote
traffic.

2.4.3 NUMA with Remote Cache

NUMA with Remote Cache, or NUMA-RC [ZT97], uses a large block of DRAM at each
node to form a local remote cache. Upon a cache miss to a cache block located in a remote
memory module, the block is brought into both the regular cache and the remote cache
of the requestor. Therefore, the local remote cache is likely to hold the working set of the
local thread over time. All of the blocks in the remote caches are kept coherent by the main

memory directory.

2.4.4 Cache-Only Memory Architectures

Similar to NUMA-RC, cache-only memory architectures, or COMA also use local memory to
hold the working set for the local thread. The main difference between COMA and NUMA-
RC is that in COMA, a data block is not stored at the home node, but rather resides on the

nodes where it is used most often. The local memory is referred to as attraction memory

37

PIR:
(@) — @) o 14 x
: I a Data a Data a Data
® x
DIR |; DIR : @
A T H gz I .
liv I 1l 2 I @ v |®
05: Data ooo% Data % Data ooo% Data % Data na: Data| eee % Data
(a) Hierarchical COMA (b) Flat COMA

Figure 2-5: Illustration of hierarchical and flat COMAs.

because the data block is brought (attracted) into the cache and the local memory of the
requestor. Because a data block in a COMA machine can reside on any node, the process of
locating any given block becomes more complex compared to NUMA-RC. Next, we describe

several different COMA designs that use different localization schemes.

Hierarchical COMA

One of the earliest COMA machines is the data diffusion machine (DDM) introduced
in [HLH92] (Figure 2-5(a)). The DDM uses a tree-like hierarchical approach to locate
a data block. At the root of each subtree, a directory records all the data stored in that
subtree, with the actual nodes and data as the leaves of the tree. Therefore, in order to
locate a block, a traversal of the tree suffices. The requesting nodes initiates the lookup,
traversing upward toward the root of the tree. The upward traversal stops when the request
reaches the subtree root that contains the directory information of the requested block. The
directory information is used to obtain the data within the subtree. Figure 2-5(a) shows an

example in which the information of the requested block is held at the root of tree.

Flat COMA

Since the process of locating a cache block in a hierarchical COMA system is rather complex,
a Flat-COMA architecture [SJG] simplifies this process by storing the location information
of a cache block at its home node, which is statically determined by its address (Figure 2-
5(b)). Each memory access locates the block by consulting the home node. Figure 2-5(b)

shows an example.

Simple COMA

Simple COMA [SWCL95] partitions the task of data management into a software component
and a hardware component. Simple COMAs use the operating system to manage the

data allocation in the attraction memory, and use hardware to manage data coherence.

38

Because data migration is done in software, sophisticated algorithms using software hints
can be used to better direct the data movement around the system. However, the operating
system must move data on a page granularity, thus managing coherence in software would
cause significant overhead because each miss would trigger a page fault. Therefore, data
coherence is left to hardware and performed at a cache block granularity. One concern often
encountered in simple COMA, however, is that spatial locality at page granularity is low,

thus significantly under-utilizing the memory space.

2.4.5 Summary

In this chapter, we reviewed some basics of multi-chip multiprocessor systems. We drew
parallels between DSM and CMP systems, especially between the NUMA and NUCA prop-
erties. In particular, we presented several well-known techniques for memory fetch latency
reductions for NUMA machines. While NUMA and NUCA are similar problems, these
latency reduction techniques cannot be directly applied to CMPs. Specifically, in CC-
NUMAS, the allocation of the local cache between private and shared data only affects the
local node performance because they are private to the node. Furthermore, in CC-NUMAs
and COMAs, remote data is further away than local DRAM, thus it is beneficial to use
local DRAM as remote caches, which is both cheap and does not reduce the local L2 cache

performance.

39

40

Chapter 3

Memory Hierarchy Architecture

and Implementation

In this chapter, we describe the implementation of the baseline private and shared cache
designs introduced in Chapter 1. The designs are instantiated on a specific underlying CMP

organization which we refer to as a Tiled CMP.

3.1 Tiled Single-Chip Multiprocessors

As more and more cores are placed on future CMPs, the bandwidth and latency of the
interconnection network in the “dance-hall” style CMPs will become a bottleneck. We
believe that in the future, on-chip interconnect will move away from a shared bus to a
switched network. CMP designs will naturally evolve toward arrays of replicated tiles
connected over these networks to further reduce the re-design effort of the communication
network. These tiled CMPs scale well to larger processor counts and can easily support
families of products with a varying number of tiles.

In this thesis, we focus on a class of tiled CMPs where each tile contains a proces-
sor with L1 caches, a slice of the .2 cache, and a connection to the on-chip network, as
shown in Figure 3-1. This structure closely resembles a shrunken version of a conventional
mesh-connected multi-chip system. To maintain cache coherence, we use a directory-based
coherence protocol to facilitate scaling to larger node counts. The rest of this chapter uses
the tiled CMP as the baseline design to describe how the private and shared designs are

implemented.

3.2 Basic Assumptions

This section details some basic design assumptions applied to all designs in this thesis. We

assume all CMPs are based on a unit tile replicated in a 2-D mesh configuration, as shown

41

DRAM

Figure 3-1: Tiled CMPs are a subset of CMPs where each tile contains a processor with L1 caches,
a slice of the L2 cache, and a connection to the on-chip network. This structure resembles shrunken
versions of a conventional mesh-connected multi-chip multiprocessor system. A 2D mesh routing
network is used to connect all the tiles in the system. Cache coherence is maintained through a
scalable directory-based protocol.

in Figure 3-1. Each tile contains a processor core, separate L1 instruction and data caches,
a unified L2 cache storage with any associated directory information, and a network switch.

Additional assumptions are as follows:

1. The L1 instruction and data caches are not the focus of this thesis. They are private
to the processor core and are kept small compared to the L2 caches. To provide the

lowest possible latencies, L1 caches are tightly integrated with the processor.

2. The local L2 storage is tightly coupled to the rest of the tile and is accessed with a
fixed latency pipeline. The tag, status, and directory information are kept separate
from the data arrays and close to the processor core and network router for quick tag

resolution.

3. All the caches in our system are non-blocking. A miss buffer is used to store current

42

misses, allowing future requests for different addresses to proceed. Figure 3-2 shows

the data access path in our baseline system.

4. Access to L2 slices on remote tiles travels over the on-chip network and experiences

varying access latencies, depending on the inter-tile distance and network congestion.

5. The on-chip interconnection network used in this thesis is a deterministic wormhole
routed virtual channel network arranged in a 2D mesh. Figure 3-3 shows the router
architecture, which has two physical links per direction (one input channel and one
output channel). Each physical input channel has two virtual channels to avoid dead-
lock.

6. To improve scalability, a directory-based protocol is used as the basis for all the
coherence schemes discussed in this thesis. Each directory entry uses a rudimentary

full-map (one bit per tile) presence vector to keep track of the sharers.

7. A request-reply, invalidate-based, four-state MESI protocol, with reply-forwarding, is
used as the baseline cache coherence protocol, with each design using a minor variant.
More detailed discussion about the protocol features and implementations will be

presented in Section 3.5 and Appendix A.

3.3 Private Design

In the private design shown in Figure 3-4, the processor core uses the local L2 slice as a
private L2 cache. This approach is used by several commercial CMPs, such as the Intel
Montecito [CR05] and AMD’s Opteron [KMACO03].

The operation of the private design is straightforward. When an L1 miss occurs, it is
forwarded to the local private L2 cache, and a hit in the private L2 cache completes the
fetch. The miss scenario is more complicated because the directory entry must be consulted
to maintain data coherence for all of the L2 copies of the requestor data block. Because
each memory block is associated with a directory entry, the directory area overhead of
using a full-map directory can be significant as discussed in Section 2.3.2. Therefore, most
directories are kept in off-chip memory because the area necessary to place them on-chip is
unrealistic.

The main issue in using an off-chip directory is that its access latency is much higher
compared to on-chip communication latencies. This problem has not been severe in multi-
chip multiprocessor systems because most of the time the requested data is also in off-chip
DRAM modules, which must incur a long fetch latency anyway. For a CMP, however, the
difference between on-chip and off-chip latencies is dramatic.

In a naive implementation of the private design, even if a shared data block is present

in the private L2 cache of another tile, the L2 miss is not aware of their presence until it

43

processor L1 cache off-chip
request request request
Pr ocessor q L1 i > L2 » Off-Chip
Core Cache Cache DRAM
CaChEh't,/ cache hit/ DRAM
cache refill 3 cache refill reply
cache cache cache| cache
miss refill miss refill
A 4
L1 Cache L2 Cache
Miss Buffer ¢ Miss Buffer

Figure 3-2: The access path of the non-blocking two-level cache hierarchy used in this thesis.
Each cache miss, writeback request, or explicit drop request is kept in a miss buffer to allow future
accesses to proceed. Misses to the same address are merged into a single entry in the miss buffer
when appropriate. Future misses to different addresses are not blocked as long as there is an available
entry in the miss buffer.

Input Channel North A Output Channel North

Input Channel Local I:%j %
Output Channel Local <——I
v v

Input Channel West (I::]]%_:D | le] 0:%:]) Input Channel East

Output Channel West <« » Output Channel East

(1T

Input Channel South Y Output Channel South

Figure 3-3: A two-dimensional mesh router with two physical channels per direction and two virtual
channels per physical channel.

44

Networ k Networ k
Router Router
Core L1$ Core L1$
J — biki
Dir Dir
L2$ L2% L2$ L2$
Data Slice Tag (.P:g‘;' Data Slice Tag (.IE_):;'
bk i blk i
Tile2 r \ Tile3 r
Networ k Networ k
Router Router
Core L1$ Core L1$
—/
Dir Dir
L2$ L2$ L2$ L2$
Data Slice Tag ('Il?aug';. Data Slice Tag ('II?:Q;)).
= blk i =]
AN
TileO Tilel
(HomeTile)
Local Tile
CacheHierarchy
with private L2 cache
Hometile select (2-bit)
Block i Address: | Tag | Index | Offset |

Figure 3-4: In a private design, each processor core treats its local L2 slice as a private L2 cache.
Shared data must be copied to the private L2 caches of all the sharers. Thus, data coherence must
be maintained among all L2 caches.

45

Reply of bik i

Network Network Network Network
Router Router Router Router
Core | L1$ Core | L1$ Core | L1$ Core| L1$
y T A
L2$ L2$ L2% L2$ L2$ L2$ L2% L2$
Data Slice | Tag Data Slice | Tag Data Slice | Tag Data Slice | Tag
—— blki —— blki

Request for blk i Vl Request for reply-forwarding of blk i

Request for blk i Reply for blk i)
| Coherence Directory Cache

‘ Chip Boundary ; Chip Boundary

Coherence Coherence

Directory DRAM Directory DRAM
(a) Naive implementation of directory- (b) On-chip directory cache is used
based coherence for private design to avoid long access latency of off-
with off-chip coherence directory chip coherence directory

Figure 3-5: (a) A naive implementation that places the directory in off-chip DRAM can suffer
significant performance degradation as each coherence transaction involves at least one off-chip
access, even if the actual data is on chip. (b) Using a directory cache can significantly reduce the
access latencies to the directory entries stored in off-chip DRAM by keeping the directories of the
most recently used blocks.

Regular Tag Array TileO Regular Tag Array Tile1l
tile0, set 0 tilel,set 0
tileO, set 1 tilel, set 1
tile O, set 2 tilel, set 2
tileO, set 3 tilel, set 3
Duplicated Tag Array Duplicated Tag Array
tileO, set 0 tilel, set 0 tileO, set 1 tilel, set 1
tile O, set 2 tilel, set 2 % > tile O, set 3 tiled, set 3
©
= 7y
s
§' Home Select
AddressA: Tag | 1 | 1 | offsetl

{

Index

Figure 3-6: Example of using duplicated L2 cache tags to implement an cache coherence directory.
Fach L2 tag is duplicated and stored at its home node, determined statically by address. Directory
information is deduced from the collection of the L2 tags.

46

D Not on chip

Duplicated L2 Tag Array at the Home Tile for Cache Set “S” Shared by Tiles 0 and 1
Duplicated Tags of Tile 0: | shared | A |Exclusie] B | shared | ¢ | invaiid | nA | Owned by Tile 0
-C Shared by Tile 0
Duplicated Tags of Tile 1: | invalid | N/A | shared | A | invalid | NA |Exclusive] E | [c]

Owned by Tile 1

(a) Deducing directory information from duplicated tag array

Requestor Requestor

Core| L1$ Core| L1$

(1) Fetch request: replacement
way is chosen and used by the

(1) Fetch request home tile and the requestor

(2) Fetch reply
(replacement
way chosen)

2) Fetch reply

Home Tile Home Tile

(b) Normal way allocation takes place (c) Way allocation in the private design
when the reply reach the requestor takes place when the fetch request is issued

Figure 3-7: Examples of the duplicated-tag directory for the private design.

accesses the off-chip memory, e.g., block i shown in Figure 3-5(a). Using an on-chip directory
cache is one approach to reduce off-chip directory lookups by keeping an small subset of
the entries on-chip, as shown in Figure 3-5(b). Directory caches are simple to implement
and can be very effective, depending on the data access patterns of the cache. However,
in our simulations, using a directory cache did not lead to a high enough hit rate for our
benchmark suite. Thus, we opted to implement a duplicated-tag directory scheme, which

can be placed on-chip with a moderate area requirement.

3.3.1 Duplicated-Tag Directory Implementation

The goal of the duplicated-tag directory is to keep the directory entries of all the cached L2
blocks on-chip. The directory entries are held as a duplicate set of L2 tags distributed across
tiles by address [BGM™*00]. For each processor accessing a particular cache block, a copy
of the block must be resident in its private L2 cache, such as block i shown in Figure 3-4.
In addition, an on-chip directory holding an entry for block i is stored at block i’s home tile,
statically determined by the home select bits of the address, which in our case, is the lower

bits of the cache index form the home select.

47

Directory Usage

Figure 3-6 shows a simplified two-tile example of how this scheme works. In this example,
each tile has a direct-mapped L2 cache with four cache blocks. We use the home select bits
to find A’s home tile and determine A’s status on-chip. The remaining bits of the index are
used to find the duplicated tag entry corresponding to A in the directory on the home tile.
This entry stores the duplicates of all L2 tags in the cache set that A maps to from all the
tiles. In this example, A maps to set 3, and the duplicated tag entry has the L2 tags of set 3
from both tile 0 and tile 1. With these tags, we can easily deduce the directory information
of A. Therefore, we have constructed a perfect directory for all of the data currently cached
on chip. Figure 3-7(a) shows an example of a two-tile system and how the state and sharing
information of data blocks A to E can be deduced.

The main drawback of this approach is the area overhead, which we will discuss in
Chapter 6. Cache-to-cache transfers are used to reduce off-chip requests for local L2 misses,
but these operations require three-way communication between the requesting tile, the
directory tile, and the owner tile. This operation is more costly than hits to global locations
in a shared design, where a three-way cache-to-cache transfer only occurs if the block is held

in the exclusive state.

Directory Maintenance

One complexity in maintaining the duplicated-tag directory is that the tags in the directory
must be identical to the actual L2 tags they shadow, or the directory would encode the
wrong sharing information. Therefore, each time the tag changes, the directory must also
be updated.

Normally, way allocation and any necessary writebacks in each cache set are done when
the requested data reaches the requesting tile, as shown in Figure 3-7(b). In the private
design, however, the L2 cache of the requestor and the directory on the home tile must agree
to use the same way for each refill data block. Therefore, we choose to select a way to refill
into (and necessary writebacks) and send that information to the home tile at request time.
When the requested data is returned, the directory has already updated the tag information

using the replacement way agreed upon to reflect the most up-to-date sharing information.

3.4 Shared Design

In the shared design, all of the L2 slices are managed as a single shared L2 cache with
addresses interleaved across slices. The shared design is used by a number of commercial
CMPs, such as IBM’s Power series [TDJ"02], Sun Microsystems’ Niagara [Kre04b], and
Raza Electronics’s XLR series [Raz05].

Figure 3-8 shows the implementation in detail for our tiled CMP. On-chip L2 storage is

split evenly among all tiles but logically forms one large cache. On an L1 cache miss, the

48

Networ k
Router
Core L1$ Core L1$
= biki [blki
L2$ L2$ L2$ | L2
Data Slice Data Slice Tag Dir.
Tile2 Tile3
Networ k Networ k
Router Router
Core L1$ Core L1$
_J
L2$ L2$
Data Slice Data Slice
blk i
AN
TileO Tilel
(HomeTTile)
A dlice of
globally shared
L2 Cache _ _
Hometile select (2-hit)
Block i Address: | Tag | Index | Offset |

Figure 3-8: In a shared L2 design, all of the on-chip L2 slices are aggregated to form a single large
logical L2 cache. Each L1 cache miss must travel to the home node of requested block to access the
data. Data coherence is maintained for all the L1 sharers.

49

fetch request is forwarded to the requested block’s home tile, which could be either local or
remote. Latency to the L2 slice varies according to network congestion and the number of

network hops between the requesting processor and the home tile.

On-chip Directory Implementation

Because multiple L1 caches can hold the same shared data, coherence must be kept among
all the L1s. Coherence protocol is much simpler to implement in the shared design because
we know which cache blocks are currently on-chip. We add additional directory bits to each
L2 block, to keep track of which tiles have remote copies. For a design with N processor
cores, this approach adds an N-bit sharing vector to each L2 cache block. The overhead
of the sharing vector will grow as the processor count grows, but a number of previously

proposed techniques, discussed in Chapter 2, could be used to reduce directory overhead.

3.5 Cache Coherence

In this section, we briefly describe the baseline cache coherence protocol used for all cache
designs in this thesis. We use a four-state MESI protocol first introduced by Paramarcos and
Patel [PP86, AB86]. Each directory entry uses a full-map presence vector to store sharing
information. The details of the protocol are included in Appendix A. In this section, we

simply highlight some protocol properties and features, summarized in the following:

e The protocol is non-blocking. A negative acknowledgment (NACK) is used as reply
if the home tile cannot service the request. A NACK’ed request must be retried by

the original requestor.

e The protocol does not assume any network ordering of its message delivery. Coherence

messages can be reordered or delayed arbitrarily.

e The protocol requires explicit drops of all clean cache blocks, i.e., the directory must

be informed when a clean cache block is evicted from the local cache.

e The protocol dynamically backs off requests in a race condition to avoid starvation of

any of the requestors.

e The protocol acknowledges all explicit drops and writeback requests.

3.6 Summary

Private Design Recap

The private design has low L2 hit latency, as the L2 is physically co-located with the

processor core and has much smaller area than a shared cache. This design provides good

50

performance when the working set fits within the local L2 slice. Its main disadvantage is that
effective on-chip cache capacity is reduced for shared data because each core must retain
its own copy of any shared data block. Furthermore, the fixed partitioning of resources
does not allow a thread with a larger working set to “borrow” L2 capacity from the private

caches of other processors hosting threads with smaller working sets.

Shared Design Recap

The shared design minimizes the off-chip miss rate for large shared working sets, as only
a single on-chip copy is required for any shared data. However, two significant drawbacks
may reduce the effectiveness of the shared design. First, large shared L2s will have worse
access latency than a small private L2 even when each physical L2 slice is optimally sized for
access latency. This is due to the increasing global wire delay that makes transferring data
across chip expensive. Second, the associativity of the L2 cache needs to be high enough
to accommodate the number of on-chip threads. Otherwise, we may suffer from inter-
thread cache conflicts, especially for applications that have little sharing. As more tiles are
anticipated in future systems, the off-chip misses caused by the inter-thread conflicts may

outweigh the savings from increased capacity.

51

52

Chapter 4

CMP Latency Reduction

Techniques

In Chapter 3, we introduced two baseline 1.2 cache designs. First, a private design dedicates
a slice of the on-chip L2 cache storage as a private L2 cache for each processor core. Second, a
shared design aggregates all the on-chip L2 cache capacity to form a single L2 cache shared
by all the processor cores. These two designs illustrate the trade-offs between two key
components that control effective memory access latency, namely, on-chip access latency

and off-chip miss rate. Figure 4-1 shows this trade-off.

4.1 Hybrid Designs

Each workload has specific characteristics that could lead to considerably better perfor-
mance with either a private or a shared design. Furthermore, each workload itself may be
divided into several distinct program phases that call for different designs. This intuition
has been shown by many recent studies [HKS*05, CPV05]. In Chapter 6, our results also
confirm this hypothesis.

This observation is the chief motivation to develop hybrid cache system architectures
that retain the advantages of both private and shared designs. The main design goal of
any hybrid design is to achieve lower off-chip miss rate than the private design and lower
on-chip access latency than the shared design, as shown in Figure 4-1.

In this thesis, we present two hybrid designs, victim replication (VR) and victim migra-
tion (VM) that try to reduce both on-chip access latencies and off-chip miss rates to yield
better performance than either private or shared design. Both victim replication and victim
migration are based on the shared design. We show that by using victim replication, we
can trade a small increase in the off-chip miss rate for significantly reduced on-chip fetch
latency. Victim migration has a slightly higher area overhead than victim replication but

is more flexible and can fully mimic the behavior of the private design, and is particularly

53

High on-chip ﬁ Pure shared design
access latency

Hybrid designs

Design 2 Design 1

@<
Low on-chip o \I Pure private design

accesslatency | Optimal design

>

Low off-chip High off-chip
miss rate miss rate

Figure 4-1: The trade-offs between two conflicting goals in designing a hybrid on-chip cache archi-
tecture: off-chip miss rate and on-chip fetch latency.

well-suited for multi-programmed workloads.

4.2 Overall Design Approach

Before explaining our hybrid designs in detail, we first discuss how we approach designing
a hybrid layout in a CMP cache system that combines the advantage of the private and the

shared designs.

4.2.1 Improving the Bottomlines

Figure 4-2 shows a generic four node CMP, with each node having a slice of the L2 cache
space. Depending on whether we use the private or the shared design, each cache block
falls into one of three categories: (1) an unshared (private) block, where the host node is
the only user of this cache block; (2) a global shared block in its statically mapped home
location; and (3) a replicated shared block, where each sharer replicates a copy in its local
cache slice.

With a pure private design, a cache slice can contain either private blocks or replicated
shared blocks, but not global shared blocks. However, introducing shared global blocks into
a pure private design can be beneficial. First, if the capacity in a particular cache slice is
not fully utilized, the unused space can store shared global blocks for other nodes, creating
a limited form of cache capacity stealing to reduce the off-chip miss rate. Second, if the

working set does not fit into the local cache slice, we can increase the effective on-chip cache

54

core0 core 1 core2 core3 .

Private Data

Shared Data

Replicated
Shared Data

Figure 4-2: Tllustration of the hybrid design approach. Three different types of blocks can be
present in a hybrid design: private blocks, global shared blocks, and replicated shared blocks.

capacity by replacing some replicated shared blocks with global shared blocks. While fewer
replicated shared blocks can lead to more cross-chip fetches, the increased on-chip capacity
can reduce costly off-chip misses, creating an overall performance gain.

With a pure shared design, each cache slice contains only global shared blocks. Allowing
replicated shared blocks in a pure shared design can also be helpful. First, if the capacity
of a slice is not saturated, the unused space could store replicated cache blocks local to
that node, turning some long cross-chip fetches into local ones. Second, if an often accessed
block is in a distant location from its requestor, allowing the requestor to having a local
copy of the block could significantly improve overall fetch latency, even if this means that
another global shared block must be evicted in order to accommodate this replicated block.

Therefore, a hybrid design allowing all three types of blocks to co-exist can potentially
perform better than both the private and the shared designs. In creating such a hybrid
design, we must first craft a mechanism that allows the caches to be divided into two
partitions, a shared partition holding global shared blocks, and a private partition holding
private and replicated shared blocks. Moreover, we must also devise management policies
to solve two problems, namely, how to determine what is the right division between the
two partitions, and what data to place in which partition. Victim replication and victim
migration use similar partition mechanisms, and each details a set of management policies

that achieve superior cache performance than both the private and the shared designs.

4.2.2 Design Criteria

Besides achieving good performance, our hybrid designs also have several other highly de-

sirable properties. They are summarized in the following:

1. Simplicity: These designs do not introduce significant additional complexity or over-

head to the baseline system.

55

2. Flexibility: As we will show in later chapters, certain workloads prefer either a pure
shared design or a pure private design. These hybrid designs are highly adaptive to
closely mimic the behavior of these two baseline designs and avoid significant perfor-

mance degradation from each baseline.

3. Robustness: These hybrid designs work very well across a wide range of workloads
and do not show significant performance degradation for any particular type of work-
load. Specifically, we devised victim migration to work better for multi-programmed

workloads than victim replication.

4. On-Line: These hybrid designs dynamically adjust to suit each individual execution
phase within each benchmark. Several proposed static designs use profiling informa-
tion to determine the best suited hybrid design. However, many workloads display

clear execution phases that may call for different designs during the execution.

4.3 Victim Replication

Victim replication is a simple hybrid approach based on the shared design. Its main idea is
to use the local L2 cache slice to capture some of the evictions from the local L1 cache. Each
retained victim is a local L2 replica of a block that already exists in the L2 cache at the
remote home tile. This idea is shown in Figure 4-3. A significant number of future accesses
will hit in the capacity victim replicas, thus providing short fetch latency by efficiently

creating a local victim cache in the L2 slice.

4.3.1 Mechanisms

When a processor request misses in the shared L2 cache, a cache block is brought in from
memory and placed in the on-chip L2 at its home tile, just as in the shared design. The
requested block is also forwarded to the L1 cache of the requesting processor. If the block’s
residency in the L1 cache is terminated because of an incoming invalidation request, we
simply follow the usual protocol of the shared design and invalidate the L1 cache copy. If
an L1 cache block is evicted because of a conflict or capacity miss, we attempt to keep a
copy of the victim block in the local L2 slice to reduce subsequent access latency to the
same block. In some instances, we may choose not to replicate the victim, as described
below.

All primary cache misses must now first check the local L2 tag array in case there is a
valid local replica. On a replica miss, the request is forwarded to the home tile following
standard protocol. On a replica hit, the replica is invalidated in the local L2 slice and moved
into the L1 cache, completing the request. When a downgrade or invalidation request is
received from the home tile, the L2 tag array must also be checked in addition to the L1

cache tag array to maintain coherence.

56

Replica created
at eviction time
by storing a

local copy in the
shared L2 space

Networ k

Core L1$ Core L1$
blki [~ blki
L2$ L2$
Data Slice Data Slice
blki
Tile2 Tile3
Network Networ k
Router Router
Core L1$ Core L1$
—
Hometileis
o '-2;, o ng not aware of
ata Slice ata Slice thereplica
— biki
TileO Tilel
(Home Tile)
A diceof
globally shared
L2 Cache

Home tile select (2-bit)

Block i Address: |

Tag

Index

Offset |

Figure 4-3: Victim replication is a simple hybrid design that combines the large capacity of the
shared design with the low hit latency of private design. Victim replication is based on the shared
design, but in addition tries to capture evictions from the local L1 cache in the local L2 slice, such
as the L2 copy of block i captured by Tile 2. Each retained victim is a local L2 replica of a block
that already exists in the L2 of the remote home tile.

o7

| Priority | Target Block Type | Action

L2 Cache Refill Policy
1 Invalid block Refill
Unshared global block If dirty, write back to DRAM, then refill
Replica block Writeback to home node, then refill
3 Shared global block Invalidate all sharers, write back if dirty, then refill
L1 Cache Eviction Policy
1 Invalid block Replace with replica
Unshared global block If dirty, write back to DRAM, then replace with replica
Replica block Writeback to home node, then replace with new replica

Table 4.1: Cache management policies for victim replication. Blocks are chosen in descending order
according to their priority and blocks with the same priorities are chosen at random.

4.3.2 Management Policies

A naive approach would be to create a replica for all L1 cache victims, but L2 slice capacity
is shared between victim replicas and global L2 blocks, i.e., each cache set can contain
any combination of replicas and global blocks. By keeping the victim replicas, we are also
reducing the storage capacity for global blocks. Therefore, victim replication will have less
overall on-chip L2 capacity than a pure shared design. But by creating replicas, a fraction
of the L2 hits can now be serviced by these replicas, thus avoiding longer cross-chip fetches.
Therefore, an important task in managing replica creation is to not evict a global shared
block if it is potentially more useful than the replica itself.

We choose to use the sharing information of a block to evaluate its current usefulness. If a
global shared cache block is currently shared by another node, we deem it useful. Conversely,
if a global shared block is not used by anyone, i.e., has no sharers, it is considered less useful
and can be evicted to make room for a replica. This observation forms the basis for both

victim replication and victim migration.

In the following, we detail our heuristics to efficiently manage the on-chip cache capacity.
Specifically, we discuss two policies to manage way replacement in a cache set. First, the
L2 refill policy determines where to place a cache block when the L2 receives a reply for
an L2 miss from off-chip memory. Second, the L1 eviction policy determines whether to
replicate, and if so, where to keep an L1 victim in the local L2 slice. Table 4.1 summarizes

the policies.

With victim replication, there can be four types of cache block that live in a cache set:
(1) an invalid block; (2) a replica block; (3) a global block that currently has L1 sharers; and
(4) a global block that currently does not have any L1 sharers. The management policies
describe the process used to choose from these four types of blocks when looking for a space

to store either an off-chip memory refill or a replica.

58

L2 Refill Policy

The L2 refill policy looks to replace the following three classes of blocks in descending
priority order: (1) an invalid block; (2) a global block with no sharers or an existing replica

block; and (3) a global block with active remote sharers.

L1 Eviction Policy

The L1 eviction policy is similar to the L2 refill policy. However, the key observation here is
that we never want to evict a global block with remote L1 sharers in favor of a local replica,
as an actively cached global block is likely to be in the current working set. Therefore, the
L1 eviction policy will replace the following two classes of cache blocks in the target set in
descending priority order: (1) an invalid block; and (2) a global block with no sharers or
an existing replica block. If no blocks belong to any of these two categories, a replica is not
made and the victim is evicted from the tile similar to the baseline shared design. Finally,
victim replication never creates a victim replica when the home tile happens to be local.
Traditionally in uniprocessors, the replacement policies utilize some form of time-base
information, such as LRU. In our simulations, however, we have found that utilizing time-
based information did not particularly help with miss rates for the L2 cache. We believe this
is because the view of recency from local L2 accesses is not an accurate description of access
patterns of the processor. For example, a heavily accessed block in L1 will not generate any
local L2 traffic, but it should not be evicted from the L2 cache. Thus, if multiple blocks are

available in each category, we simply choose one at random.

4.3.3 Implementation Overhead

Victim replication has a small area overhead over the shared design because the L2 tag must
be wide enough to hold physical addresses from any tile. Thus the tag width becomes the
same as the private design as shown in Figure 4-4. Global L2 blocks redundantly set these
bits to the address index of the home tile. Replicas of remote blocks can be distinguished

from regular L2 blocks as their additional tag bits do not match the local tile index.

4.4 Victim Migration

The main limitation of victim replication is that for each shared cache block, a copy must
also be present in the L2 cache of its home tile. For multi-threaded applications with a
reasonable amount of sharing among threads, this overhead is small. However, for multi-
programmed workloads, this data duplication significantly reduces on-chip capacity because
the sharing among the different threads is minimal. For these workloads, we expect a pure

private design will usually outperform victim replication.

59

Address format:

Tag Cache Slice Index Tile Select Offset
Shared Design Tag: Tag
Victim Replication Tag: Tag Tile Select
Log(N) bits

N = Number of Tiles

Figure 4-4: The tag width in victim replication is wider than the shared design by lg(IN) bits,
where NV is the number of tiles in the system. The extra bits are used to distinguish the actual home
tile of the address.

Because multi-programmed workloads are expected to be an important component of
the workload seen by future systems, we devised victim migration to combat this data
duplication problem. Victim migration uses the replication idea, but is more flexible and
can dynamically mimic the behavior of a pure private design. Figure 4-5 shows its cache
hierarchy arrangement. Each L2 cache consists of a tag array, a data array, and directory
bits, similar to the shared design. In addition, each L2 cache also has an extra tag array,
which we refer to as the VM tag array. To simplify the initial discussion, we assume that
the size and associativity of the VM tag array is identical to that of the regular L2 tag

array.

4.4.1 Mechanisms

In victim migration, each cache block is held in one of two forms. First, it can be managed
exactly like the shared design. Second, if the block is being actively shared by another tile,
either as a regular L1 cache block or as an L2 replica, the L2 cache may choose to store
only its tag but no data in the VM tag array. By doing so, victim migration removes the
unnecessary duplication of data at the home tile, freeing up data array space to hold more
replicas or other global blocks. The only added complexity is that both regular and VM
tag arrays must be searched during a data fetch. If a hit is found in the VM tag array, the

request is satisfied through a three-way cache-to-cache transfer.

4.4.2 Management Policies

We again provide a set of heuristics to efficiently manage the cache on-chip capacity. Specif-
ically, we discuss three policies. The L2 refill policy and the L1 eviction policy used in victim
replication must be retooled to take advantage of the VM tag array. In addition, if the local

L2 slice decides not to replicate an L1 victim and sends it back to the home tile, or if a

60

Networ k
Router

Victimreplicasare
created asin victim
replication

blk i
—

Data Slice | Tag

Networ k
blkj Router
Core L1$
bk i
blk j

L2$ L2$ | L2S}] VM
Data Slice| Tag | Dir. Tag

Tile3 7

Tile2 (

Networ k
Router

Tile 0 only stores

the directory and
tag information of
blk j, no actual
dataisstoredin the
data array

i |

blk j
L2$ |L2S 1 VM
Data Slice| Tag | Dir. § Tag

TileO
(Home Tilefor Block j)

Home tile select (2-bit)
Blocck j Address:
I Tag, I I ndex; I Offset; I

Network
Router

A

L2$ L2s L2 v™
Data Slice | Tag | Dir. Tag
blk i

Tilel
(Home Tilefor Block i)

Hometile select (2-bit)

Blocck i Address:

| Tag; | Index;

| offset; |

Figure 4-5: Victim migration is based on victim replication but more flexible. By using the VM
tag array, victim migration removes the unnecessary duplication of data at the home tile, freeing up
space to hold more replicas or other global blocks. If a hit is found in the VM tag array, the request
is satisfied through three-way cache-to-cache transfers using reply-forwarding.

61

| Priority | Target Block Type(s) | Action
L2 Cache Refill Policy

1 Invalid block in main array | Refill
Invalid block in VM array | Refill

2 Unshared global block If dirty, write back to DRAM, then refill
Replica block Writeback to home node, then refill

3 Shared global block Invalidate all sharers, write back if dirty, then refill

L1 Cache Eviction Policy

1 Invalid block in VM array | Move global shared block’s tag into the invalid space in
and global shared block in | VM tag array. Then overwrite the global share block
main array with the L1 victim replica.

2 Unshared global block If dirty, write back to DRAM, then replace with replica
Replica block Writeback to home node, then replace with new replica

Remote Tile Writeback Policy

1 Shared global block Swap tags with VM tag entry, overwrite the data with

the remote tile writeback data.

2 Invalid block in VM array | Move global shared block’s tag into the invalid space in
and global shared block in | VM tag array. Then overwrite the global share block
main array with the remote tile writeback data.

3 Unshared global block If dirty, write back to DRAM, then replace with remote

tile writeback data
Replica block Writeback to home node, then replace with remote tile
writeback data.

Table 4.2: Cache management policies for victim migration. Blocks are chosen in descending order
according to their priority and blocks with the same priorities are chosen at random.

replica is evicted, the remote tile writeback policy is used to determine where to place the

data if it is held in the duplicated tags. Table 4.2 summarizes the policies.

L2 Refill Policy

The L2 refill policy replaces the following three classes of blocks in descending priority order:
(1) an invalid block, either in the main tag and data array or in the VM tag array; (2) a
global block with no sharers or an existing replica block; and (3) a global block with active

remote sharers.

L1 Eviction Policy

The L1 eviction policy determines whether to replicate an L1 victim, and if so, where to
hold it in the local L2 slice. We first simultaneously search for an invalid VM tag and an
actively shared block in the regular tag array. If both exist, the tag of the actively shared
block can be moved to the invalid VM tag entry without losing information. The L1 victim
can safely overwrite the shared block’s local data. As no data is evicted from the local L2
cache, this operation should not cause performance degradation. The only minor effect may
come from the possibly longer hit latency required to perform a three-way cache-to-cache

transfer when a remote request hits in the VM tag array and the block was previously stored

62

in the regular tag array.
If the above scenario is not possible and we must evict a valid block, we look to replace
either a global block with no L1 sharers or an existing replica block. If neither of the two

exist, we do not replicate the L1 victim. This approach is the same as victim replication.

Remote Tile Writeback Policy

This policy is used whenever a tile has to evict a block back to the home node, either from
its primary cache when no replica can be created, or from the victim replicas when they are
evicted. At the home tile, if the block is already held in the regular tag and data array, we
perform a conventional update. If the tag is held in VM tag array and another tile still has
a copy of the data, we simply update the directory information in the VM tag. However, if
the last on-chip copy of a cache block is sent home and its tag is kept in the VM tag array,
we must decide if and where to keep this unique copy.

We first look for an actively shared global block, which currently does not need the data
array space. This global block can be swapped with the remote writeback. If we can find
such a swap, no data is evicted from the chip.

If this scenario is not possible, we use the approach outlined in the L1 eviction policy
to look for unowned blocks or replica blocks to replace. If a replica is replaced, there can
be a ripple effect as the evicted replica is written back to its own home tile.

If no unowned blocks or replicas are found, we again choose not to evict actively shared
blocks as they are likely to be in the active working set. In this case, the remote tile

writeback is evicted from the chip and written back to memory if necessary.

4.4.3 Implementation Overhead

The main drawback of victim migration is its area overhead. First, because victim migration
builds upon victim replication, its tag width must be that of the private design. In addition,
the VM tag array also keeps the L2 tag and L1 sharing information, which can incur a
costly area overhead. In Chapter 6, we will show that the size of the VM tag array can be
reduced to to one fourth of the regular L2 tag array size and still achieve reasonable latency
reduction. The overall area used by such a design is smaller than the private design. This
is because the private design must also use duplicated set of L2 tag arrays to implement

the on-chip directory, incurring a significant area overhead.

4.5 Related Work

A number of proposals seek to reduce the effective access latency of a large shared cache by
adopting a non-uniform cache access (NUCA) architecture. NUCA [KBK02] designs allow
access latency to vary depending on the relative placement of the processor and L2 slice

containing the data. Dynamic NUCA designs have been proposed for uniprocessors [KBK02,

63

LafLe Lafce
eoe 1$/0$| cpu [[U's.b$] cpu z
®)
5 o8
eeooe O]
CPU
— &
O = 2
- @)
o 00
& I8
@] N
<& |llLifLa LifL1
eee = [|U'slps| cpu ||'slp$] cpu
@

(a) Datamigration in uniprocessor: D- NUCA. (b) Datamigration in chip multiprocessor.
Source: Kim et. al. ASPLOS-X, 2002. Source: Beckmann et. al. MI CRO-37, 2004.

Figure 4-6: Examples of data migration. FEach rectangle represents a cache slice, with the
darker squares representing rectangles slices that are accessed more frequently. Figure(a) shows
D-NUCA [KBKO02], a scheme that dynamically moves the more frequently used data to the closer
slices to the processor core. Figure(b) shows a data migration study conducted in [BW04] on a
CMP. The study shows that data migration might not work well as shared data tend to migrate to
locations equidistant to all sharers. In the configuration shown here, all shared data moves to the
center of the chip.

CPVO03], where frequently-accessed cache blocks gradually migrate closer to the processor.
Figure 4-6(a) shows this approach taken by [KBKO02]. These schemes are considerably more
complicated when applied to CMPs with the “dance-hall” configurations [BW04, CPV05,
HKS05] discussed in Chapter 3. They require some form of duplicated L2 tag array kept
local to each processor to reduce the number of slices that must be searched to locate an
on-chip block. Further, all such local tag arrays must be kept consistent with any block
migration triggered by a remote processor, imposing additional serialization constraints on
otherwise independent cache accesses [BW04, CPV05, HKS105].

Data migration techniques [KBK02, CPV03] discussed in the introduction could have
poor performance when applied to tiled CMPs because a given .2 block may be repeat-
edly accessed by processor cores at opposite corners of the die. A recent study [BWO04]
investigates the behavior of block migration in CMPs using a variant of D-NUCA, but the
proposed protocol is complex and relies on a “smart search” algorithm for which no practi-
cal implementation is given. The benefits are also limited by the tendency for shared data

to migrate to the center of the die. This phenomenon is shown in Figure 4-6(b).

Several proposals advocate data replication [CPV05, SSZR05], which allow sharers to
replicate local copies of shared data for fast access. CMP-NuRAPID [CPVO05] extends
NuRAPID to support data replication for CMPs based on a snooping coherence protocol.

64

The actual implementation, however, is complex and incurs a large area overhead. In the
baseline IBM Power4 scheme [TDJ*02], each node has a non-inclusive L3 cache that stores
the local L2 victims. However, while L3s can be snooped by other nodes, the local L2 victim
always overwrites the local L3, causing considerable pressure on the L3 and reducing the
effective L3 capacity. In [SSZR05], this baseline design is improved by using a small history
table to selectively remove some clean writebacks of data already present in the L3 cache.

Data replication also bears resemblance to earlier work on remote data caching in con-
ventional CC-NUMA and COMA architectures [OR99, DT99, ZT97], which also try to
retain local copies of data that would otherwise require a remote access. There are two ma-
jor differences in the CMP structure, however, that limit the applicability of prior remote
caching work. First, in CC-NUMAs, all of the local cache capacity on a node is private so
the allocation between local and remote data only affects the local node. In a CMP, on-chip
L2 capacity is shared by all nodes, and so a local node’s replacement policy affects cache
performance of all nodes. Second, in both CC-NUMA and COMA systems, remote data
is further away than local DRAM, thus it is beneficial to use a large remote cache held in
local DRAM. In addition, the cost of adding a remote cache is low and does not diminish
the performance of existing L2 caches. In the CMP structure, the remote caches are closer
to the local node than any DRAM, and any replication reduces the effective cache capacity

for blocks that will have to be fetched from slow off-chip memory.

65

66

Chapter 5
Experimental Methodology

To evaluate the various cache management policies, we implemented a flexible and detailed
cache-coherent distributed shared memory system model that includes L1 caches, L2 caches,
main memory, and an interconnection network. In this chapter, we describe our simula-
tion infrastructure and techniques, and provide discussions on the choice of the system

parameters and the workload suite.

5.1 Simulation Infrastructure

To present a clearer picture of the memory system’s behavior, we use a simple in-order
processor model and focus on the average raw memory latency seen by each memory re-
quest. Clearly, overall system performance can only be determined by co-simulation with
a detailed processor model, though we expect the performance trend to closely follow aver-
age data access latency. Prefetching, decoupling, non-blocking caches, multi-threading, and
out-of-order execution are well-known microarchitectural techniques which overlap memory
latencies to reduce their impact on performance. However, machines using these techniques
complete instructions faster, and are therefore relatively more sensitive to any latencies that
cannot be hidden. Also, these techniques are complementary to our replication techniques,

and cannot provide the same benefit of reducing cross-chip traffic.

5.1.1 Simulator Setup

We have implemented a full-system execution-driven simulator based on the Bochs [Law]
system emulator. We added a cycle-accurate cache and memory simulator with detailed
models of the primary caches, the L2 caches, the 2D mesh network, and the DRAM. Al-
though the combined limitations of Bochs and our Linux port restrict our simulations to
eight processor cores, it’s full-system nature allows us to run realistic workloads that re-
quire operating system support. Furthermore, the execution-driven nature of the simulator

allows our detailed memory system to affect the interleaving of threads, which is difficult to

67

Applications

Linux 2.4.24

Core ||Core |[Core

Core ||Core [|Core |[Core
H#7

Bochs

Emulator Core

mulato w |l wm |||l w3l mal| w5 || #6
7'y 7'y 7'y x

I - .
[Magic

r°
[
? Memory

Req/ Rep
Req / Rep

Req / Rep
Req/Rep
Req/Rep
Req/Rep

g
| nterface S
8
o

A 2 A 4 SL 3L 7 Sz

LIS || L1$ || LIS || L1$ || LIS || LIS || L1$ || L1$

Detailed #0 #1 #2 #3 #4 #5 #6 #7
L2S | L2B || L2B || L2% || L2%

Memory || L2$ || L2$ || L2$
H | #1 || w2 || w3 || # || #5 || #6 || #7

Hierarchy
Simulat
mulator ;I_TT_ZID_M;!;TT_E

Networ k
Router)y

) I

DRAM

Figure 5-1: The overall simulation infrastructure. A detailed cache and memory simulator is
developed to experiment with the cache designs. The Bochs full-system emulator is used as the
processor model and drives the detailed cache and memory simulator to form an execution-driven

system simulator.

68

achieve in trace-driven simulation. The workloads are compiled under Linux version 2.4.24.
This version of Linux is compiled for an x86 processor on an eight-way SMP. The overall
simulator infrastructure is shown in Figure 5-1. The detailed memory model consists of
three parts: the L1 and L2 caches for each tile, the DRAM module, and the interconnection
network as described in Chapter 3. The memory references from the code sequence are
extracted and fed into the detailed memory model, which provides a request-response inter-
face to the Bochs emulator. The execution rate of each processor in the Bochs emulator is
controlled by the feedback from the memory system. The magic memory is used to provide
values for processor data accesses during the fastforwarding phase, which we will describe

in Section 5.3.

5.1.2 Interfacing Bochs to Detailed Cache Simulator

Figure 5-2 details the interface between the Bochs emulator and our detailed simulator. The
main loop of Bochs moves round-robin between the processor cores, I/O devices, and disk,
incrementing the cycle count at the end of each loop. Devices that need attention assert an
interrupt line and are handled by the operating system of the simulated machine. During
each “Bochs cycle”, one x86 instruction is executed. All instructions that do not contain
memory accesses are executed normally. For instructions that invoke memory accesses, we
extract these accesses and feed them into detailed memory simulator.

Because Bochs is an x86 architecture emulator, a single instruction could touch mem-
ory multiple times, such as the lea example in processor core I or the pusha example in
processor core 2. To simulate such an instruction accurately, we ought to suspend the pro-
cessor execution appropriately for each memory access that does not hit the cache, until it
is resolved by the memory simulator, then continue onto the next memory access. How-
ever, this approach requires significant modifications to the Bochs emulator to implement a
mechanism that checkpoints the state of the simulator in the middle of an instruction. The
frequent checkpointing could also significantly impact running time.

To avoid this cumbersome overhaul to Bochs, we took a simpler approach to handle
instructions with multiple memory accesses. Such an instruction is executed to completion,
performing all of the memory accesses necessary using data from the magic memory. The
actual loads and stores are buffered up in a memory access buffer and forwarded to the
detailed memory system. Execution for the requesting processor is suspended until all
of the memory accesses are resolved. Checkpointing here can only happen in between
instructions.

Our approach can create complications for a subset of the instructions with multiple
memory accesses when the address of a later fetch depends on the result of an earlier fetch.
Because of this dependence, coupled with the memory simulator timing and the specific
thread interleaving, the values fetched from the memory simulator may deviate from the

ones provided by magic memory. In actual simulation, we have found such instances to be

69

rare (under 1%). When it does happen, however, we use a fixup mechanism to force the
data in the memory simulator to match the magic memory, so that future memory accesses
to the memory simulator can produce the same values as the magic memory. This approach

guarantees that we are executing the workload with a legal thread interleaving.

5.1.3 Simulation Parameters

In this thesis, we chose to simulate four cache configurations. The parameters of each
configuration are summarized in Table 5.1. To simplify result reporting, we scaled all
system latencies to the access time of the L1 cache, which we assume can be reached within

a single clock cycle.

We picked the 70 nm technology parameters based on the Berkeley Predictive Technol-
ogy Model (BPTM) [UC 01]. We use a 16 FO4 clock cycle [Hor83] time for configuration 1
because it has a smaller 16KB L1 cache. We assume a 24 FO4 clock cycle time for Configu-
rations 2 through 4 because they have a larger 32KB L1 cache. Both 16 FO4 and 24 FO4 cy-
cle times represent modern power-performance balanced pipeline designs [HP03, SBGT02].
High-frequency designs may target cycle times of 8 FO4 to 12 FO4 delays [HBJ 02, SC02],
in which case our cycle latencies can be scaled appropriately. A five-cycle access latency
is used for a 256KB L2 cache with a six-cycle latency for 512KB and 1MB caches. We
also scale all other latencies appropriately for the smaller Configuration 1. Specifically,
assuming the same absolute off-chip fetch latency, the relative latency of the DRAM in this
configuration is significantly longer than the other three, at 192 cycles.

We model each hop in the network as taking 3 cycles, including the router latency and
an optimally-buffered inter-tile copper wire on a high metal layer. Note that the worst case
contention-free L2 hit latency is between 29 to 32 cycles for these configurations, hinting
that even a small reduction in cross-chip accesses could lead to a significant performance
gain. The 16-way L2 set-associativity was chosen to be larger than the number of tiles,
thus avoiding most of the cache thrashing caused by different threads. In our simulations,
we have found that for L2 associativities of eight or less, several workloads had severe

inter-thread conflicts, reflected by high off-chip miss rates.

5.2 Workloads

This section summarizes the collection of workloads used to evaluate the cache management
policies. To minimize system variability, all workloads were invoked in a runlevel without
superfluous processes/daemons to prevent non-essential processes from interfering with the
workload execution. Each simulation run begins with the Linux boot sequence, but results

are only gathered after the workload begins execution until its completion.

70

Processor
Cores

Memory
Access
Buffers

Memory
Interface

) A 4
Detailed [L1$0

Memory
System

Devices:

Round-Robin Execution Disk, Display,
Timer, etc.
- < _
Core0 Corel Core7
pop %esi sub %0x14,%esp . . . call 80482f8
pop %ebx mov %esp, %ebp push $0x804952c

lea 0x0(%ebp), %esp pusha add 0xfff4, %esp
store
store ‘ ‘ .
load store
load store
A A
3 3 T
B g| & gl 2
18 |8 |8
v v
L1$1 L1$7
® 00

Figure 5-2: Tllustration of the execution-driven model combining the Bochs emulator with the
detailed memory system. The data and instruction access streams in each instruction are buffered
in a data access buffer and fed to the memory simulator. The access results are fed back to the
simulator to control the progress of execution.

71

Component

Parameter

Configuration 1 Configuration 2
8K+8K/256K/16FO4 | 16K+16K /256K /24F04

L1 I-Cache Size/Associativity 8KB/16-way 16 KB/16-way
L1 D-Cache Size/Associativity 8KB/16-way 16 KB/16-way
L1 Load-to-Use Latency 1 cycle 1 cycle
L1 Replacement Policy Psuedo-LRU Psuedo-LRU
L2 Cache Slice Size/Associativity 256 KB/16-way 256 KB/16-way
L2 Load-to-Use Latency (per slice) 8 cycles 5 cycles
L2 Replacement Policy Random Random
External memory latency 192 cycles 128 cycles
One-hop latency 3 cycles 3 cycles
Worst case L2 hit latency (contention-free) 32 cycles 29 cycles
CMP Configuration 4x2 Mesh
Processor Model in-order
Cache Line Size 64B
Component Parameter

Configuration 3 Configuration 4

16K+16K/512K/24F04 | 16K+16K/1M/24F04

L1 I-Cache Size/Associativity 16 KB/16-way 16 KB/16-way
L1 D-Cache Size/Associativity 16 KB/16-way 16 KB/16-way
L1 Load-to-Use Latency 1 cycle 1 cycle
L1 Replacement Policy Psuedo-LRU Psuedo-LRU
L2 Cache Slice Size/Associativity 512KB/16-way 1MB/16-way
L2 Load-to-Use Latency (per slice) 6 cycles 6 cycles
L2 Replacement Policy Random Random
External memory latency 128 cycles 128 cycles
One-hop latency 3 cycles 3 cycles
Worst case L2 hit latency (contention-free) 30 cycles 30 cycles

CMP Configuration 4x2 Mesh
Processor Model in-order
Cache Line Size 64B

Table 5.1: Simulation parameters. The numbers for each configuration represent the cache sizes
and cycle times. For example, 8K+8K /256K /16F04 indicates 8KB L1 instruction cache, 8KB L1
data cache, 256 KB L2 cache, with a 16 FO4-delay cycle time.

72

Workload Instruction | Workload Description

Name (Billions)

bzip2 3.8 Based on the popular bzip2 compression algorithm version 0.1

crafty 1.2 A high-performance chess program designed around a 64-bit word.

eon 2.9 A probabilistic ray tracer based on Kajiya’s 1986 SIGGRAPH pa-
per.

gap 1.1 Gap implements a language and library designed mostly for com-
puting in groups (GAP is an acronym for Groups, Algorithms and
Programming).

gee 6.4 gec is based on gcc version 2.7.2.2. It generates code for a Motorola

88100 processor. The benchmark runs as a compiler with many of
its optimization flags enabled.

gzip 1.0 gzip (GNU zip) is a popular data compression program written
by Jean-Loup Gailly for the GNU project. gzip uses Lempel-Ziv
coding (LZ77) as its compression algorithm.

mcf 1.7 A benchmark derived from a program used for single-depot vehicle
scheduling in public mass transportation. The program is writ-
ten in C, the benchmark version uses almost exclusively integer
arithmetic.

parser 5.6 The Link Grammer Parser is a syntactic parser of English, based
on link grammer, an original theory of English syntax. Given a
sentence, the system assigns it a syntactic structure, which consists
of set of labeled links connecting pairs of words.

perlbmk 1.8 perlbmk is a cut-down version of Perl v5.005_03, the popular script-
ing language.

twolf 1.5 The Timber WolfSC placement and routing CAD tool package.

vortex 1.5 VORTEx is a single-user object-oriented database transaction

benchmark which which exercises a system kernel coded in inte-
ger C. The benchmark vortex is a subset of a full object oriented
database program called VORTEx (Virtual Object Runtime EX-
pository).

vpr 5.3 VPR is a placement and routing program; it automatically imple-
ments a technology-mapped circuit (i.e. a netlist, or hypergraph,
composed of FPGA logic blocks and I/O pads and their required
connections) in a Field-Programmable Gate Array (FPGA) chip.

Table 5.2: Single-threaded workloads in this thesis are taken from the SpecINT2000 bench-
mark suite [Cor00].

73

Workload Instruction Workload Description
Name (Billions)

NAS Scientific Applications

BT 1.7 A simulated CFD application that uses an alternating direction
implicit (ADI) approximate factorization to solve 3D compressible
Navier-Strokes equations. Class S.

CG 5.0 Computation of an approximation to the smallest eigenvalue of
a large, sparse, unstructured matrix using the conjugate gradient
method. Class W.

EP 6.8 An embarrassingly parallel benchmark. It generates pairs of Gaus-
sian random deviates. Class W.
FT 6.6 The computational kernel of a 3D Fast Fourier transform (FFT)-

based spectral method. FT performs three one-dimensional FFTs,
one per dimesion. Class S, -O0.

IS 5.5 Integer sort. Class W, compiled using icc-v8.

LU 6.2 LU decomposition that uses symmetric successive over-relocatoin
(SSOR) method to solve a seven-block-diagonal system. Class R.

MG 5.1 MG uses a V-cycle multigrid method to compute an approximation
to the smallest eigenvalues of a large, sparce, unstructured matrix.
Class W.

SP 6.7 A simulated CFD application that uses a Beam-Warming implicit

(ADI) approximate factorization to solve 3D compressible Navier-
Strokes equations. Class R.
System Applications

apache 3.3 Apache benchmark’s ‘ab’ worker threading model, 2000 requests,
3 at a time. Compiled with gec 2.96.
dbench 3.3 Executes Samba-like syscalls, 3 clients, 10000 requests. Compiled

with gcc 2.96.

AT Application
checkers 2.9 Cilk checkers (parallel a — § search), Black plies 6, White plies 5.
Compiled using Cilk 5.3.2 and gcc 2.96.

Table 5.3: Multi-threaded workloads include the NAS parallel scientific benchmark suite,
two system workloads, and one AI application [Gro01, BBBT94].

Workload Instruction Workload Description

Name (Billions)

mix0 23.9 bzip, crafty, eon, gap, gee, gzip, mcf, and parser
mix1 24.8 gee, gzip, mcf, parser, perlbmk, twolf, vortex, and vpr
mix2 19.1 bzip, crafty, eon, gap, perlbmk, twolf, vortex, and vpr
mix3 22.8 bzip, gap, mcf, twolf, crafty, gcc, parser, and vortex
mix4 19.1 bzip, gap, mcf, twolf, eon, gzip, perlbmk, and vpr
mix5 25.7 crafty, gce, parser, vortex, eon, gzip, perlbmk, and vpr
mix6 12.7 crafty, eon, gap, gzip, mcf, perlbmk, twolf, and vortex
mix7 21.5 bzip2, gap, gzip, mcf, parser, twolf, vortex, and vpr
mix8 28.0 bzip2, crafty, eon, gap, gce, mcf, parser, and vpr

Table 5.4: Multi-programmed workloads are created by mixing single-threaded benchmarks.
Eight benchmarks are randomly chosen for each multi-programmed workload.

74

5.2.1 Single-Threaded Workloads

For single-threaded workloads, we used all twelve benchmarks in the SpecINT2000 bench-
mark suite, summarized in Table 5.2. They are compiled with the Intel C compiler (ver-
sion 8.0.055) using -03 -static -ipo -mpl +FDO and use the MinneSPEC large-reduced
dataset as input. The size of the workloads ranges from one billion cycles to over six billion

cycles.

5.2.2 Multi-Threaded Workloads

The multi-threaded workloads include all eight of the OpenMP NAS Parallel Benchmarks
(NPB) (mostly written in FORTRAN), two server workloads (written in C), and one AI
workload (written in Cilk [Gro01]). Table 5.3 summarizes the workloads. For the NAS
Parallel Benchmarks, classes S and W are standard input sizes, and class R is custom-sized
to give the workload a manageable simulation time that falls between the S and W classes.
The two server benchmarks, apache and dbench, spend significant execution time in the
operating system. Additionally, one Al benchmark, checkers, uses a dynamic work-stealing
thread scheduler. All of the multi-threaded benchmarks are compiled with ifort-v8 -g
-02 -openmp unless otherwise noted. The size of the workloads range from 1.7 billion to

6.8 billion instructions.

5.2.3 Multi-Programmed Workloads

The multi-programmed workloads are created by mixing a set of randomly selected single-
threaded SpecINT2000 workloads, each consisting of eight different programs. Therefore,
the size of the workloads are much larger than that of the single-threaded and multi-threaded

workloads, generally at around twenty billion instructions.

5.3 Fastforwarding Multiprocessor Simulation

Due to the long running nature of our workloads, we used a sampling technique to reduce
workload simulation time. Figure 5-3 illustrates several traditional approaches in speeding
up simulation.

Many architecture studies have obliviously chosen a single sample, either taken from the
beginning or after some fixed number of instructions into the run, as shown in Figure 5-3(a)
and Figure 5-3(b). A detailed warm-up phase preceding the actual data gathering phase
can warm-up large data structures such as the branch predictor and caches, thus give more
accurate results (Figure 5-3(c)). A better approach is to search for an execution phase that
is representative of the workload’s overall characteristics through profiling, and only gather

data in this representative phase.

75

Detailed Ignored

(a) Single Sample

Measure

ISA Only| Detailed Ignored

l

(b) Fastforward + Single Sample

Measure

ISAOnly| Detailed Ignored

(c) Fastforward + Warmup + Single Sample

Measure

(d) Selective Sampling (Simpoints)

(e) Statistical Sampling

ISA + uArch L |

(f) Statistical Sampling + Functional Warming (SMARTS)

—)

Program Execution

Figure 5-3: (a) Statistics gathering in a single sample at the beginning of the execution. (b)
Statistics gathering in a single sample in the middle of the execution after initial fastforwarding.
(c) Statistics gathering is preceded by fastforwarding and detailed warming. (d) A representative
sample determined by profiling is used over a random sample. (e) Repetitive statistical sampling
with multiple sample points. (f) Functional warming is used to minimize the detailed warming
phase.

However, applications generally contain multiple phases of execution with varying prop-
erties and much better characterization is possible by using multiple sample points spread
throughout a run. Statistical sampling [SPHC02, CHM96, LPI88] uses an ISA simulator
during the fastforwarding phase, then constructs the architecture state through detailed
warming before actually gathering data. To minimize the warming phase for architecture
with large amounts of state, SMARTS [WWFHO03] uses a functional simulator during the
fastforwarding phase to update the architectural state, such as registers and memory, then
switches to a slower detailed simulator to accurately model the microarchitecture during

the measurement samples.

76

In this thesis, we extend the functional warming method for superscalars proposed in
SMARTS [WWFHO03] to an SMP system, and fastforward through periods of execution while
maintaining cache and directory state [BPZAO05]. In fastforwarding mode, we do not forward
the load and store requests to the detailed memory timing simulator, but only update cache
and directory state fields. At the start of each measurement sample, we run the detailed
timing model to warm up the pipelines of the cache (the detailed warming phase), memory
and network. After this detailed warming phase, we gather detailed statistics for one million
instructions, before re-entering fastforward mode. Detailed samples are taken at random
intervals during execution and include 20% of all instructions executed, i.e., fastforward
intervals average around five million instructions. The number of samples taken for each
workload ranges from around 150 to 1,000. Simulations show that the fastforwarding results

match up with detailed runs to within 3% of error.

5.3.1 System Variability

Because we are running multi-threaded application with the operating system, our simu-
lation results are more vulnerable to system variability than uniprocessor simulations. As
Alameldeen and Wood point out, even with small variation in DRAM latencies, the overall
system result can be noticeably affected [AW03]. To minimize the bias in the results created
by this variation, we chose to execute multiple runs of each workload with varying sample
length and frequency. We found that the variability has an insignificant effect on our results

for these workloads.

7

78

Chapter 6
Experimental Results

This chapter presents the results of evaluating the four cache designs in this thesis on our
workload suite. We show that victim replication and victim migration provide better and
significantly more robust performance than the standard techniques. We first present the
results for the multi-threaded workloads because they best demonstrate the major trade-
offs in our management policies, then we move on to the results for single-threaded and
multi-programmed workloads.

For each class of applications, we show several results. First, we show the average mem-
ory access latency seen by a processor. This the the key metric that we aim to minimize.
Second, to better understand the trade-offs outlined in Chapter 4, we also show a break-
down of the accesses by category. Third, we show the percentage of replicas held in the
L2 caches, demonstrating that our techniques dynamically exploit the different character-
istics of individual benchmarks and their execution phases. Finally, we show that victim
replication and victim migration also significantly reduce the on-chip traffic, which is an

important factor in reducing system power consumption.

6.1 Multi-Threaded Workloads

Figures 6-1 to 6-4 show the key result, the average memory access latency seen by a pro-
cessor. The minimum latency is one cycle, when all accesses hit in the L1 cache. In the
following, we take Configuration 1 (8KB L1 I-cache, 8KB L1 D-cache, 256KB unified L2-
cache, 16FO4 cycle time), and give a detailed analysis of how each of the four designs
works.

Figure 6-5 shows the breakdown of memory accesses for victim replication (the break-

down for victim migration is similar). An access in this figure belongs to one of six categories:
1. L1 hits: Access results in an L1 cache hit.

2. Local L2 hits: Access results in an L2 cache hit in the local slice of the L2 cache. For
the private design, all hits are local L2 hits. For the other three designs, local L2 hits

79

Average Data Access Latency

10
Il Private design
[Shared design
9 [Victim replication
- M Victim migration

BT CG EP FT IS LU MG SP apache dbenchcheckers
Benchmarks

Latency (Cycles)
@

N w

-

=)

Figure 6-1: Configuration 1:
8KB+8KB/256KB/16FO4. Average access
latencies of multi-threaded workloads.

Average Data Access Latency

Average Data Access Latency

8
il Hl Private design
[Shared design
7 [Victim replication
I Victim migration
6
5
g
ES
g
> 4 -
2 _
2
it
3
2
1]HHI
0
BT CG EP FT IS LU MG SP apache dbenchcheckers
Benchmarks

Figure 6-2: Configuration 2:
16KB+16KB/256KB/24F04. Average ac-
cess latencies of multi-threaded workloads.

Average Data Access Latency

7 6
Il Private design Il Private design
[Shared design [Shared design
[Victim replication _ [Victim replication
6 I Victim migration s I Victim migration
5
4 -
2 2
$4 M S
S ES
())
> > 3
g 2
3 3
53 T
ki it
2
2
| 1
1
0 . 0
BT CG EP FT IS LU MG SP apache dbenchcheckers BT CG EP FT IS LU MG SP apache dbenchcheckers
Benchmarks Benchmarks

Figure 6-3: Configuration 3:
16KB+16KB/512KB/24F04. Average ac-
cess latencies of multi-threaded workloads.

Figure 6-4: Configuration 4:
16KB+16KB/1MB/24F0O4. Average access
latencies of multi-threaded workloads.

Average Access Latency Reduction of Multi-Threaded Applications

Configuration 1 Configuration 2
8K+8K /256K /16F 04 16K+16K /256K /24F04
Reduction (%) Reduction (%)
Worldoad [VE TRty pyr v vrovwo g oym
BT 46.1 -1.3 453 -19 -06|11.2 -0 115 -06 0.2
CG 277 46 303 -27 20275 -73 300 -56 1.9
EP 3.7 0.0 41 03 03| 0.1 3.2 -04 2.7 -0.5
FT 180 -14 264 5.6 7.1 | 14.6 0.9 175 3.5 2.5
IS 0.6 04 08 06 01| 00 0.1 -0.0 0.1 0.0
LU 133 -29 273 9.0 123|150 -9.5 31.6 3.5 144
MG 3.2 6.3 6.1 9.3 28| 2.5 9.1 6.0 129 34
Sp 3.5 174 v 221 40| 91 172 146 23.1 5.0

apache 100 -36 140 -02 36| 6.3 99 73 109 09
dbench 2.2 7.5 4.5 99 22| 20 037 82 64 6.0
checkers 3.8 265 87 325 47| 39 268 81 319 40

Avg 12.0 4.0 159 7.6 3.5 8.4 4.5 12.2 8.1 3.4
Configuration 3 Configuration 4
16K+16K /512K /24FO4 16K+16K/1M/24F0O4
Reduction (%) Reduction (%)
BT 184 -09 189 -06 04| 94 0.0 94 0.0 0.0
CG 31.1 -144 374 -103 48552 -31.7 773 -221 14.2
EP 0.6 6.3 1.8 7.5 1.1 | 104 294 148 34.5 3.9
FT 20.8 -19 25.2 1.6 3.6 | 21.1 81 258 123 3.8
IS 0.1 1.1 0.3 1.3 0.1 -0.2 0.3 0.2 0.9 0.5
LU 28.4 2.5 405 12.2 9.4 | 44.7 9.6 501 13.7 3.7
MG 2.8 7.9 4.1 9.2 1.2 5.0 9.7 9.6 14.5 4.3
SP 4.2 11.8 7.7 15.5 3.3 | 14.2 -1.7 16.5 0.2 2.0

apache 10.0 07 88 -04 -11]172 23 154 0.7 -16
dbench 92 166 96 170 03| 18.6 73 223 107 31
checkers 31 333 53 362 21| 31 297 49 320 1.7
Avg 11.7 5.7 145 81 23| 181 5.8 224 89 3.2

Table 6.1: Average access latency reduction of multi-threaded workloads achieved by victim repli-
cation and victim migration over the shared and private baseline designs. The five numbers for each
workload indicate the percentage reduction of VR to shared, VR to private, VM to shared, VM to
private, and VM to VR.

81

Data Accesses Breakdown

100
L[]
il T
N || III |
! In
96 II
S
S
S o4
X
<
o
o
92
90 Bl Misses (Off-chip Memory Accesses)
B Hits in through C2C Xfer
[] Hits in Non—-Local L2 Data
[Hits in Replica L2 Data
B Hits in Local L2 Data
Hl Hitsin L1
88
BT CG EP FT IS LU MG SP apache dbench checkers
Benchmarks

Figure 6-5: Memory access breakdown of multi-threaded workloads. Moving from left to right, the
four bars for each workload are for the private design, the shared design, victim replication, and
victim migration, respectively. Hits are categorized into (from bottom to top): (1) L1 hits; (2) L2
local hits; (3) replica hits; (4) L2 remote hits; (5) cache-to-cache hits; (6) off-chip accesses.

82

include all the hits whose home tile happens to be local.
3. Replica hits: Access results in a replica hit in the local slice of the L2 cache.

4. Global L2 hits: Access results in an L2 cache hit in a remote slice of the L2 cache. The
private design cannot have global L2 hits. For the shared design, victim replication,

and victim migration, this includes all L2 hits whose home tile is not local.

5. Cache-to-cache hits: Access results in an L2 coherence miss, where the requested data
is stored in another tile. A cache-to-cache transfer between the owner/sharer of the
requested data and the requestor is used to satisfy the request. The transfer happens
between L2 caches in the private design and between L1 caches in the other three

designs.

6. Off-chip miss: Data is not on-chip and the request is forwarded to the off-chip memory.

6.1.1 Performance Analysis

From Figure 6-1, we observe that for the multi-threaded workloads, the performance differ-
ence between private and shared designs is significant. We divide their behavior into three
scenarios and discuss each separately: (1) equal performance for private and shared designs;

(2) private design better than shared design; (3) shared design better than private design.

Equal Performance for Private and Shared Designs

One workload, IS, has a working set small enough that it fits in the L1 cache, thus L2
policies do not matter because most data accesses hits in the L1. Average access latency
in this case is roughly one cycle for all four policies, equaling the access latency of the L1

cache.

Private Design Better Than Shared Design

Compared to the shared design (second bar in Figure 6-5), the private design (first bar
in Figure 6-5) has higher off-chip miss rates, but also many more local hits across the
workloads. We expect the private design to win if the difference in the off-chip miss rates
is small compared to the extra number of local hits it has over the shared design. This is
the case for BT, CG, EP, FT, LU, and apache.

For these workloads, the private design does better than the shared design for two
reasons. First, if the working set of a workload is small enough to fit into the 256 KB local
cache capacity, the L2 miss rate is likely to be small. Thus, the lower L2 hit latency of the
private design dominates the performance. This is the case for workloads BT, FT, apache.
Second, if the working set is much larger than the total on-chip cache capacity, even the

shared design cannot hold the working set. Thus, both private and shared designs will have

83

high off-chip miss rate, prompting the private design to have better performance through
low L2 hit latency. This is the case for workloads CG, EP, LU.

For all workloads but CG, victim replication and victim migration are able to create a
significant number of replica hits to reduce the cross-chip fetch latency at the expense of
a small increase in off-chip miss rates. The performance of these techniques are usually
within 5% of the private design.

Workload CG has a very high L1 cache miss rate at around 10%, but over 70% of the
L1 misses hit in the L2 cache, magnifying the low latency advantage of the private design.
Our hybrid techniques significantly outperform the shared design but still fall short of the

private design.

Shared Design Better Than Private Design

If the difference in off-chip miss rates is significant, we expect the shared design to win even
though it has many fewer local hits because it minimizes expensive off-chip misses. This is
the case for workloads MG, SP, dbench, and checkers.

Both victim replication and victim migration create replicas for reduced hit latency
(shown by the significant number of replica hits) at the expense of slightly increased off-
chip miss rate, and achieve significant improvements over the shared design.

It is possible for an application to have a very large working set, yet with little reuse in
its data access patterns. In this case, the number of L2 replica hits created by our techniques
is low, and its benefit is outweighed by the additional off-chip accesses introduced by the
global block evictions. In this case, our techniques can reduce performance. We did not
encounter such an application in our workload suite, but a simple miss rate monitor could

perhaps be used to limit the replica creation rate to overcome this problem.

6.1.2 Victim Replication versus Victim Migration

Victim migration works slightly better than victim replication for the multi-threaded work-
loads by storing the tags of actively shared cache blocks in the VM tag array, vacating
some of the actual data storage space. This space is split between additional replicas and
unshared global blocks. Having more replicas is likely to increase the number of local L2
hits, and having more global blocks is likely to reduce the off-chip miss rate. Both of the

scenarios can be observed by comparing the third and fourth bars in Figure 6-5.

6.1.3 Other Configurations

As we increase the on-chip capacity, whether private or shared design works better changes
even for the same application depending on whether its working set fits into the given cache
configuration. Figure 6-6 presents a pictorial view of how the four policies work depending

on the relationships between the cache sizes and the size of the workload’s working set. For

84

Private Design vs. Victim Replication & Workloads Workloads

Shared Design Victim Migration Config. 1 Config. 4
-y
L1 Cache Mostly L1 hits, L2 policy is Mostly L1 hits, L2 policy is IS IS
Capacity not important not important
o
L2 Cache Similar off-chip miss rate for Replicas are similar to BT, BT,
. both designs. Thus, private privately stored L2 data. ET, CG,
Per S '_Ce design is better than shared Performance close to the LU, FT,
Capacity design because of itslowL2 « private design and better than © apache LU,)
hit latency shared design. apache, & Privatevs. Shared
Boundary
App|lcatIOI’l o000 00 00 00 0000000000000 0000000000000 000000000OCOCCNINIIGIS L
V;Ztrlgir;g L2 Cache Shared is better than pr.ivate Replica;dimi nates many MG, MG,
Overall because of fewer off-chip cross-chip fetches, reduces SP, EP,
Capacity misses, even though the the on-chip access latency. checkers SP,
average on-chip access Performance better than both checkers
latency islonger private and shared designs.

Chip boundary

00000 h....."..‘..‘........................)......* LGN)

Smilar off-chip missrate. Replicas are similar to CG, dbench
DRAM Thus, private design isbetter « privately stored L2 data. EP,
Capacity than shared design because of © Performance close to the dbench
itslow L2 hit latency private design and better than
shared design.
] -’

Figure 6-6: Categorization of the behaviors of the different applications according to the relative
ratio of the application’s working set and the size of the per-slice and overall L2 cache capacity.
The behavior of each of the management policies loosely belong to one of the categories shown. As
an example, we categorized the multi-threaded workloads for configurations 1 (the smallest cache
configuration) and configuration 4 (the largest cache configuration).

example, workload EP does better with the shared design in larger L2 caches because more
of its working set starts to fit on-chip, significantly reducing the off-chip miss rate compared
to the private design. As another example, workload SP does better with a private design
in larger cache sizes when more of its working set fits into the 1MB local L2 cache slice.
Our two techniques manage to be either the best policy or a close second for all of these

workloads.

6.1.4 Adaptive Replication Policy

Figure 6-7 plots the percentage of total L2 cache capacity allocated to replicas for the
eleven multi-threaded benchmarks in our benchmark suite against execution time. This
graph shows two important features of the our hybrid techniques. First, they are adaptive
processes that adjust to the execution phases of the program. We can clearly observe
execution phases in CG, FT, and dbench. Second, the victim storage capacity offered by our
techniques is much larger than any feasible dedicated hardware victim cache. All workloads

reached over 25% replicas, in our case equal to a victim cache of over 50 KB.

85

bts cgw epw

=40 40 40
>
g | e
= 20 20 20 [t '
o

0 0 0

fts isr lur

< 40 40 40
>
8 V“WVW’V‘W'\IWW
= 20 20 20
o

0 0 0

mgw spr apache

<40 40 40
>3 WWMWMMWMMM
8 L
= 20 20 20
(]

0 0 0

dbench checkers

< 40 40
\°>
© \\\M
Qo
= 20 20
o

0 0

Figure 6-7: Time-varying graph showing the percentage of the L2 allocated to replicas in multi-
threaded programs. Average of all eight caches is shown.

86

Average Data Access Latency

Average Data Access Latency

12

15 Il Private design Il Private design
[Shared design - [shared design
[Victim replication [Victim replication
Il Victim migration 10 Il Victim migration
10 1 8 N
8 8
z B ®
5 4
0 bzip craﬁy eon ap gcc gzlp mcf parser perl twolf vortex vpr 0 bzip craf(y eon ap gcc gzlp mcf parser perl twolf vortex vpr
Benchmarks Benchmarks
Figure 6-8: Configuration 1: Figure 6-9: Configuration 2:
8KB+8KB/256KB/16FO4. Average access 16KB+16KB/256KB/24F04. Average ac-

latencies of single-threaded workloads.

Average Data Access Latency

cess latencies of single-threaded workloads.

Average Data Access Latency

12 10
Il Private design m Il Private design
[Shared design [Shared design
[Victim replication 9 [Victim replication
10 m H Victim migration I Victim migration
8
7
8

Latency (Cycles)
=

Latency (Cycles)
o

3
Liinm ||| miin |||| ||| [kl
0 bzip crafty eon gap gcc 92|p mcf parser perl twolf vortex vpr 0 bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
Benchmarks Benchmarks
Figure 6-10: Configuration 3: Figure 6-11: Configuration 4:

16KB+16KB/512KB/24F04. Average ac-
cess latencies of single-threaded workloads.

87

16KB+16KB/1MB/24F04. Average access
latencies of single-threaded workloads.

Average Access Latency Reduction of Single-Threaded Applications

Configuration 1 Configuration 2

8K+8K /256K /16F0O4 16K+16K /256K /24F04

Reduction (%) Reduction (%)
bzip 99 279 223 423 11.2 16.5 309 175 320 0.8
crafty 1045 9.1 1050 94 02| 426 9.6 436 104 0.7
eon 503 22 472 01 -21 6.2 1.6 5.7 1.1 -0.5
gap 342 137 380 169 28 18.6 11.2 189 115 0.2
gee 41.0 179 426 19.2 1.1 31.8 144 313 140 -04
gzip 75.7 36.5 81.6 41.1 3.3 | 825 221 81.6 215 -0.5
mcf 19.0 43.5 285 549 79| 356 459 381 486 1.8
parser 36.3 40.2 41.7 457 39| 306 368 31.8 381 09
perl 6.7 93 9.1 11.8 2.2 6.3 7.5 7.8 9.1 14
twolf 123.8 -6.7 1274 -53 16| 1194 03 1236 23 1.9
vortex 450 123 482 148 22| 255 104 288 133 26
vpr 776 139 780 142 02| 656 127 638 115 -1.1
Avg 52.0 183 558 221 29| 401 170 41.0 178 0.7

Configuration 3 Configuration 4

16K+16K /512K /24F04 16K+16K /1M/24FO4

Reduction (%) Reduction (%)
bzip 16.6 23.0 194 26.0 24 21.6 16.3 276 221 4.9
crafty 415 4.8 423 54 05| 458 28 434 1.1 -1.7
eon 5.2 3.0 5.1 29 -01 5.0 2.3 4.5 1.8 -0.5
gap 13.0 124 14.5 13.9 1.3 15.0 11.1 18.0 14.0 2.6
gee 281 93 298 108 13| 407 89 395 80 -09
gzip 8.2 253 86.2 260 05| 656 62 650 58 -04
mcf 365 0.2 49.2 9.6 9.3 78.6 11.3 79.2 11.7 03
parser 31.8 28.6 34.7 31.5 2.2 50.7 19.0 50.1 186 -04
perl 3.7 6.3 42 68 04 4.7 8.6 31 69 -16
twolf 123.0 1.0 1242 16 051060 13 1019 -0.7 -2.0
vortex 328 86 307 69 -16| 318 70 295 51 -18
vpr 73.3 7.6 75.6 9.1 1.3 71.0 03 692 -0.8 -1.1
Avg 409 109 43.0 125 1.5 | 44.7 79 443 7.8 -0.2

Table 6.2: Average access latency reduction of single-threaded workloads achieved by victim repli-
cation and victim migration over the shared and private baseline designs. The five numbers for each
workload indicate the percentage reduction of VR to shared, VR to private, VM to shared, VM to
private, and VM to VR.

88

Data Accesses Breakdown
100

98

96

94

92

90

Breakdown (%)

88

86

84

Hl Misses (Off-chip Memory Accesses)
B Hits in through C2C Xfer

[Hits in Non—Local L2 Data

[Hits in Replica L2 Data

B Hits in Local L2 Data

Hl Hitsin L1

82

bzip crafty eon gap gce gzip mcf parser perl twolf vortex vpr
Benchmarks

Figure 6-12: Memory access breakdown of single-threaded workloads. Moving from left to right,
the four bars for each workload are for the private design, the shared design, victim replication, and
victim migration, respectively. Hits are categorized into (from bottom to top): (1) L1 hits; (2) L2
local hits; (3) replica hits; (4) L2 remote hits; (5) cache-to-cache hits; (6) off-chip accesses.

89

bzip crafty eon

100 100 100
[PApBAN A s A bbbl s e
g
8 50 50 M 50
g |
0 K“ 0 0
gap gcc gzip
100 100 100
. Mt AW, A St Sy
S
8 50 50 50
: MM\; M
] .
0\ ﬁ 0 0 — -
mcf parser perl
100 100 100
— e
S
8 50 50 50
‘s
S (|
0 A 0 n 0
twolf vortex vpr
100 100 100
< ﬁ&xw
g E i
8 50 50 50
g e —
0== 0 0

Figure 6-13: Time-varying graph showing the percentage of the L2 allocated to replicas in single-
threaded programs. The percentage of replicas in each individual cache is shown.

90

6.2 Single-Threaded Workloads

We present the same set of results for single-threaded workloads. Figures 6-8 to 6-11 show
the average access latency for the single-threaded workloads. Figure 6-12 shows the access
breakdown of the four cache designs. Figure 6-13 shows the replica percentage of each

individual cache during the execution of victim replication.

6.2.1 Performance Analysis

Figure 6-8 shows the memory access latencies for the single-threaded workloads using con-
figuration 1. In most cases, the shared design performs significantly worse than the other
schemes because the L2 hit latency is a critical component of performance for these codes.
Table 6.2 summarizes the savings achieved by the victim replication and victim migration
over the private and shared baselines. Compared to the shared design, nine out of the
twelve workloads achieved 15% or more savings, with six of them over 25%, and an average
of 24%.

Victim replication and victim migration are better than the private design for all of
the twelve workloads. In several cases, i.e., bzip, gcc, gzip, mcf, parser, our techniques
significantly outperforms both baselines. The performance gain came from two aspects as
shown in Figure 6-12. First, victim replication and migration techniques are based on the
shared designs, thus have fewer off-chip misses than the private design. Second, they create
almost as many local L2 hits through the replicas as the private design, reducing on-chip

access latency.

6.2.2 Three-Level Caching

Our hybrid techniques dynamically adapt to a single thread by forming a three-level cache
hierarchy: the L1 cache, the local L2 slice, and the remote L2 slices. The local L2 slice can
be viewed as the “level 1.5” cache because they hold mostly replicas for the active thread

running on the local tile.

This behavior is confirmed by Figure 6-13, which plots the time-varying graph of the
percentage of replicas in each of the eight individual L2 caches. For all of these workloads,
we observe that one cache holds a very high percentage of replica blocks, usually over 80%.
This is the L2 cache of the tile on which the active thread is running. Because we perform
full-system simulations and do not attempt to optimize the kernel scheduler to pin the
thread on one tile during each run, we sometimes observe the single thread moving between
tiles under the control of the scheduler. The replicas “moved” from the old tile to the new

one following the thread in benchmarks eon, twolf, vortex, and vpr.

91

Victim Replication versus Victim Migration

Because the single-threaded benchmarks have working sets that are generally smaller than
even the smallest configuration simulated (2MB), victim migration did not provide notice-
able improvement over victim replication. However, victim migration is either the best

policy or a very close second across all benchmarks.

6.3 Multi-Programmed Workloads

Multi-programmed workloads tend to have very little sharing among the different threads,
thus the private design is likely to do significantly better than the shared design. Figures 6-
14 to 6-17 confirm this intuition, where the shared design is always the worst by a large

margin.

6.3.1 Performance Analysis

The performance of victim replication is close to the private design, usually within 5%.
Figure 6-18 shows that victim replication can produce significantly more local L2 hits than
the shared design with a slight increase in off-chip miss rate.

However, victim replication is not quite as good as the private design. Because there
is very little sharing among threads in a multi-programmed workload, each home block
is generally used by only one tile, meaning that the cache block is stored twice on the
chip (once by the user tile, once by the home tile). This duplication significantly reduces
the effective capacity, making victim replication unlikely to win over the private design.
This effect is better demonstrated in the smaller cache sizes, where capacity is at a higher

premium.

Victim Replication versus Victim Migration

Compared to victim replication, victim migration eliminates the need to keep a duplicate
copy at the home tile, behaving just like the private design when necessary. In addition,
victim migration allows data to be stored at a global location, stealing limited capacity
from other threads when their working sets do not saturate their local L2 slice. This is
supported by the lower off-chip miss rate victim migration has over victim replication,
shown in Figure 6-18. Overall, victim migration is the best policy for almost all workloads.

While more flexible capacity stealing techniques have been proposed in [CPV05, SSZR05],
they are based on snooping coherence protocols that can locate an on-chip cache block rel-
atively easily. Such global searches are complex and can take significant power to achieve

in a scalable directory-based design.

92

Average Data Access Latency

Average Data Access Latency

4 35
Hl Private design Il Private design
[Shared design [Shared design
35 [Victim replication [Victim replication
I Victim migration 3 I Victim migration
3
25
25
2 2
S g 2
S S
S [©)
5 2 5
g g
] El 15
15
1
1
05 05
0 " " " " , " (S " " " , " ,
mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8
Benchmarks Benchmarks
Figure 6-14: Configuration 1: Figure 6-15: Configuration 2:

8KB+8KB/256KB/16FO4. Average access
latencies of multi-programmed workloads.

Average Data Access Latency

16KB+16KB/256KB /24FO4. Average ac-
cess latencies of multi-programmed workloads.

Average Data Access Latency

35 3
Hl Private design Il Private design
[Shared design [Shared design
[Victim replication [Victim replication
3 B Victim migration 25 I Victim migration
25
2
2 2
s’ g
S [©)
> > 15
g g
%15 g
5 ki
1
1
0.5
0.5
0 " " " " , " (S " " " , " ,
mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8
Benchmarks Benchmarks
Figure 6-16: Configuration 3: Figure 6-17: Configuration 4:

16KB+16KB/512KB/24F0O4. Average ac-
cess latencies of multi-programmed workloads.

93

16KB+16KB/1MB/24F04. Average access
latencies of multi-programmed workloads.

Average Access Latency Reduction of Multi-Programmed Workloads

Configuration 1 Configuration 2
8K+8K /256K /16F04 16K+16K /256K /24FO4
Reduction (%) Reduction (%)
mix0 373 -0.6 446 4.7 5.3 | 133 -3.7 236 5.1 9.1
mix1 42.7 -09 53.1 6.3 731209 -82 363 35 127
mix2 534 32 597 74 4.1 | 266 -2.2 351 4.3 6.7
mix3 40.8 -3.7 540 54 94 | 191 -46 31.7 5.5 10.6
mix4 428 -44 582 59 108|227 -79 371 29 11.7
mixH 46.1 05 547 64 59239 08 300 57 49
mix6 448 6.2 545 01 6.7]182 -92 30.8 05 10.7
mix7 490 -5.1 639 44 100|262 -6.6 422 53 12.7
mix8 400 -34 562 7.8 116|186 -1.7 264 4.8 6.6
Avg 441 -23 554 54 7.9 21.1 -48 326 4.2 9.5
Configuration 3 Configuration 4
16K+16K /512K /24F04 16K+16K/1M/24F04
Reduction (%) Reduction (%)
mix0 184 -22 309 82 106|276 -2.7 346 2.7 55
mix1 304 -49 420 36 89433 -32 496 11 44
mix2 294 3.7 36.0 9.0 5.11396 22 403 2.7 05
mix3 277 0.1 340 5.0 49| 369 -3.6 428 0.5 4.3
mix4 30.8 -1.6 34.6 1.3 291398 -35 441 -05 3.1
mixH 316 46 362 83 35|355 03 386 26 23
mix6 23.7 98 336 -26 80335 -53 390 -14 41
mix7 289 -48 453 7.3 127|445 -3.2 516 1.5 4.9
mix8 25.5 -27 316 2.1 49 | 33.3 -3.0 389 1.1 4.2
Avg 274 -19 360 47 68371 -24 422 11 3.7

Table 6.3: Average access latency reduction of multi-programmed workloads achieved by victim
replication and victim migration over the shared and private baseline designs. The five numbers for
each workload indicate the percentage reduction of VR to shared, VR to private, VM to shared, VM
to private, and VM to VR.

94

Data Accesses Breakdown

Breakdown (%)

Hl Misses (Off-chip Memory Accesses)
B Hits in through C2C Xfer

[Hits in Non—Local L2 Data

[Hits in Replica L2 Data

B Hits in Local L2 Data

Bl Hitsin L1

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8
Benchmarks

Figure 6-18: Memory access breakdown of multi-programmed workloads. Moving from left to right,
the four bars for each workload are for the private design, the shared design, victim replication, and
victim migration, respectively. Hits are categorized into (from bottom to top): (1) L1 hits; (2) L2
local hits; (3) replica hits; (4) L2 remote hits; (5) cache-to-cache hits; (6) off-chip accesses.

95

Latency Reduction of VM over VR

Il 100% VM Tag Array
[] 50% VM Tag Array
8 Hl 25% VM Tag Array

Reduction (%)
= ol (=2}

w

N

16-way SZWay 64-way 128-way
Associativity

Figure 6-19: The reduction of victim migration over victim replication for three different VM
tag sizes. There is little performance degradation by halving the fully-duplicated VM tag array.
However, increasing the VM tag array associativity does not provide any performance gain.

6.4 Reducing VM Tag Array Area Overhead

The main drawback of victim migration is the area overhead caused by the VM tag array.
For simplicity, we have so far assumed that the VM tag array size is identical to that of
the regular L2 tag array. However, the VM tag array can be of any size and associativity.
We selected configuration 3 (16K+16K/512K/24F0O4) and simulated the performance of
two additional VM tag array sizes: at 50%, and 25% of the regular tag array size. The
50% case caused no performance degradation. The 25% case lost about 15% of the latency
reduction achieved by the full VM tag array over victim replication. We also experimented

with higher VM tag array associativities and observed no noticeable gains.

6.5 Area Comparison of Designs

The vast majority of the area in caches is occupied by data arrays, peripheral circuitry,
and interconnects, which is the same for all four designs described in this paper. How-
ever, the tag bits, status bits, and in our case, directory bits, all take up non-negligible
space. In this section, we provide a simple quantified comparison of the area occupied by
the tags and directories for each of these designs. We use the parameters in configura-
tion 1 (8KB+8KB/256KB/16FO4) in the comparison. We also assume a 40-bit physical
address width and 64 byte cache block size, which are representative of modern CMP ma-
chines [TDJ*02].

Table 6.4 shows the tag and directory area estimates in bits per block used for each

96

Design Tag Directory Total Bit per Block
Alternative Width | Entry Width | Width | Overhead vs. Shared

Shared 25 9 34 0.0%
Private 28 28 56 4.0%
Victim Replication 28 9 37 0.6%
Victim Migration (1/1) 28 43 71 6.8%
Victim Migration (1/2) 28 26 54 3. 7%
Victim Migration (1/4) 28 20 48 2.6%

Table 6.4: Cache area overhead of different designs.

design. It also shows the total bits overhead compared to the shared design, which requires
the least area. The actual overall cache area overhead is likely to be much smaller than
the ones in Table 6.4 when the area of peripheral circuitry and interconnects are taken into
consideration.

In the shared design, the address is used to index a single large shared cache, the width
of the tag is smaller than that of the private design. In the eight-tile configuration, three
bits are used to select a home tile, making the shared tag 3 bits shorter than that of the
private design. The directory uses an 8-bit wide sharing vector. It also leverages the existing
valid and dirty status bits to represent state, adding only one extra state bit in our design,
for a total of a 9-bit directory. The private design uses the largest area, by having a wider
tag and a fully duplicated tag array to maintain the on-chip directory.

For victim replication, the L2 tag must be wide enough to hold physical addresses from
any home tile, thus the tag width becomes the same as the private design. Global L2 blocks
redundantly set these bits to the address index of the home tile. Replicas of remote blocks
can be distinguished from regular L2 blocks as their additional tag bits do not match the
local tile index. The full version of victim migration incurs the largest area overhead of all
six designs. It consists of all of the components used in victim replication, as well as the VM
tag array. However, the overhead can be reduced to less than that of the private design by

halving the size of the VM tag array, which gives no significant performance degradation.

6.6 Coherence Traffic Reduction

An additional benefit of the victim replication and victim migration is the reduction of
coherence traffic. Compared to the private design, victim replication and victim migra-
tion minimizes off-chip traffic, significantly reducing power consumption caused by remote
DRAM accesses. Compared to the shared design, victim replication and victim migration
eliminate some inter-tile messages when accesses can be resolved in local replicas. Figures 6-
20 to 6-22 show the number of coherence messages per thousand instructions executed,
weighed by the number of hops each message traversed. While the figures show that the
bandwidth of the on-chip switch network is not a bottleneck, reducing the on-chip traffic

can dramatically reduce the power consumption of on-chip switch routers. The reduction

97

On-Chip Coherence Messages
25

Wl Private design
[Shared design
o [Victim replication
Hl Victim migration

20

10

Number of Message Hops per 1K Instructions

)

|IHIIH||HI I IHHIIHIlHI I

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
Benchmarks

Figure 6-20: On-chip coherence traffic for single-threaded workloads. Traffic is measured in number
of messages per hop.

On-Chip Coherence Messages

500
Il Private design
m [Shared design
450 [Victim replication
I Victim migration

IS
<)
S

w
&
=)

w
S
S

Number of Message Hops per 1K Instructions
X
g

200
150
100
Lo il i
BT CG EP FT IS LU MG SP apache dbenchcheckers
Benchmarks

Figure 6-21: On-chip coherence traffic for multi-threaded workloads. Traffic is measured in number
of messages per hop.

On-Chip Coherence Messages

100
p Hl Private design
[Shared design
90 [Victim replication
Il Victim migration
o 80 ~
] -
] -
2 70 = m m
E
x - -
T 60
g
a
£ 50
@
>
]
2 40
=
S
5 30
E
5
z
20
i M M
mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8
Benchmarks

Figure 6-22: On-chip coherence traffic for multi-programmed workloads. Traffic is measured in
number of messages per hop.

98

Single-Threaded Multi-Threaded Multi-Programmed
VR over Private | 7.9% — 183% | 4.0% — 58% | -4.8% — -1.9%
VR over Shared | 40.1% — 52.0% | 84% — 181% |21.1% — 44.1%
VM over Private | 7.8% — 221% | 76% — 89%| 1.1% — 54%
VM over Shared | 41.0% — 55.8% | 12.2% — 22.4% | 32.6% — 55.4%

Table 6.5: Average latency reduction achieved by victim replication and victim migration over the
baseline private and shared designs for all three different classes of applications.

achieved by victim replication is usually better than victim migration. This is because for
victim migration, a non-negligible percentage of the hits are serviced through a three-way

cache-to-cache transfer, causing additional traffic.

6.7 Summary

In Chapter 4, we showed that the implementations of victim replication and victim migration
require only simple changes from the baseline shared design. The results presented in this
chapter further confirm that victim replication and victim migration are robust, i.e., they
work well across single-threaded, multi-threaded, and multi-programmed applications. This
can be seen from the brief summary of results in Table 6.5. Finally, the implementations of
victim replication and victim migration incur very little area overhead, with a maximum of

3.7% over the baseline shared design, which has the smallest area requirement.

99

100

Chapter 7

Conclusions and Future Work

Single-chip multiprocessors have entered the mainstream microprocessor market. Instead of
devoting on-chip real-estate to larger data structures and exotic microarchitectural tricks,
CMPs achieve higher performance by replicating processor cores and by exploiting thread-
level parallelism. Compared to the wide superscalars which have been the driving force of
the microprocessor market for the past fifteen years, CMPs directly address several issues
that have stalled the continued development of these wide superscalars. First, CMPs can
achieve lower energy per operation by utilizing less aggressive cores and still achieve high
performance through application parallelization. Second, they can drastically reduce the
redesign cycle for each subsequent generation of processors by reusing previous processor
designs.

Future CMPs are likely to continue to increase both the number of cores and the total
cache capacity on-chip. One key design consideration for these CMPs is how to manage
their large cache storage, as the effective data fetch latency heavily impacts the processor
performance. In this thesis, we present detailed study of the two baseline cache manage-
ment policies for these CMPs, private and shared designs, suited for different classes of
applications. We introduced two latency reduction techniques, victim replication and vic-
tim migration that can dynamically adjust between the private and the shared cases to

optimally place data on-chip, minimizing overall fetch latency.

7.1 Thesis Summary and Contributions

This thesis focuses on tiled CMPs, a class of the CMPs which we believe will become more
popular due to its regularity and scalability. The nodes, which we call tiles, are replicated
in a two-dimensional mesh. Each tile contains a processor core, L1 caches, a slice of the
total L2 capacity on-chip, and a network switch to communicate with the rest of the chip.
Cache coherence among all tiles is maintained through a scalable directory-based protocol.

Two major components that govern the fetch latencies in a CMP are the off-chip miss

rate and the average on-chip fetch latency. A good cache management policy must consider

101

both of these conflicting constraints. We examine two baseline L2 cache designs, private
design and shared design that demonstrate the trade-offs of these two components. A
private design has short on-chip fetch latency, but generally has higher off-chip miss rate
than a shared design. A shared design provides the maximum amount of on-chip storage,
but on-chip fetches may have to travel across-chip, incurring longer latencies. We presented

detailed implementation of both policies under a directory-based protocol.

This thesis proposed two novel latency reduction techniques for tiled CMPs. Victim
replication is a simple hybrid scheme that combines the advantages of private and shared
design. Based on the shared design implementation, victim replication builds a local private
victim cache, backing up the local L2 slice, expecting the victims to be used in the near
future with reduced latency. A set of cache replacement heuristics is given to determine

whether and where to place the victims.

Three different types of workloads are used to evaluate the effectiveness of victim repli-
cation. For single-threaded workloads, victim replication works extremely well as it effec-
tively moves all of the recently used data into the local L2 slices of the tile hosting the
active thread. Similarly, for multi-programmed workloads, replication moves the working
set of each thread to the physical tile hosting that thread.

For multi-threaded workloads, there are two main scenarios. First, if the workload’s
working set fits within the local cache slice, then the private design will do better than the
shared design because it provides short fetch latency. Victim replication also does well by
mimicking the behavior of the private design. For workloads with large working sets that
do not fit within the local L2 slice, shared design does better than private design because
it provides lower off-chip miss rate. Victim replication does better than shared design since

it can create replicas with short fetch latency.

We pay extra attention to multi-programmed workloads and introduce victim migration,
specifically targeting these workloads. Since there is very little sharing among the threads,
we remove the need to keep the actual data block at the home tile of the block and simply
keep the tag and directory information. The space freed up by victim migration can be
used to store more useful data, reducing the off-chip miss rate. A set of replacement policies
is presented to complement the operations of victim migration. For multi-programmed
workloads, victim migration is able to achieve better performance than all the other three
policies discussed in this thesis.

We used a full-system x86 emulator running Linux 2.4.24 as our processor model to drive
a detailed cache and memory simulator that implements the various management policies.
Experimental results show that for the four typical configurations simulated, our replication
techniques outperform most of the 32 applications used in this thesis.

Victim replication and victim migration are much simpler to implement, more flexible,
and more scalable than any other proposed related work in reducing cache access latencies.

In addition, by using a directory-based protocol, we remove the need of a global snoopy bus

102

for large node counts [SSZR05, CPV05, HKS*05].

In doing so, we indeed sacrifice some flexibility by having to statically map each data
block to a fixed home tile, but avoid the global associative smart search required by all
other work. Our approach results in two simple, scalable, and robust cache latency reduction
techniques.

Before concluding this thesis, we point out some of the limitations of our experimental
infrastructure that still need to be examined further to better understand the effectiveness
of the proposed techniques. We conclude our discussion by presenting some possible future

work this thesis can lead to.

7.2 Simulation Infrastructure Limitations

In the initial phase of this thesis research, we examined several choices of multiprocessor
simulators to use, including Bochs [Law], Simics [MCE'02], other proprietary simulators,
and an in-house custom simulator. Due to the time frame of the project and the availability
of the tools, we chose to use Bochs, an x86 emulator. The full-system nature of the simulator
led us to observe the effect of the operating system, and it is open-source so that we were
able to easily integrate it with the detailed cache and memory simulator.

However, as we mentioned in Chapter 5, a more accurate processor simulator is necessary
to further evaluate the effectiveness of our techniques. Bochs is merely an emulator that
does not simulate any processor architectural features of the processor. Specifically, features
outlined in Chapter 2, such as prefetching and multi-threading, can help with latency hiding
in CMPs.

We were also limited in the number of processors (eight) we can simulate on our Linux
port and the Bochs simulator. We anticipate the performance improvement obtained by
our hybrid techniques will be more significant at higher core counts because the cross-chip

latencies in larger chips will be higher.

7.3 Future Work

In this thesis, we discussed some of the fundamental issues in designing an efficient cache
and memory hierarchy for future CMP systems and proposed some solutions. However,
as CMPs are a new and fast-evolving architectural target, many challenges lie ahead. In
this section, we outline some of these challenges and present our views on how to approach
them.

Future CMPs will keep increasing the number of cores and on-chip cache size. If we
maintain the even data distribution across the L2 cache slices, the average distance between
the requestor and the home tile will also grow accordingly. Even though victim replication

and victim migration can create local copies of the shared data, they cannot reduce the

103

latencies of the initial trip to fetch the data from the home tile, as well the inquiries to the
directory entries at the home tile thereafter. Thus, we examine some possibilities of altering

the on-chip data mapping to minimize these two factors in fetch latency.

7.3.1 Using Hierarchy

Figure 7-1 shows an approach to reduce the long directory access latency using hierarchy.
We show a 16x16, 256-core tiled CMP, a product of continued technology scaling. If we
evenly distribute data and/or directory across the entire chip, accesses to data and directory
entries will be increasingly more expensive because they incur cross-chip communications.

The goal in using hierarchy is to have the majority of the accesses to directories be
handled by a local directory, which is located in a nearby tile and much faster to get to than

the actual global directory.

Using Regions

To minimize these cross-chip communications, we divide the tiled CMP into coherent re-
gions. For example, regions R1, R2, and RS are all 2x2 coherent regions. Such a coherence
region operates as an independent tiled CMP with respect to the rest of the chip, and main-
tains its own coherence. Any latency reduction techniques can be used within a coherence
region, and data coherence between multiple regions are kept at the home tile of the actual
data. Each tile in this case would carry a directory to maintain coherence within the region,
as well as a directory to maintain coherence across all regions. The example in Figure 7-1
shows the sharing of a data block whose global home is mapped to the upper-left tile of
region R3. Each individual coherence region must also cache a local home directory entry
to maintain data coherence among all the tiles inside the region. This example shows a
shared design for each region, and an address-interleaved directory to keep all the regions
coherent. Specific implementations can choose to use any cache management policies within
each coherent region and among all regions. Furthermore, it is also possible to allow a region

to be incoherent.

Partition Algorithms

A challenge in the hierarchical approach is to find the appropriate partitions for these
regions to gain the optimal performance. One approach is to use profiling information and
statically partition the CMP array [HKST05]. A more appealing approach is to leverage

the operating system to help determine the optimal partitioning dynamically.

7.3.2 Leveraging Software

The operating system can give us valuable hints in the sharing patterns of workloads,
as illustrated in Figure 7-2. (we again use a 16x16, 256-core tiled CMP as our target

104

Router Router Router Router
Core L1$ [y Core L1$ Core L1$ [y Core L1$
= = | =
Lps L2$ L2$ L2$ LEs L2$ L2$ L2$
L2g |L2% Ldcal | | Home L2s |L2% Local | | Home L2g |L2% Logal | | Home L2s |L2% Local | | Home
Data | Tag oyir Dir Data | Tag Dir Dir Data | Tag Dyr Dir Data | Tag Dir Dir
Router Router Router Router
Core L1$ [) Core L1$ Core 115 |) Core L1$
I o =
2% L2$ LES L2$ L2% L2$
L2 L2 L2$4ca] Home L2s |L28 Logal | | Home L2s |L2% Local | | Home
Data Data J;g Dir Dir Data [Tag| f; Dir Data [Tag| Dir
-h\
Region R1 Region R2
. v
\
Router Router
Core L Core L1$
=
L2 L2$ L2$
L2$ |L2% Local L2$ |[L2$ Local || Home
Data [Tag| p;, Data [Tag| pj, Dir
/
y A
|
Router Router
Core L1$ [) Core L1$
= || |—22
Lps L2$ 2% L2$
L2 L2s cal | | Home L2 L2g Local | | Home
Data |Tag Dir Data Dir Dir
A 16 x 16 Tiled CMP Region 3

Figure 7-1: Tllustration of hierarchical cache coherence for CMPs. In this example, each 2 by 2
square forms its own coherence region and the cache storage located within the region is shared by
all processor cores within the region. However, when two regions, e.g., regions 1 and 2 share data,
there is a directory entry on the home node that keeps track of all the data for each region.

105

Figure 7-2: Tllustration of using the operating system to allocate a collection of physical tiles
for each independent program running on the CMP. The operating system is fully responsible for
maintain cache coherence within different regions.

architecture). The idea here is to use the operating system to allocate the threads to
a contiguous collection of tiles. These tiles will form a coherence region, similar to the

hierarchical approach.

Flexibility

The complexity of partitioning the tiles is entirely handled by the operating system. Such
an approach is flexible, online, and can use operating system hints to experiment with more
complex heuristics. The hardware simply has to be informed of the static mapping between
the address and the home tiles of the data blocks.

Because partitioning is dynamically adjustable to suit the usage of the workload, the
coherent regions can be of different sizes and shape to optimally accommodate the charac-

teristics of the program.

One main drawback of the software approach is that the cache content is likely to be
flushed depending on how the operating system partitions the regions and whether the
static mapping needs to change. This requirement, however, is unlikely to cause major
performance degradation for multi-programmed workloads. An additional problem here
could be region fragmentation, because the operating system needs to partition and rejoin

different coherent regions at various times.

106

Figure 7-3: Tlustration of using multiple moderate-sized tiled CMPs to form a massive many-core
CMP system. The integration between neighboring chips is tight.

i

|]
|]
]
HIA

Figure 7-4: Illustration of forming a multi-chip CMP system in three-dimensional fashion.

107

7.3.3 Future CMP Topology

Figure 7-3 shows an example of such a system, which consists of many moderately sized
tiled CMPs to form a massively parallel machine. Furthermore, various new silicon emerg-
ing technologies could allow multiple dies to be connected together in a three-dimensional
fashion, forming a tiled CMP cube as shown in Figure 7-4. These newer CMP topologies
present different trade-offs in cache and memory latencies. Thus, inventing flexible latency-
reduction techniques to manage the cache and memory of these new architectures will be

both challenging and vital to the performance of these machines.

108

Appendix A

Cache Coherence Protocol

Implementation

In this chapter, we briefly present the basic aspects of the cache coherence protocol used
in our memory system. A typical protocol can be described through three separate compo-
nents: 1) the coherence states associated with each cache or memory block, 2) the different
types of coherence messages communicated between the tiles, 3) the coherence actions taken
by the coherence controllers upon receiving the processor request, the coherence messages,
and the off-chip DRAM messages. Such actions may include block state transitions or gen-
erating reply messages. In the following, we present each of these three components in our

protocol.

A.1 Coherence States

This section presents the coherence states for the L1 cache, the L2 cache, and the DRAM.

A.1.1 Memory Block States

The simplest module to implement in our coherence protocol is the physical memory
(DRAM). Traditionally, directories are stored in the DRAM. However, as we discussed
in Chapter 3, we implement a perfect on-chip directory cache for all cached data blocks
on-chip by duplicating tags. By doing so, we have removed the need to implement off-chip
directories, as shown in Figure A-1. When a block that is not on-chip is first requested by
any processor core, the request is propagated to the off-chip DRAM. The DRAM simply
returns the data to the home tile of the requested block. A directory entry is created once
the DRAM reply carrying the requested data reaches the home tile. The directory entry is
either in the true directory format for shared designs, or in the duplicated tag array format
for the private design. When the last copy of a cached block is evicted from the chip, the

on-chip directory is cleared and any dirty data is written back to the off-chip memory.

109

LI1$|| LIS[|LIS([L1S|L1S| L1S| L1S| L1S
0 1 2 3 4 5 6 7

Perfect directory L2S||L2B (| L2$|| L2 || L2% || L2$|| L2B ([L2$

I nformation for O 123|455 ¢®6f]?7’
all cached dataon-chip [(I—1I—I—XL T T T 1

|:> On-chip Directory
|

()
2D Mesh
. Network Router)
1 No directory necessary
in off-chip DRAM
DRAM

Figure A-1: Implementing a perfect directory for all cached data on-chip removes the need to have
directories in the off-chip DRAM. The on-chip directory cache is guaranteed to have all the necessary
sharing information of any cached block.

A.1.2 L1 Cache Block States

The L1 cache’s states are list in Table A.1. There are four stable MESI states, and one

transient state indicating that there is an outstanding request being serviced.

A.1.3 L2 Cache Block States

The L2 cache’s coherence states are list in Table A.2. The states include the four stable
MESI states, as well as two transient states. The two transient states are reached during
cache reply-forwarding and hold the final stable state to enter once the transaction is com-
plete. In addition to holding the state, each L2 block is associated with a presence vector
to keep track of all the sharers. A full presence vector is used in our system as the number

of tile is small with 1 bit per tile.

A.2 Coherence Messages

Table A.3 summarizes all of the coherence message types used by our protocol. The twenty-
six messages are prefixed to make them easier to read. We use ¢ (cache) to indicate re-
questors, sharers, or owner, and h (home) to indicate the home tile. We also use q to
indicate a request message and p for a reply message. In addition, an message could
carry a payload of one cache block, and we use a suffix D to indicate that. The messages
are divided into the following five groups: 1) Type chq: request messages from requestor
to home tile. 2) Type hcp: reply messages from home tile to requestor. 3) Type heg:

reply-forwarding messages from home tile to owner/sharers. 4) Type chp: reply-forwarding

110

| Group | States | Description |
Stable INV The I state, indicating an invalid cache block.
SHR The S state, indicating a read-only block is cached in this L1 cache and
possibly in other L1 caches as well.
CEX The E state, indicating a clean block is cached in this L1 cache only. No
other L1 cache has a copy.
DEX | The M state, indicating a writable (dirty) block is cached in this L1
cache only. No other L1 cache has a copy.
Transient BSY Indicating a request is outstanding for this cache block.

Table A.1: Coherent states of the L1 cache blocks include four stable MESI states and one transient

state.
| Group | States | Description |

Stable INV The T state, indicating an invalid cache block.

SHR The S state, indicating a read-only block is cached in this L2 cache and
possibly in other L2 caches as well.

CEX The E state, indicating a clean block is cached in this L2 cache only. No
other L2 cache has a copy.

DEX | The M state, indicating a writable (dirty) block is cached in this L2
cache only. No other L2 cache has a copy.

Transient BSH The busy-shared state, entered when a shared read request is received
but cannot be serviced immediately due to a coherence miss. Down-
grade request is sent to the owner and a revision block then sent to the
requestor. Wait for reply before entering SHR state.

BEX The busy-exclusive state, entered when an exclusive read request is re-
ceived but cannot be serviced immediately due to a coherence miss. In-
validation request(s) are sent to owner/sharers and a revision block then
sent to the requestor. Wait for reply before entering EXC state.

Table A.2: Coherent states of the L2 cache blocks include four stable MESI states and two transient

states.

111

Message Message Message

Group Type Description

Cache—Home Request chqRSH Shared read request.
chqREX Exclusive read request.
chqWBKD | Writeback request.
chgDRP Explicit drop request.

Home— Cache Reply hcpRSHD Shared read reply.
hcpREXD | Exclusive read reply.
hepUPG Upgrade reply.
hcpRUAD | Exclusive read reply.
hcpREV Exclusive read revision.
hcpREVD Exclusive read revision with data.
hcpWBK Writeback acknowledgment.
hcpDRP Explicit drop acknowledgment.
hcpNAK Negative acknowledgment.

Home—Cache Request hcqINV Invalidation intervention request.
hcgDNG Downgrade intervention request.
hcqCCX Cache-to-cache transfer intervention request.

Cache—Home Reply chpINV Invalidation reply from a clean-exclusive block.
chpINVD Invalidation reply from a dirty-exclusive block.
chpDNG Downgrade reply from a clean-exclusive block.
chpDNGD | Downgrade reply from a dirty-exclusive block.
chpREV Revision reply.
chpREVD Revision reply with data.

Cache—Cache Transfer ccpINV Invalidation reply from a clean-exclusive block.
ccpINVD Invalidation reply from a dirty-exclusive block.
ccpDNGD Downgrade reply from a dirty-exclusive block.
ccpCCXD Cache-to-cache reply from a shared block.

Table A.3: The types of coherence messages used in this protocol. The first two letters of the
prefix signifies whether the message is from the sharing cache to the home tile (ch), home tile to the
sharing cache (hc), or cache-to-cache transfers (cc). The third letter of the prefix indicates whether
the message is a request message (g) or a reply message (p). Messages that end in D carry a payload.

112

messages from owner/sharers to the home tile. 5) Type ccp: cache-to-cache reply messages

from owner/sharers to the requestor.

A.3 Coherence Actions

This section describes the coherence actions taken by the coherence controllers co-located
with the L1 cache and the L2 cache. The DRAM behaves normally without the burden
of maintaining coherence. The actions are summarized in Table A.4 on page 115 and
Table A.5 on page 116. To simplify our discussions, these actions summarized in these two
tables only represent the main portions of the protocol and ignores some of the cumbersome
implementation details and corner cases. Further, to complement and to facilitate the
understanding of the coherence action tables, we also show several examples in Figure A-2

on page 114.

A.3.1 Examples

Figure A-2 shows four examples of how the coherence protocol works. Figure A-2(a) shows
the reply-forwarding action sequence of an exclusively held block in response to a shared
read request. Upon receiving the request, home sets its state to busy and sends a downgrade
request with the tile ID of the requestor to the owner of the block. In addition, a home
revision reply is sent to the requestor, telling it to expect one downgrade message. Once
the requestor receives the downgrade message, it considers the request complete and refills
its cache. It must also notify the home tile that the data is received by sending home an
acknowledgment. Upon receiving this acknowledgment, home tile completes the request and
moves into the shared stable state. Figure A-2(b) shows the action sequence of a shared
block in response to a exclusive request, which is similar to the previous one. Instead of
sending a downgrade request, home tile sends an invalidation request to each of the sharers.
The revision message tells the requestor how many invalidation replies to anticipate. Once
the requestor receives all of the invalidation messages, it considers the request complete
and refills its cache. It must also notify the home tile that the data is received and home
subsequently completes the request. Lastly, Figure A-2(c) shows the action sequence of a
shared block in response to a shared request. This case is simple, as the home tile chooses a
sharer and sends a cache-to-cache transfer request, asking the sharer to forward the actual
data to the requestor. However, this case only happens in the private design and the victim
migration design, in which cases the home tile may hold only the directory entry, but not

the actual data.

113

(1) shared read req (chgRSH)

(2) homerevision (hcpREV) Requestor

(3) downgrade
(4) revision ack (chpREV) rep (ccpDNGD)

(2) downgrade req (hcqgDNG)

(a) Shared read through downgrading current owner

(1) shared read req (chgREX) (3) invalidation rep

(ccpINV)

(2) homerevision (hcpREVD) RequeStor

>

\—

(3) invalidation rep
(ccpINV)

Home (4) revision ack (chpREV)

(2) invalidation req (heqiNV) eeoe | Sharer,

(2) invalidation reqg (hcgl NV) +
(b) Exclusiveread through invalidating current sharers

(1) shared read req (chgRSH)

(3) cache-to-cache
transfer rep
(ccpCCX)

eee | Sharer,

(c) Shared read through cache-to-cache transfer from a sharer

Home (4) revision ack (ChpREV)

(2) cache-to-cache
transfer req (hcqCCX)

Figure A-2: Examples of reply-forwarding used in the coherence protocol. Figure (a) shows the
action sequence of an exclusively held block in response to a shared read request. Figure (b) shows
the action sequence of a shared block in response to a exclusive request. Figure (¢) shows the action
sequence of a shared block in response to a shared request.

114

Request or | Initial Final Output Cache Action

Message State State Message and Description

Load INV N/A chqRSH L1 miss. Push request into miss buffer.
Request SHR SHR N/A L1 hit.

CEX CEX N/A L1 hit.

DEX DEX N/A L1 hit.

BSY BSY chqRSH L1 miss. Push request into miss buffer and
merge with preceding requests to the same
block if appropriate.

Store INV N/A chqREX L1 miss. Push request into miss buffer.
Request SHR BSY chqREX L1 coherence miss. Push request into miss
buffer.

CEX DEX N/A L1 hit.

DEX DEX N/A L1 hit.

BSY BSY chqREX L1 miss. Push request into miss buffer and
merge with preceding requests to the same
block if appropriate.

hcqINV Any INV ccpINV[D] | Invalidates block. Dirty block attached if ap-
propriate.
hcgDNG [CIDJEX | SHR ccpDNGD | Downgrades block. Data block attached.
hcqCCX SHR SHR ccpCCXD Sends shared data directly to the requestor.
hecpRSHD | N/A SHR N/A L1 refill.
hepREXD | N/A C|DJEX’ | N/A L1 refill.
hcpUPG N/A C|DJEX’ | N/A L1 refill.
hcpRUAD | N/A C|D]JEX’ | chpREVD | L1 refill.
hepREV[D]| N/A CEX’™* | | chpREV If all downgrade/invalidation replies have
SHR™* been received, then refill L1. Otherwise, con-
tinue waiting,.
hepWBK | N/A N/A N/A Completes the writeback request.
hcpDRP N/A N/A N/A Completes the explicit request.
hcpNAK N/A N/A Original Reissue the original request. May merge with
Request subsequent requests to the same block if ap-
propriate.
ccpINV[D] | N/A DEX* chpREV[DJ*| If all other invalidation replies and the home
revision (hcpREVD) have been received, then
refill L1. Otherwise, continue waiting.
ccpDNGD | N/A SHR* chpREV* If home revision (hcpREVD) has been re-
ceived, then refill L1. Otherwise, continue
waiting.
ccpCCXD | N/A SHR N/A L1 refill.

Table A.4: L1 cache controller actions to processor requests and incoming coherence mes-
sages. A () indicates that one of the multiple states listed will be entered depending on the
original request (shared or exclusive). A asterisk (*) means that the state is only entered
upon described conditions.

115

L1/DRAM | Initial Final Output Cache Action
Messages State State Message and Description
Any cache | B[SH|EX] | B[SH|EX]| hcpNAK Reply with negative acknowledgment.
request
chqRSH INV N/A To DRAM | L2 miss. Issues request to off-chip DRAM.
Push request into miss buffer.
SHR SHR hcpRSHD L2 hit.
[CID]JEX | BSH hcgDNG & | L2 coherence miss. Send downgrade request
hcpREV to owner, and sends revision to the requestor.
chqREX INV N/A To DRAM | L2 miss. Issues request to off-chip DRAM.
Push request into miss buffer.
SHR BEX hcqINV & | L2 coherence miss. Send invalidation re-
hcpREVD | quest(s) to all sharers, and sends revision to
the requestor.
[CID]JEX | DEX hcpREXD | L2 hit. Private design only.
chpINV[D] | BEX INV chpINV[D] | In private design only. L1 invalidation reply
to the local L2 cache.
chpDNG[D]| BSH SHR chpDNGID] | In private design only. L1 downgrade reply
to the local L2 cache.
chpREV[D] | BSH SHR N/A Concludes the shared read request.
BEX DEX N/A Concludes the exclusive read request.
DRAM BSH SHR hcpRSHD Concludes the shared read request.
reply BEX DEX hcpREXD Concludes the exclusive read request.

Table A.5: L2 cache controller actions to L1 requests and DRAM replies.

116

Bibliography

[ABS86]

[ACI+99]

[AGGDO1]

[AHKBO0]

[ALKK90]

[ASHHSS]

[AW03]

[BBB194]

[BCY1]

[BGM+00]

J. Archibald and J. Baer. Cache coherence protocols: Evaluation using a
multiprocessor simulation model. ACM Transactions on Computer System

(TOCS), 4(4):273-298, November 1986.

A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B. Lim,
K. Mackenzie, and D. Yeung. The MIT Alewife machine. Proceedings of IEEE,
87(3):430-444, March 1999.

M. Acacio, J. Gonzalez, J. Garcia, and J. Duato. A new scalable directory ar-
chitecture for large-scale multiprocessors. In The 7th International Symposium
of Computer Architecture, Nuevo Leone, Mexico, January 2001.

V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus
IPC: The end of the road for conventional microarchitectures. In The 27th

International Symposium on Computer Architecture, Vancouver, BC, Canada,
May 2000.

A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz. April: A processor archi-
tecture for multiprocessing. In The 27th International Symposium on Computer
Architecture, Seattle, WA, June 1990.

A. Agarwal, R. Simoni, J. Henessy, and M. Horowitz. An evaluation of direc-
tory schemes for cache coherence. In The 15th International Symposium on
Computer Architecture, Honolulu, HI, May 1988.

A. Alameldeen and D. Wood. Addressing workload variability in architectural
simulations. In The 9th International Symposium on High-Performance Com-
puter Architecture, Anaheim, CA, February 2003.

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-
toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS parallel benchmarks. Tech-
nical Report RNR-94-007, NASA, March 1994.

J. Bear and T. Chen. An effective on-chip preloading scheme to reduce data
access penalty. In International Conference on Supercomputing, Albuquerque,
NM, 1991.

L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese. Piranha: a scalable architecture based
on single-chip multiprocessing. In The 27th International Symposium on Com-
puter Architecture, Vancouver, BC, Canada, May 2000.

117

[BPZAO05]

[Bur92]

[BW04]

[Cav05]

[CF78]

[CHMO6]

[CKA91]

[CKP91]

[Cor91al

[Cor91b]

[Cor93]
[Cor00]

[CPV03]

[CPV05]

[CRO5]

[CSGY7]

K. Barr, H. Pan, M. Zhang, and K. Asanovié. Accelerating multiprocessor
simulation with a memory timestamp record. In International Symposium of
Performance Analysis and System Simulation, Austin, TX, March 2005.

H. Burkhardt. Overview of the KSR1 computer system. Technical Report
KST-TR-9202001, Kendall Square Research, 1992.

B. Beckmann and D. Wood. Managing wire delay in large chip-multiprocessor
caches. In The 37th International Symposium on Microarchitecture, Portland,
OR, December 2004.

Cavium Networks. OCTEON network service processors, August 2005.

L. Censier and P. Feautrier. A solution to coherence problems in multicache sys-
tems. IEEE Transaction on Computer, C-27(12):1112-1118, December 1978.

T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for effec-
tive trace sampling of superscalar processors. In International Conference on
Computer Design, October 1996.

David Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories: A
scalable cache coherence scheme. In The 4th International Conference on Ar-
chitectureal Support for Programming Languages and Operating Systems, April
1991.

D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In The
4th International Conference on Architectureal Support for Programming Lan-
guages and Operating Systems, New York, NY, April 1991.

Intel Corporation. Paragon XP/S product overview, 1991.

Thinking Machines Corporation. The connection machine CM-5 technical sum-
mary, October 1991.

CONVEX Computer Corporation. Exemplar architecture manual, 1993.
Standard Performance Evaluation Corp. SpecINT2000, 2000.

Z. Chishti, M. Powell, and T. Vijaykumar. Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In The 36th In-
ternational Symposium on Microarchitecture, San Diego, CA, December 2003.

Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing replication, communica-
tion, and capacity allocation in CMPs. In The 32nd International Symposium
of Computer Architecture, Madison, WI, June 2005.

M. Cameron and B. Rohit. Montecito: A dual-core, dual-thread Itanium pro-
cessor. IEEE Micro, 25(2):10-20, March/April 2005.

D. Culler, J. Pal Singh, and A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approcah. Morgan Kuffman Publishers, 1997.

118

[CYS+93]

[DT99]

[Goo83]

[Gro01]

[Gus92]

[GW94]

[HBJ102]

[HKS05]

[HLH92]

[HMHO1]

[Hor83]

[HP03]

[HSU*01]

[Inc93]

M. Cekleov, D. Yen, P. Sindhu, J. Frailong, J. Gastinel, M. Splain, J. Price,
G. Beck, B. Liencres, F. Cerauskis, C. Coffin, D. Bassett, D. Broniarczyk
an dS. Fosth, T. Nguyen, R. Ng, J. Hoel, D. Curry, L. Yuan, R. Lee, A. Kwok,
A. Singhal, C. Cheng, G. Dykema, S. York, B. Gunning, B. Jacksno, A. Kasuya,
D. Angelico, M. Levitt, M. Mothashemi, D. Lemenski, L. Bland, and T. Pham.
SPARCcenter 2000: Multiprocessing for the 90’s! In Compcon Spring ’93,
Digest of Papers, pages 345-353, February 1993.

F. Dahlgren and J. Torrellas. Cache-only memory architectures. IEEE Trans-
action on Computer, 32(6):72-79, June 1999.

J. Goodman. Using cache memory to reduce processor memory traffic. In The
10th International Symposium on Computer Architecture, Stockholm, Sweden,
June 1983.

MIT Supercomputing Technologies Group. Cilk 5.3.2.
http://supertech.lcs.mit.edu/cilk, November 2001.

D. Gustavson. The scalable coherent interface and related standards projects.
IEEFE Micro, 12(1):10-22, February 1992.

M. Galles and E. Williams. Performance optimization, implementation, and
verification of the SGI Challenge multiprocessor. In 27th Hawaii International
Conference on System Science, volume 1, January 1994.

M. Hrishikesh, D. Burger, N. Jouppi, S. Keckler, K. Farkas, and P. Shivakumar.
The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. In

The 29th International Symposium of Computer Architecture, Anchorage, AK,
May 2002.

J. Huh, C. Kim, H. Shafi, L.. Zhang, D. Burger, and S. Keckler. A NUCA
substrate for flexible CMP cache sharing. In ICS05, Cambridge, MA, June
2005.

E. Hagersten, A. Landin, and S. Haridi. DDM — A cache-only memory archi-
tecture. 25(9):44-55, September 1992.

R. Ho, K. Mai, and M. Horowitz. The future of wires. Proceedings of IEEE,
89(4):490-504, April 2001.

M. Horowitz. Timing Models for MOS Circuits. PhD thesis, Stanford Univer-
sity, December 1983.

A. Hartstein and T. Puzak. Optimum power/performance pipeline depth. In
The 36th International Symposium on Microarchitecture, San Diego, CA, De-
cember 2003.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rous-
sel. The microarchitecture of the pentium 4 processor. Intel Technology Journal
@1, February 2001.

Cray Research Inc. Cray T3D system architecture overview, 1993.

119

[JLGS90]

[KAOO5]

[KBK02]

[Kes99]
[KMACO3]

[KOH'94]

[Kre04a)

[Kre04b]

[KSTO4]

[Law]
[Lee87]

[LGHY4]

[LL97)

[LLG192]

[LPI8]

D. James, A. Laundrie, S. Gjessing, and G. Sohi. Distributed-directory scheme:
Scalable coherent interface. IEEE Transaction on Computer, 23(6), June 1990.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded
Sparc processor. IEEE Micro, 25(2):21-29, March/April 2005.

C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache struc-
ture for wire-delay dominated on-chip caches. In The 10th Interational Confer-
ence on Architectural Support of Programming Languages and Operating Sys-
tems, San Jose, CA, October 2002.

R. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24-36, 1999.

C. Keltcher, K. McGrath, A. Ahmed, and P. Conway. The AMD Opteron
processor for multiprocessor servers. IEEE Micro, 23(2):66-76, March/April
2003.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Henessey. The Stanford Flash multiprocessor. In The 21st International
Symposium on Computer Architecture, Chicago, IL, April 1994.

K. Krewell. Intel’s PC roadmap sees double. Microprocessor Report, 18(5):41—
43, May 2004.

K. Krewell. Sun’s Niagara pours on the cores. Microprocessor Report, 18(9):11—
13, September 2004.

R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 chip: A dual-core multi-
threaded processor. IEEE Micro, 24(2):40-47, March/April 2004.

K. Lawton. Bochs. http://bochs.sourceforge.net.

R. Lee. The Effectiveness of Caches and Data Prefetch buffers in Large-Scale
Shared Memory Multiprocessors. PhD thesis, University of Illinois at Urbana-
Champaign, Urbana-Champaign, IL, May 1987.

J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A multithreading tech-
nique targeting multiprocessors and workstations. In The 6th International
Conference on Architectural Support of Programming Languages and Operat-
ing Systems, San Jose, CA, October 1994.

J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable server.
In The 24th International Symposium on Computer Architecture, Denver, CO,
May 1997.

D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam. The Stanford Dash multiprocessor. IEEE Trans-
action on Computer, 25(3):63-79, March 1992.

S. Laha, J. A. Patel, and R. K. Iyer. Accurate low-cost methods for performance
evaluation of cache memory systems. IEEE Transactionctions on Computers,
February 1988.

120

[MCE*02]

[MG91]

[MH94]

[ONH*96]

[ORYY]

[PP86]

[Raz05]

[SBD*97]

[SBG*02]

[SC02]

[SIG]

[Smi82]

[SPHC02]

P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-
berg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system simulation
platform. IEEE Computer, 35(2):50-58, February 2002.

T. Mowry and A. Gupta. Tolerating latency through software-controlled
prefetching in shared-memory multiprocessors. Parallel and Distributed Com-
puting, Special issue on shared-memory multiprocessors, 12(2):87-106, June
1991.

S. Mukherjee and M. Hill. An evaluation of directory protocols for medium-
scale shared-memory multiprocessors. In The 8th International Conference on
Supercomputing, July 1994.

K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for
a single-chip multiprocessor. In The 7th International Conference on Architec-

tural Support of Programming Languages and Operating Systems, Cambridge,
MA, October 1996.

H. Oi and N. Ranganathan. Utilization of cache area in on-chip multiprocessor.
In HPC, 1999.

M. Paramarcos and J. Patel. A low-overhead coherence solution for multipro-
cessors with private cache memories. In The 11th International Symposium on
Computer Architecture, Ann Arbor, MI, June 1986.

Raza Microelectronics, Inc. XLR processor product overview, May 2005.

P. Stenstrom, M. Brorsson, F. Dahlgren, H. Grahn, and M. Dubois. Boosting
the performance of shared memory multiprocessors. IFEE Transaction on
Computer, 30(7):63-70, July 1997.

V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. Stenski, and
P. Emma. Optimizing pipelines for power and performance. In The 35th
International Symposium on Microarchitecture, Istanbul, Turkey, November
2002.

E. Sprangle and D. Carmean. Increasing processor performance by imple-
menting deeper pipelines. In The 29th International Symposium of Computer
Architecture, Anchorage, AK, May 2002.

P. Stenstrom, T. Joe, and A. Gupta. Comparative performance evaluation of
cache-coherent numa and coma architectures.

A. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, Septem-
ber 1982.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Auto-
matically characterizing large scale program behavior. In The 10th Interna-
tional Conference on Architectureal Support for Programming Languages and
Operating Systems, pages 45-57, October 2002.

121

[SS86]

[SSZR05]

[Ste90]

[SWCL95]

[TDJ102]

[UC 01]

[WWFHO3]

[ZA05a]

[ZAO5b]

[ZT97)

P. Sweazey and A. Smith. A class of compatible cache consistency protocols and
their support by the IEEE futurebus. In The 13th International Symposium
on Computer Architecture, Tokyo, Japan, June 1986.

E. Speight, H. Shafi, L. Zhang, and R. Rajamony. Adaptive mechanisms and
policies for managing cache heirarchies in chip multiprocessors. In The 32nd
International Symposium of Computer Architecture, Madison, WI, June 2005.

P. Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEE
Transaction on Computer, 23(6):12-24, 1990.

A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin. An argument for simple
COMA. In The 1st International Symposium on High Performance Computer
Architecture, Raleigh, NC, January 1995.

J. Tendler, J. Dodson, J. Fields Jr., H. Le, and B. Sinharoy. POWERA4 system
microarchitecture. IBM Journal of Research and Development, 46(1), 2002.

UC Berkeley Device Group. Predictive technology model. Technical report,
UC Berkeley, 2001.

R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. SMARTS: Accelerating
microarchitecture simulation via rigorous statistical sampling. In The 30th
International Symposium of Computer Architecture, San Diego, CA, June 2003.

M. Zhang and K. Asanovi¢. Victim Migration: Dynamically adapting between
private and shared CMP caches. Technical Report MIT-CSAIL-TR-2005-064,
Computer Science and Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, October 2005.

M. Zhang and K. Asanovié. Victim Replication: Maximizing capacity while
hiding wire delay in tiled chip multiprocessors. In The 32nd International
Symposium on Computer Architecture, Madison, WI, June 2005.

7. Zhang and J. Torrellas. Reducing remote conflict misses: NUMA with
remote cache versus COMA. In The 3rd International Symposium on High
Performance Computer Architecture, San Antonio, TX, January 1997.

122

